


# Bachelor of Science Genetics

# **Undergraduate Handbook 2010**



#### Contents

| Welcome                                         |
|-------------------------------------------------|
| Introduction4                                   |
| Teaching approach4                              |
| Bachelor of Science degree                      |
| Biological Sciences Major - Overview            |
| Contact Details                                 |
|                                                 |
| Year ONE papers                                 |
| 162.101 Biology of Cells7                       |
| 123.101 Chemistry and Living Systems8           |
| 122.101 Biochemistry of Cells9                  |
| 123.102 Chemistry and the Material World10      |
|                                                 |
| Year TWO papers                                 |
| 122.231 Genes and Gene Expression11             |
| 162.211 Biology and Genetics of Microorgnisms12 |
| 203.303 Human Genetics13                        |
| 122.232 Protein Biochemistry14                  |
| 122.233 Metabolic Biochemistry15                |
| 196.207 Biological Evolution16                  |
| 203.202 Genetic Analysis17                      |
|                                                 |
| Year THREE papers                               |
| 120.304 Plant Biotechnology18                   |
| 203.300 DNA Technology19                        |
| 203.307 Advanced Cell Biology20                 |
| 117.345 Genetics for Livestock Improvement      |
| 120.302 Plant Development                       |
| 203.203 Gene Regulation23                       |
| 162.312 Molecular Microbiology24                |
| 203.305 Advanced Practical Genetics25           |
| Starter package Decommended papers              |
| Starter package - Recommended papers            |
| Research                                        |
|                                                 |
| Maps - Palmerston North Campus - Overview       |
| Bsc Programme Information                       |

# WELCOME

#### COLLEGE OF SCIENCES Genetics 2010

To all prospective students,

If the 1930s was the great age of chemistry then without doubt this is the age of genetics. The development of DNA manipulation and high throughput DNA sequencing technologies have enabled researchers to determine the complete genome sequence for hundreds of organisms. We are only beginning to understand the complexity of genomes. However, geneticists now have at their disposal a powerful mix of research tools to study genes. There is much yet to be discovered!

Eric Lander, Professor of Biology at the Massachusetts Institute of Technology (MIT) said: "That's what I love about genomics. We're learning that there are vast tracts of biology that we have missed. It's as if we suddenly could look at the whole earth and see that there are several continents we hadn't known about."

Genetics studies also include the rapidly emerging field of epigenetics, where an altered phenotype results not from a change in the DNA sequence of a gene but a change in gene expression. Modern epigenetic studies are focused on modifications to the DNA and histone proteins that have a profound impact on chromatin structure and hence gene expression. Epigenetic modifications play an important role in normal development, learning & memory and may be important in some diseases such as cancer.

Massey University has a long tradition of genetics research and education. A wide range of undergraduate and postgraduate papers are available to you at Massey University. These include papers in classical transmission genetics and papers in modern molecular genetics such as DNA Technology and Gene Regulation.

The undergraduate papers offered in the Genetics major are detailed in this booklet. A B.Sc. degree majoring in Genetics will enable you to have a career in basic, biomedical and applied research, biotechnology, agriculture, horticulture, education, forensics or science administration. This degree will also enable you to embark on post-graduate studies in Genetics.

I welcome your interest in Genetics.



Associate Professor Rosie Bradshaw (PhD) Subject Leader Institute of Molecular BioSciences

# Introduction

This handbook profiles papers that are of special interest to Genetics students, and are taught by the College of Sciences. We have made every attempt to ensure all details are correct. However, all students should note that the 2010 Massey University Calendar is the official source of information on courses and regulations.

The discipline of Genetics at Massey University consists of several academic staff members (p21). In addition, the group is well supported by several technical and administrative staff. Interests range from genomics, epigenetics, genetic control, plant protection and cell biology.

Staff in Genetics provide postgraduate opportunities with, for example, PGDipSc, Honours, Masters and PhD programmes available. Undergraduate students are eligible to apply for summer studentships that may be offered on an annual basis.

#### Teaching approach

Undergraduate papers are taught via lectures (usually 3 lectures per week at 100 & 200 level and 2 lectures per week at 300 level) and laboratory classes (usually one 3 hour class per week). Optional tutorials are offered at set times. Students are expected to spend some time in addition to the scheduled learning time, in reading and preparing for lectures and practical classes. Many papers are web supported. A comprehensive paper outline will be made available to enrolled students at the start of each paper.

#### The Bachelor of Science degree

Students have to pass 24 papers (each of 15 credits) in total to qualify for a BSc degree. Typically, eight papers have to be passed each year from papers listed in the BSc schedule in the Calendar. Students should ensure that the essential required papers for each major are included in their programme.

In planning your total degree, you can consult the 'Enrolment Science 2010' Handbook, the 2010 Massey University Calendar, or contact Associate Professor Rosie Bradshaw (contact details p. 6).

