

MASSEY UNIVERSITY

Bachelor of Science Genetics

Undergraduate Handbook

Contents

Welcome	. 3
Introduction	. 4
Teaching approach	. 4
Bachelor of Science degree	. 4
Biological Sciences Major - Overview	. 5
Contact Details	. 6

Year ONE papers

162.101 Biology of Cells	7
123.101 Chemistry and Living Systems	8
122.101 Biochemistry of Cells	9
123.102 Chemistry and the Material World	.10

Year TWO papers

122.231 Genes and Gene Expression	11
162.211 Biology and Genetics of Microorgnisms	12
203.303 Human Genetics	13
122.232 Protein Biochemistry	14
122.233 Metabolic Biochemistry	15
196.207 Biological Evolution	16
203.202 Genetic Analysis	17

Year THREE papers

120.304 Plant Biotechnology	18
203.300 DNA Technology	19
203.307 Advanced Cell Biology	20
117.345 Genetics for Livestock Improvement	21
120.302 Plant Development	22
122.328 Genome Analysis	23
203.203 Gene Regulation	24
162.312 Molecular Microbiology	25
203.305 Advanced Practical Genetics	26
247.300 Research in BioSciences	27

Starter package - Recommended papers	28
Research	29
General Information	30

Maps - Palmerston North Campus - Overview	31
Bsc Programme Information	32

WELCOME

COLLEGE OF SCIENCES Genetics

To all prospective students,

If the 1930s was the great age of chemistry then without doubt this is the age of genetics. The development of DNA manipulation and high throughput DNA sequencing technologies have enabled researchers to determine the complete genome sequence for hundreds of organisms. We are only beginning to understand the complexity of genomes. However, geneticists now have at their disposal a powerful mix of research tools to study genes. There is much yet to be discovered!

Eric Lander, Professor of Biology at the Massachusetts Institute of Technology (MIT) said: "That's what I love about genomics. We're learning that there are vast tracts of biology that we have missed. It's as if we suddenly could look at the whole earth and see that there are several continents we hadn't known about."

Genetics studies also include the rapidly emerging field of epigenetics, where an altered phenotype results not from a change in the DNA sequence of a gene but a change in gene expression. Modern epigenetic studies are focused on modifications to the DNA and histone proteins that have a profound impact on chromatin structure and hence gene expression. Epigenetic modifications play an important role in normal development, learning & memory and are important in some diseases such as cancer.

Massey University has a long tradition of genetics research and education. A wide range of undergraduate and postgraduate papers are available to you at Massey University. These include papers in classical transmission genetics and papers in modern molecular genetics such as DNA Technology and Gene Regulation.

The undergraduate papers offered in the Genetics major are detailed in this booklet. A B.Sc. degree majoring in Genetics will enable you to have a career in basic, biomedical and applied research, biotechnology, agriculture, horticulture, education, forensics or science administration. This degree will also enable you to embark on post-graduate studies in Genetics.

I welcome your interest in Genetics.

Associate Professor Rosie Bradshaw (PhD) Subject Leader Institute of Molecular BioSciences

Introduction

This handbook profiles papers that are of special interest to Genetics students, and are taught by the College of Sciences. We have made every attempt to ensure all details are correct. However, all students should note that the Massey University Calendar is the official source of information on courses and regulations.

The discipline of Genetics at Massey University consists of several academic staff members (p21). In addition, the group is well supported by several technical and administrative staff. Interests range from genomics, epigenetics, genetic control, plant protection and cell biology.

Staff in Genetics provide postgraduate opportunities with, for example, PGDipSc, Honours, Masters and PhD programmes available. Undergraduate students are eligible to apply for summer studentships that may be offered on an annual basis.

Teaching approach

Undergraduate papers are taught via lectures (usually 3 lectures per week at 100 & 200 level and 2 lectures per week at 300 level) and laboratory classes (usually one 3 hour class per week). Optional tutorials are offered at set times. Students are expected to spend some time in addition to the scheduled learning time, in reading and preparing for lectures and practical classes. Many papers are web supported. A comprehensive paper outline will be made available to enrolled students at the start of each paper.

The Bachelor of Science degree

Students have to pass 24 papers (each of 15 credits) in total to qualify for a BSc degree. Typically, eight papers have to be passed each year from papers listed in the BSc schedule in the Calendar. Students should ensure that the essential required papers for each major are included in their programme.

In planning your total degree, you can consult the 'Enrolment Science' Handbook, the Massey University Calendar, or contact Associate Professor Rosie Bradshaw (contact details p. 6).