# **Bachelor of Sciences – Major in Genetics**

## **Programme Structure**

| Year 1                           |                                  |  |  |
|----------------------------------|----------------------------------|--|--|
| 123.101                          | Chemistry and Living Systems     |  |  |
| 162.101                          | Biology of Cells                 |  |  |
| 119.155 †                        | Communication in Sciences        |  |  |
| 122.102                          | Biochemistry of Cells            |  |  |
| 161.130 +                        | Biometrics                       |  |  |
| PLUS three other approved papers |                                  |  |  |
| * strongly recommended           |                                  |  |  |
| 123.102*                         | Chemistry and the Material World |  |  |
| 159.101 or                       | Programming Fundamentals         |  |  |
| 159.102                          | Computer Science Fundamentals    |  |  |

| Year 2                                       |                                        |  |
|----------------------------------------------|----------------------------------------|--|
| 203.202                                      | Genetic Analysis                       |  |
| 203.203                                      | Human Genetics                         |  |
| 122.231                                      | Genes and Gene Expression              |  |
| 162.211                                      | Biology and Genetics of Microorganisms |  |
| PLUS four other approved papers.             |                                        |  |
| * strongly recommended                       |                                        |  |
| 196.207*                                     | Biological Evolution                   |  |
| 122.232*                                     | Protein Biochemistry                   |  |
| 122.233*                                     | Metabolic Biochemistry                 |  |
| For a list of approved other papers, see p30 |                                        |  |

| Year 3                                                                                                                                                                                         |                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| 203.300                                                                                                                                                                                        | DNA Technology              |  |
| 203.307                                                                                                                                                                                        | Advanced Cell Biology       |  |
| 203.303                                                                                                                                                                                        | Gene Regulation             |  |
| 203.305                                                                                                                                                                                        | Advanced Practical Genetics |  |
| PLUS four other approved papers.                                                                                                                                                               |                             |  |
| Papers with a significant genetic content include:<br>117.345 Genetics for Livestock Improvement<br>120.302 Plant Development<br>120.304 Plant Biotechnology<br>162.312 Molecular Microbiology |                             |  |
| For a list of approved other papers, see p30                                                                                                                                                   |                             |  |

+ or approved alternatives (See BSc regulations)

# **Contact details:**

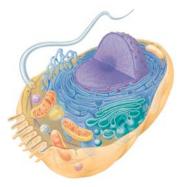
Associate Professor Rosie Bradshaw Major Leader Genetics Massey University Private Bag 11 222 Palmerston North NEW ZEALAND

 Phone:
 64 6 356 9099 ext 2567

 Fax:
 64 6 350 5688

 Email:
 R.E.Bradshaw@massey.ac.nz

#### **More Information**

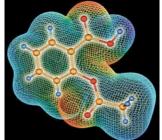

Students who intend to take papers offered in Genetics and who may wish for more information, should consult the major leader of Genetics, Associate Professor Rosie Bradshaw. Assoc Professor Kathy Kitson is the Programme Director for the College of Sciences at the Manawatu Campus and can also provide information of a more general nature.

#### YEAR ONE - Semester 1

#### 162.101 Biology of Cells

Paper Co-ordinator: Assoc Professor Rosie Bradshaw

**Objective:** To give a general understanding of the structure and function, at a cellular level, of both eukaryotic and prokaryotic cells, and a broad introduction to genetics and molecular biology.




- Outline: An introduction to eukaryotic and prokaryotic cell structure and function, and to the flow of information within cells. The transmission of genetic information to progeny in cell division. A description of cellular mechanisms for creating genetic diversity, leading to a discussion of biological evolution. An introduction to molecular biotechnologies for modifying the genetic information of cells.
- **Pre- requisites:** Students will be assumed to have studied at least 20 credits from NCEA Level 3 Biology and achieved at least 14, or passed Bursary Biology or 162.103 or an acceptable alternative.
- **Extramural:** Available extramurally in 2010.
- Assessment:Online Assignments4%Laboratory Test18%Semester Test16%5 lab-based quizzes7%Final Examination55%
- Textbook:Campbell NA & Reece JB. Biology. 8<sup>th</sup>Edition (2009) with Interactive<br/>Study Partner CD-ROM (ISBN 0-8053-6844-2). The 7<sup>th</sup> edition can also<br/>be used in 2009
- Lecturers: Assoc Prof Rosie Bradshaw, Institute of Molecular BioSciences Dr Rose Motion, Institute of Molecular BioSciences Prof David Penny, Institute of Molecular BioSciences

#### YEAR ONE -Semester 1

#### 123.101 Chemistry and Living Systems

Paper Coordinator: Associate Professor Trevor Kitson



**Objective:** To give an understanding of the molecular basis of the world in which we live and be able to apply organic and physical principles to a range of biological and nonbiological processes.

- **Outline:** This paper takes a wide range of examples from everyday life to illustrate concepts of organic and biological chemistry. The structure, properties and reactions of organic compounds, identification of organic compounds using spectroscopy, and the mechanisms of organic reactions are covered. It also introduces the concepts of chemical equilibrium, particularly as they are applied to acids and base, and chemical kinetics.
- Pre-requisites:Students will be assumed to have studied at least 20 credits from NCEA<br/>Level 3 Chemistry and achieved at least 14, or passed Bursary<br/>Chemistry or 123.103 or an acceptable alternative.
- **Extramural:** Available extramurally in 2009
- Assessment:Practical work20%Mastery Tests10%Semester Test20%Final Examination50%
- Textbook:No prescibed textbook. Recommended reading Blackman et al,<br/>Chemistry, Wiley 2008
- Lecturers:Associate Professor Trevor Kitson, Institute of Fundamental Sciences<br/>Dr. Gareth Rowlands, Institute of Fundamental Sciences<br/>Dr Vyacheslav Filichev, Institute of Fundamental Sciences

#### YEAR ONE - Semester 2

#### **122.102** Biochemistry of Cells

- Paper Co-ordinator: Dr Rose Motion
- **Objective:** To understand at a molecular level of how organisms grow, move, store energy, reproduce, and achieve highly specialized functions such as photosynthesis and muscle contraction.

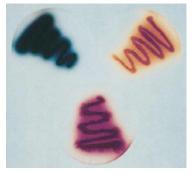


- Outline: The study of cellular processes at a molecular level, applicable to plant, animal and microbial systems: proteins, including enzymes; major processes of carbohydrate metabolism; the importance of ATP and proton gradients in metabolism. Applications of Biochemistry in Medicine and Biotechnology are included.
- **Pre-requisites:** 123.101 (or 123.111) and 162.101.
- **Extramural:** Not available extramurally
- Assessment:Laboratory tests20%Semester test20%Final examination60%
- Textbook:Elliott, W.H. and Elliott, D.C. Biochemistry and Molecular Biology, 3rd<br/>edition (2005), , Oxford University Press, Oxford
- Lecturers:Dr Gill Norris, Institute of Molecular BioSciencesAssoc Prof Kathy Kitson, Institute of Food Nutrition and Human Health<br/>Dr Rose Motion, Institute of Molecular BioSciences

# YEAR ONE - Semester 2

| 123.102             | Chemistry and the Material<br>World                                                                                                                                                                                                                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper Co-ordinator: | Dr Mark Waterland                                                                                                                                                                                                                                                                                                                                    |
| Objective:          | To understand the structure and chemical properties of compounds and materials.                                                                                                                                                                                                                                                                      |
| Outline:            | Explain the structure and chemical properties of compounds and<br>materials; Use electronic properties to explain trends in the chemistry of<br>materials from elements and compounds; Explain colour, magnetism<br>and chemical properties; Analyse chemical reactions; Calculate the<br>electrochemical potential of cells; Use phase diagrams;    |
| Pre-requisites:     | NCEA Level 3 Chemistry, studied 20 credits achieved 14 credits minimum, or Bursary Chemistry, or 123.103.                                                                                                                                                                                                                                            |
| Extramural:         | Available extramurally in 2009                                                                                                                                                                                                                                                                                                                       |
| Assessment:         | Mastery tests10%Semester test20%Practical test10%Lab reports10%Final examination50%                                                                                                                                                                                                                                                                  |
| Textbook:           | Highly Recommended: Chemistry, by Blackman, Bottle, Schmid,<br>Mocerino, Wille                                                                                                                                                                                                                                                                       |
| Lecturers:          | Dr Shane Telfer, Institute of Fundamental Sciences<br>Assoc Prof Ashton Partridge, Institute of Fundamental Sciences<br>Prof Andrew Brodie, Institute of Fundamental Sciences<br>Dr Mark Waterland, Institute of Fundamental Sciences<br>Assoc. Prof Simon Hall, Institute of Fundamental Sciences<br>Adrian Jull, Institute of Fundamental Sciences |

# 122.231Genes and Gene ExpressionPaper Co-ordinator:Assoc Prof Kathryn StowellObjective:To understand the *in vivo*<br/>functions and *in vitro* molecular<br/>manipulation of DNA for the<br/>storage and transfer of genetic<br/>information.


**Outline:** Structure of DNA. Replication, DNA repair and transcription. Regulation of prokaryote gene expression. Technologies used in the study of genes and gene expression: plasmids, sequencing, restriction enzymes, libraries, PCR, Southern, northern and western analysis, expression vectors and the production of recombinant proteins. A practical course that illustrates concepts presented in the lectures.

- Pre-requisites: 162.101 Biology of Cells
- **Extramural:** Not available extramurally.
- Assessment:Laboratory work30%Semester test10%Final examination60%
- Textbook:Weaver, R.F. Molecular Biology. 4th edition, (2008), McGraw-Hill, New<br/>York
- Lecturers:Assoc Professor Kathryn Stowell, Institute of Molecular BioSciences<br/>Dr Andrew Sutherland-Smith, Institute of Molecular BioSciences<br/>Professor Barry Scott, Institute of Molecular BioSciences<br/>Dr Tracy Hale, Institute of Molecular BioSciences

#### 162.211

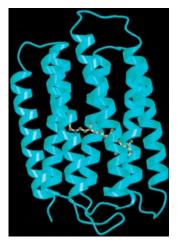
#### **Biology and Genetics of Microorganisms**

- Paper Co-ordinator: Dr Jan Schmid
- **Objective:** To provide students with the core information required for their respective disciplines on (i) the biology of microorganisms and (ii) their manipulation. To provide a basic understanding of immunology.



- Outline:Structure and metabolism of bacteria and their relationship to the<br/>environment. Bacterial genetics. Eukaryotic microbes structure,<br/>physiology and genetics. Life cycle of viruses. The immune response.<br/>Practical training in the manipulation of microorganisms.
- Pre-requisites: 162.101
- **Extramural:** Not available extramurally.
- Assessment:Semester test19%Labs18%Career exercise2%Final Examination61%
- **Textbook:**Biology of Microorganisms by Madigan, Brock, Martinko & Parker, 12<sup>th</sup><br/>Edition (Earlier editions are adequate for most of the material covered)
- Lecturers: Dr Jan Schmid, Institute of Molecular BioSciences Dr Zoe Jordens, Institute of Molecular BioSciences (Labs only) Professor Bernd Rehm, Institute of Molecular BioSciences Dr Larissa Howe, Institute of Veterinary Animal and Biomedical Sciences Dr Lesley Collins, Institute of Molecular BioSciences

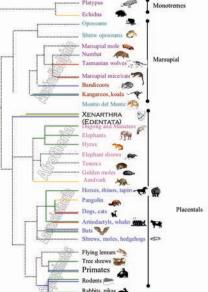
#### 203.203 Human Genetics


- Paper Co-ordinator: Dr Neville Honey
- **Objective:** Aspects of genetics that are important in human biology, including chromosome abnormalities, genes and genetic disease, immunogenetics, cancer, ageing, complex traits, family studies and populations



- Outline: Extends the basic knowledge of genetics learnt at 100-level. Extends the understanding of the role of genetics in human biology and the effects of gene defects on human health. Give an appreciation of the impact of human genetics on society.
- Pre-requisites: 162.101
- **Extramural:** Not available extramurally in 2010.
- Assessment:1st Semester test15%Online test10%Poster15%Final Examination60%
- **Textbook:** Human Genetics: concepts and applications, 7<sup>th</sup> edition, R. Lewis (or 8<sup>th</sup> edition)
- Lecturers: Dr Neville Honey, Institute of Molecular BioSciences

#### 122.232 Protein Biochemistry


- Paper Co-ordinator: Dr Gill Norris
- **Objective:** Developing understanding of the an importance of the three dimensional conformations of proteins, that play important physiological roles such as catalysis of biochemical reactions, signal transduction, membrane structure, organisation.



- Outline: Synthesizing of proteins in cells and directed to carry out their various roles. Topic include protein biogenesis; targeting and post-translational modification; relationship between protein structure and function; enzymes, structural proteins; membranes and membrane proteins.
- Pre-requisites: 122.102 Biochemistry of Cells
- **Extramural:** Not available extramurally.
- Assessment:Practical work22%Mid Semester Test18%Final Examination60%
- **Textbook:**Recommended Biochemistry, D. Voet and J.G. Voet (2<sup>nd</sup> Edition or 3<sup>rd</sup><br/>Edition)
- Lecturers: Dr Gill Norris, Institute of Molecular BioSciences Dr Mark Patchett, Institute of Molecular BioSciences Dr Andrew Sutherland-Smith, Institute of Molecular BioSciences

| 122.233             | Metabolic Biochemistry                                                                                                                                                                                                                                                                                                                           |                          |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Paper Co-ordinator: | Dr Mark Patchett                                                                                                                                                                                                                                                                                                                                 |                          |  |
| Objective:          | Detailed understanding of metablochemistry, integration of path<br>and regulation.                                                                                                                                                                                                                                                               |                          |  |
| Outline:            | Energy metabolism. Biosynthesis of carbohydrates and the metabolism<br>of polysaccharides. Lipid metabolism. Nitrogen metabolism. integration<br>and regulation of carbohydrate, lipid and amino acid metabolism.<br>Cellular communication systems. The course also includes laboratory<br>experiments and a literature-based research project. |                          |  |
| Pre-requisites:     | 122.102 Biochemistry of Cells                                                                                                                                                                                                                                                                                                                    |                          |  |
| Extramural:         | Not available extramurally.                                                                                                                                                                                                                                                                                                                      |                          |  |
| Assessment:         | Laboratory work<br>Literature based project<br>Semester Test<br>Final Examination                                                                                                                                                                                                                                                                | 10%<br>10%<br>20%<br>60% |  |
| Textbook:           | Biochemistry and Molecular Biology, 3 <sup>rd</sup> edition (2005), Elliott, W.H. and Elliott, D.C., Oxford University Press, Oxford.                                                                                                                                                                                                            |                          |  |
| Lecturers:          | Dr Mark Patchett, Institute of Molecular BioSciences<br>Dr Jasna Rakonjac, Institute of Molecular BioSciences<br>Dr Evelyn Sattlegger, Institute of Molecular BioSciences (Albany<br>Campus)<br>Assoc Prof Kathryn Stowell, Institute of Molecular BioSciences                                                                                   |                          |  |

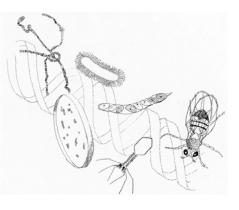
# 196.207Biological EvolutionPaper Co-ordinator:Dr Vaughan SymondsObjective:Examines aspects of classical and<br/>emerging evolutionary biology. Review<br/>ideas on way populations operate,



#### Outline: Genetic and environmental processes that operate in natural populations and among species. Explores history and development of evolutionary thinking, the origins and age of life on earth and prehistoric biodiversity. Also evolutionary changes in DNA,

from genetical perspective. Stability of populations and examine forces that change gene frequencies in these

populations. How genes and nucleotide sequences are inherited and evolve. Underlying principles of evolution.


**Pre-requisites:** A basic understanding of cell biology and genetics (162.101 Biology of Cells)

human evolution, origin of life, nature of species and how species arise.

- **Extramural:** Available extramurally in 2009.
- Assessment:Evolution Report20%Laboratory Practicals20%Semester Test20%Final Examination40%
- Textbook:Evolution.DouglasJ.Futuyma.2005.SinauerAssociatesInc.Sunderland MA., USA.ISBN-10:0-87893-187-2
- Lecturers: Dr Steve Trewick, Institute of Natural Resources Prof David Penny, Institute of Molecular BioSciences Dr Lesley Collins, Institute of Molecular BioSciences Dr Vaughan Symonds, Institute of Molecular BioSciences

#### 203.202 Genetic Analysis

- Paper Co-ordinator: Dr Neville Honey
- **Objective:** Methods and applications of genetic Including analysis. genetic cytogenetics, variation, gene characterisation, gene mapping, function, developmental gene quantitative genetics, genetics, population genetics and evolution.



**Outline:** Learn methods of genetic analysis and gain an appreciation of the power of genetic approaches to the understanding of biological systems.

- Pre-requisites: 162.101 Biology of Cells
- **Extramural:** Not available extramurally.
- Assessment:Practical Reports10%Prac Theory test15%Semester Test15%Final Examination60%
- Textbook: An Introduction to Genetic Principles, David Hyde
- Lecturers:Dr Neville Honey, Institute of Molecular BioSciencesAssoc Prof Rosie Bradshaw, Institute of Molecular BioSciences

#### 120.304

#### Plant Biotechnology

Paper Co-ordinator: Dr Paul Dijkwel

**Objective:** Introduce students to some selected topics in plant biotechnology. Emphasis will be place on the identification of useful traits for plant improvement and



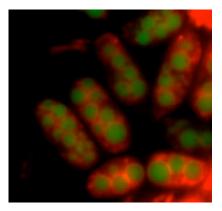
current status of plant biotechnology in New Zealand and globally.

- Outline: Traditional methods of plant improvement through tissue culture and modern developments in identifying and transferring new traits for plant improvements. Current status and future prospects of genetically modified plants, in addition to the regulatory aspects of genetic modification in New Zealand will be discussed.
- **Pre-requisites:** 120.217 Plant, Cell and Environment
- **Extramural:** Not available extramurally
- Assessment:Research paper analysis10%Laboratory record20%Mid Semester Test10%Final Examination60%
- **Textbook:**Recommended Plant Biotechnology The Genetic Manipulation of<br/>Plants, Nigel W. Scott and Mark R. Fowler (2008) 2<sup>nd</sup> Edition
- Lecturers: Dr Paul Dijkwell, Institute of Molecular BioSciences Professor Michael McManus, Institute of Molecular BioSciences Professor Barry Scott, Institute of Molecular BioSciences

#### 203.300

#### **DNA Technology**

Paper Co-ordinator: Dr Jasna Rakonjac


**Objective:** To provide students with (1) the background of the methodology for DNA manipulations, (2) the necessary skills to plan and carry out DNA technology experiments and (3) to critically evaluate data from experiments using DNA technology.



- **Outline:** DNA structure, topology, replication, repair and recombination. Advanced applications of gene cloning, PCR, micro-arrays and gene targeting. Practical experience will be gained with DNA quantification, restriction mapping, hybridisation, molecular cloning, PCR, DNA sequencing and computer analysis.
- **Pre-requisites:** 122.231 Genes and Gene expression
- Extramural: Not available extramurally
- Assessment: Laboratory work 15% Laboratory test 15% Semester Test 10% Final Examination 60%
- **Textbook:** Molecular Biology. Weaver. 2nd edition, (2002), McGraw-Hill, New York
- Dr Jasna Rakonjac Institute of Molecular BioSciences Lecturers: Dr Kathryn Stowell, Institute of Molecular BioSciences Dr Paul Dijkwel, Institute of Molecular BioSciences Dr Neville Honey, Institute of Molecular BioSciences Dr Lesley Collins, Institute of Molecular BioSciences

#### 203.307 Advanced Cell Biology

- Paper Co-ordinator: Dr Tracy Hale
- **Objective:** To provide a description of how cells are organised, communicate, divide and die. To provide practical experience in techniques that are used to study cells.



- Outline: Structure and function of the cell and relationship to the whole organism. Cell cycle, signal transduction, cytoskeleton and molecular motors, organelle biogenesis and function, visualising cells, cancer and cell death.
- **Pre-requisites:** 162.101 Biology of Cells, 122.231 Genes and Gene Expression.
- **Extramural:** Not available extramurally.
- Assessment:Laboratory work25%Semester Test20%Final Examination55%
- Textbook:Lodish et al. (2008) Molecular Cell Biology, 6th edition, W.H.Freeman<br/>and Co<br/>Alberts et al (2007) Molecular Biology of the Cell, fifth edition, Garland<br/>Publ.
- Lecturers: Dr Tracy Hale, Institute of Molecular BioSciences Prof Barry Scott, Institute of Molecular BioSciences Dr Sarah Brown, Institute of Molecular BioSciences Assoc Prof Rosie Bradshaw, Institute of Molecular BioSciences

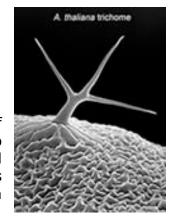
#### 117.345

#### Genetics for Livestock Improvement

Paper Co-ordinator: Rebecca Hickson

**Objective:** To equip students with knowledge of methods of animal evaluation and how selection decisions impact on genetic gain in animal breeding schemes.




- **Outline:** The relative influence of genetic and environmental factors on quantitative traits. Methods of calculating breeding values or indices to exploit genetic variation in quantitative traits. The use of computers to utilise pedigree and performance records. Selection for disease resistance, the use of new reproductive technologies to enhance genetic gain and the potential importance of molecular genetics in livestock improvement. Maternal influences and methods of selecting for maternal components. Crossbreeding and inbreeding as selection tools.
- Pre-requisites: 117.254 Principles of Animal Production or 203.202 Genetic Analysis
- **Extramural:** Available extramurally in 2009
- Assessment:Projects (3)50%Final Examination50%

None

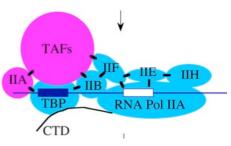
- Textbook:
- Lecturers: Ms Rebecca Hickson Institute of Veterinary, Animal and Biological Sciences Professor Hugh Blair, Institute of Veterinary, Animal and Biological Sciences

#### 120.302 Plant Development

- Paper Co-ordinator: Dr Vaughan Symonds
- **Objective:** Introducing students to the development of the plant from beginning at embryogenesis to the formation of leaves, roots, flowers and seeds. Modern molecular genetic approaches will be integrated with knowledge drawn from the classic literature.



- Outline: Introduction to classic literature pertaining to different aspects of plant development and integrates it with more recent molecular genetic studies. The role of plant hormones and other signalling molecules in plant development.
- Pre-requisites:120.101 Plant Biology, plus any two approved papers at 200 level<br/>120.217 is recommended.
- **Extramural:** Not available extramurally.
- Assessment:Lecture and Lab Preparation5%Library Exercise5%Research project-written report10%Research project-oral presentation5%Abstract assignment5%Semester Test20%Final Examination50%


#### Textbook:

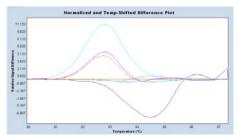
Lecturers: Dr Vaughan Symonds, Institute of Molecular BioSciences Professor Michael McManus, Institute of Molecular BioSciences Dr Paul Dijkwel, Institute of Molecular BioSciences

#### 203.303 Gene Regulation

 Paper Co-ordinator:
 Assoc Prof Kathryn Stowell

**Objective:** A student having completed this paper will have an understanding of how genes are regulated in prokaryotes and eukaryotes.




- **Outline:** Methods and experimental strategies for studying gene promoters and associated transcription factors, transcription initiation, transcription activation, role of chromatin structure in gene regulation, RNA processing and cytoplasmic control.
- Pre-requisites: 122.231 Genes and Gene expression
- **Extramural:** Not available extramurally.
- Assessment:Problem sheets (2)7.5% eachOral presentation10%Semester Test15%Final Examination60%
- Textbook: Molecular Biology. Weaver. 4th edition, McGraw-Hill, New York
- Lecturers: Assoc Prof Kathryn Stowell, Institute of Molecular BioSciences

#### 162.312 **Molecular Microbiology** EcoRI hisG hisG **Paper Co-ordinator:** Dr Jan Schmid URA3 Bgll Bcl **Objective:** Answering research guestions in microbiology using bacteria, viruses and yeasts as examples. Subject material includes cell structure, surface proteins and adhesins, protein secretion, genetic regulation, bacterial genomics, yeast morphogenesis, and molecular epidemiology. Provide students with an understanding of how molecular techniques have been used productively in these areas. **Outline:** Molecular analysis of structure, function and export of bacterial surface proteins. Molecular typing and population dynamics in pathogens. Developmental signals and differentiation in microorganisms. Design, implement and evaluate molecular approaches to a problem in microbiology. **Pre-requisites:** 162.211 **Extramural:** Not available extramurally. Assessment: Laboratory Assessment 25% Semester Test 15% Final Examination 60% Bacterial Pathogenesis: A Molecular approach, Salyers & Whitt (2nd **Textbook:** Edition), American Society Microbiology Press 2002 Lecturers: Dr Jan Schmid, IMBS, Massey University Dr Jasna Rakonjac, IMBS, Massey University Dr Mike Collett, Fonterra Research Centre

#### 203.305 Advanced Practical Genetics

Paper Co-ordinator: Prof Barry Scott

**Objective:** An understanding of the application of genetic principles and different experimental designs in genetics. Learn through practical experience



genetic techniques. Be able to analyse and interpret data obtained.

- **Outline:** Emphasis on understanding the theory behind the methods used, on data evaluation and on the application of genetic techniques to various questions in biology. Practicals include transposon tagging, reporter gene expression, microarrays, genotype/phenotype correlation using haplotype analysis.
- Pre-requisites: 203.202 Genetic Analysis
- **Extramural:** Not available extramurally.
- Ouestions sheets (4) 4% **Assessment:** Oral presentation 10% Lab write-up 10% Lab notebook 10% 10% Lab interview 3% Research proposal-oral Research proposal-written 15% Final Examination 40%
- **Textbook:** No specified texts for this paper
- Lecturers: Prof Barry Scott, Institute of Molecular BioSciences Assoc Prof Kathryn Stowell, Institute of Molecular BioSciences Prof Peter Lockhart, Institute of Molecular BioSciences Dr Tracy Hale, Institute of Molecular BioSciences Assoc Prof Rosie Bradshaw, Institute of Molecular BioSciences

#### **BSc Genetics**

S1: 123.101 Chemistry & Living Systems

S1: 162.101 Biology of Cells

S1: 119.155 Communications in Sciences

S2: 122.102 Biochemistry of Cells

S2: 161.130 Biometrics

Examples of elective papers in Sem 1 and 2:

S1: 159.101 Programming Fundamentals

S1: 199.101 Biology of Animals

S2: 120.101 Biology of Plants

S2: 123.102 Chemistry & the Material World

S2: 159.102 Computer Science Fundamentals

#### **YEAR TWO**

S1: 122.231 Genes and Gene Expression

S1: 162.211 Biology and Genetics of Microorganisms

S1: 203.203 Human Genetics

S2: 203.202 Genetic Analysis

Examples of elective papers in Sem 1 and 2:

S2: 122.232 Protein Biochemistry

For a complete list of approved papers for all years, see p29,

S2: 122.233 Metabolic Biochemistry

S2: 196.207 Biological Evolution

#### YEAR THREE

S1: 203.300 DNA Technology

S1: 203.307 Advanced Cell Biology

S2: 203.303 Gene Regulation

p29,

papers for all years, see

complete list of approved

For a

S2: 203.305 Advanced Practical Genetics

Examples of elective papers in Sem 1 and 2:

S1: 120.304 Plant Biotechnology

S1: 162.303 Immunology

S2: 117.345 Genetics for Livestock Improvement

S2: 120.302 Plant Development

S2: 122.327 Advanced Biochemistry

S2: 162.312 Molecular Microbiology

### Research

The Institute of Molecular BioSciences at Massey University (Manawatu) in Palmerston North has active research programmes carried out by staff and postgraduate students. Here we list only the main areas of interest of academic staff. Students should be aware that summer studentships are available and will be advertised in October/November each year. Check on the Massey website: http://imbs.massey.ac.nz/Teaching/Summer\_Fellowships.htm

#### **Research Interests of Academic Staff in Genetics**

| Barry Scott     | Gene regulation and expression in plant-microbe interactions  |  |  |
|-----------------|---------------------------------------------------------------|--|--|
| Rosie Bradshaw  | Fungal molecular genetics and genomics                        |  |  |
| Kathryn Stowell | Biochemistry, genetics and pathophysiology of human disorders |  |  |
| Peter Lockhart  | Molecular Evolution in Plants                                 |  |  |
| Vaughan Symonds | Plant Molecular Genetics                                      |  |  |
| Jennifer Tate   | Plant Systematics and Evolution                               |  |  |
| Neville Honey   | Genetics Education                                            |  |  |
| Tracy Hale      | Cell Biology                                                  |  |  |
| Paul Dijkwel    | Regulation of Leaf Senescence                                 |  |  |

# **General Information**

#### **Student Services**

Student Services at Massey University Manawatu provide support to particularly first-year students to successfully integrate into university life and academic study. Check the website to find more out about their role: http://students.massey.ac.nz/

#### **Student Learning Centre**

The Student learning Centre offers a whole range of support classes for undergraduate, postgraduate, internal, extramural or international students. For details, please see: http://learning.massey.ac.nz/. Students with poor English language skills are advised to include 192.102 (Academic writing for speakers of other languages) in to their degree programme.

#### **Extramural Study**

At present it is not possible for students to complete an extramural BSc with a major in Biological Sciences. However, some papers of relevance to Biological Sciences students are offered from time to time. For details, check the 'Enrolment Science 2010' Handbook.

Notes



. .

To find information about the BSc programme, majoring requirements for Genetics and papers offered, the following information is provided on the Massey University website:





Bachelor of Science (BSc)

#### **Bachelor of Science (Genetics)**

#### **Entry Requirements**

All students must have a university entrance qualification. Students beginning their study of Genetics should have a sound background in Chemistry and Biology at NCEA Level 3.

However, if you do not have a background of chemistry at the Year 13 level then you can take 123.103 Introductory Chemistry extramurally through Massey University over the summer before your first year of full-time study. This paper will introduce you to basic chemical vocabulary and provides training in the important chemical principles. You do need to already have a university entrance qualification or to expect to obtain one by sitting NCEA Level 3 at the end of this year. If you are interested in this suggestion get in touch with one of the College of Sciences contact people. Similarly, if you have not done NCEA Level 3 Biology you can take 162.103 Introductory Biology over the summer.

In their first year, students intending to major in Genetics should take 123.101 and 162.101 in Semester One and 122.102 in Semester Two. In addition they are strongly recommended to take Biometrics (161.130), and a second paper in Chemistry (123.102) in Semester Two.

For general Massey University entry requirements see Am I Eligible to Study at Massey?

#### **Bachelor of Science (Genetics) Structure**

The Genetics programme at Massey University is the most comprehensive on offer at a New Zealand university, covering molecular, developmental, population, quantitative and evolutionary genetics. Graduates in Genetics will have a working knowledge of all these aspects of Genetics yet have the opportunity to specialise in an area of particular interest such as molecular genetics, cytogenetics or genomics. Massey University graduates will also be familiar with the bioethical issues that confront genetics and have a working knowledge of the regulations and codes of practice under which research in genetics is carried out. They are expected to have acquired good analytical skills and to be good communicators of their subject. In a rapidly moving field such as genetics the emphasis is on preparation for the future rather than skills for the present.

#### **Majoring Requirements**

123.101 Chemistry and Living Systems,

- 122.102 Biochemistry of Cells,
- 162.101 Biology of Cells,
- 122.231 Genes and Gene Expression,
- 162.211 Biology and Genetics of Micro-organisms

203.202 Genetic Analysis

203.203 Human Genetics 203.300 DNA Technology 203.303 Gene Regulation 203.305 Advanced Practical Genetics 203.307 Advanced Cell Biology.

#### **Papers**

#### Manawatu

| 162.103 Introductory Biology<br>162.101 Biology of Cells | 15<br>15 | R 162.101 (Note 1)<br>Note 2 |
|----------------------------------------------------------|----------|------------------------------|
| 123.101 Chemistry and Living Systems                     | 15       | Note 3                       |
| 122.102 Biochemistry of Cells                            | 15       |                              |
| •                                                        |          |                              |
| 162.211 Biology and Genetics of Microorganisms           | 15       | 1                            |
| 203.202 Genetic Analysis                                 | 15       |                              |
| 203.203 Human Genetics                                   | 15       | P 162.101                    |
| 122.231 Genes and Gene Expression                        | 15       | P 162.101                    |
| 122.232 Protein Biochemistry                             | 15       | P 122.102, R 122.342         |
| 196.207 Biological Evolution                             | 15       | P 162.101                    |
| 203.300 DNA Technology                                   | 15       | P 122.231                    |
| 203.303 Gene Regulation                                  | 15       | P 203.300                    |
| 203.305 Advanced Practical Genetics                      | 15       | P 203.202, 203.300           |
| 203.307 Advanced Cell Biology                            | 15       | P 162.101, 122.231 (Note 5)  |
| 122.322 Protein Structure and Function                   | 15       | P 122.232, R 122.342         |
| 117.345 Genetics for Livestock Improvement               | 15       | P 203.202 or 117.254         |
| 120.302 Plant Development                                | 15       | P 120.101 (Note 6)           |
| 120.304 Plant Biotechnology                              | 15       | P 120.101, 122.231           |
|                                                          |          | R 120.216 (Note7)            |
| 162.312 Molecular Microbiology                           | 15       | P 162.211                    |
| 247.300 Research in Molecular BioSciences                | 15       | Note 8                       |
|                                                          |          |                              |

#### Notes

- 1. 162.103 may not be taken after 162.101 has been passed.
- 2. Students will be assumed to have studied at least 20 credits from NCEA Level 3 Biology and achieved at least 14, or passed Bursary Biology or 162.103 or an acceptable alternative.
- 3. Students **must** normally have studied at least 20 credits from NCEA Level 3 Chemistry and achieved at least 14, or have achieved an equivalently acceptable level in an alternative assessment system to NCEA, or passed Bursary Chemistry or 123.103 or an acceptable alternative.
- 4. Students are strongly advised to take 123.102 in addition to 123.101.
- 5. Students are recommended to take 122.232 and 122.233 before 203.307.
- 6. Plus any two approved papers at 200-level from 120.2xx, 122.2xx, 162.2xx and 203.2xx. 102.217 is strongly recommended.
- 7. Prerequisite may be waived at the discretion of the Major Leader.
- 8. Permission from Programme Director. Enrolment in the paper is by application only. Students may apply for specific projects that are available in a given semester. Acceptance will be based on the availability of projects and the academic qualifications and background of applicants.