Bachelor of Sciences – Major in Genetics

Programme Structure

Year 1	
123.101	Chemistry and Living Systems
162.101	Biology of Cells
119.155 †	Communication in Sciences
122.102	Biochemistry of Cells
161.130 †	Biometrics
PLUS three othe	er approved papers
* strongly recommended	
123.102*	Chemistry and the Material World
159.101 or	Programming Fundamentals
159.102	Computer Science Fundamentals

Year 2	
203.202	Genetic Analysis
203.203	Human Genetics
122.231	Genes and Gene Expression
162.211	Biology and Genetics of Microorganisms
PLUS four othe	er approved papers.
* strongly r	ecommended
196.207*	Biological Evolution
122.232*	Protein Biochemistry
122.233*	Metabolic Biochemistry
For a list of ap	proved other papers, see p28

Year 3	
203.300	DNA Technology
203.305	Advanced Practical Genetics
PLUS two of	
122.238	Genome Analysis
203.307	Advanced Cell Biology
203.303	Gene Regulation
PLUS four other	approved papers.
Papers with a	a significant genetic content include:
117.345 Gen	etics for Livestock Improvement
120.302 Plant Development	
120.304 Plant Biotechnology	
162.312 Mole	ecular Microbiology
For a list of app	roved other papers, see p28

+ or approved alternatives (See BSc regulations)

Contact details:

Associate Professor Rosie Bradshaw Major Leader Genetics Massey University Private Bag 11 222 Palmerston North NEW ZEALAND

 Phone:
 64 6 356 9099 ext 2567

 Fax:
 64 6 350 5688

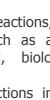
 Email:
 R.E.Bradshaw@massey.ac.nz

More Information

Students who intend to take papers offered in Genetics and who may wish for more information, should consult the major leader of Genetics, Associate Professor Rosie Bradshaw. Assoc Professor Kathy Kitson is the Programme Director for the College of Sciences at the Manawatu Campus and can also provide information of a more general nature.

YEAR ONE - Semester 1

162.101	Biology of Cells
Paper Co-ordinator:	Assoc Professor Rosie Bradshaw
	 Students who successfully complete this paper will be able to: Identify and describe cellular components and their functions. Demonstrate understanding of how genetic information is inherited, used and controlled in cells. Make connections between different concepts in cell biology. Apply concepts of cell biology and genetics to analyse and draw conclusions from experimental data. Demonstrate understand and correct use of appropriate vocabulary. Design controlled experiments and interpret data. Apply appropriate laboratory techniques to investigate cell biology with due regard to safety. Recognise the importance of cell biology in society and the environment.
Outline:	An introduction to eukaryotic and prokaryotic cell structure and function, and the chemistry of life. The flow of information within cells and transmission of genetic information to progeny in cell division. A description of cellular mechanisms for creating genetic diversity and the control of gene expression. An introduction to molecular genetics and genomics.
Pre- requisites:	Students will be assumed to have studied at least 20 credits from NCEA Level 3 Biology and achieved at least 14, or passed Bursary Biology or 162.103 or an acceptable alternative.
Extramural:	Available extramurally in alternate years.
Assessment:	Online Assignments10%Laboratory Assessments20%Semester Test15%Final Examination55%
Textbook:	Campbell Biology (international version) Reece JB et al. 9 th Edition Publisher: Pearson Benjamin Cummings (ISBN 9314994245622)


YEAR ONE -Semester 1

123.101 **Chemistry and Living Systems**

- **Paper Coordinator:** Dr Gareth Rowlands
- Learning Outcomes:
- Students who successfully complete this paper will be able to:
 - Describe common organic compounds including 1. biologically important molecules such as proteins, carbohydrates, fats and other natural products. Commercially important groups of materials such as polymers, detergents, fuels, dyes, and fragrances will also be considered.
 - 2. Interpret the name or formula of an organic compound in terms of the functional groups present in the molecule, its stereochemistry including dynamic structure, and electronic properties. Explain and carry out the process of characterizing simple organic compounds using spectroscopic methods including NMR and IR spectroscopy.
 - 3. Associate typical chemical reactivity with different functional groups and write equations for the reactions.
 - Be able to recognise and use some of the common mechanisms of 4. organic reactions to explain and predict products. Write chemical equations for and analyse organic reactions in contents such as industrial processes and biological transformations.
 - 5. Relate the concept of chemical equilibrium to reactions, including organic transformations, to analyse properties such as acidity and basicity; and apply the concept to industrial, biological and environmental processes.
 - 6. Use the ideas of reaction kinetics to analyse reactions in terms of fundamental molecular processes and interpret the consequences for the preparation and reactions of organic materials.
- **Outline:** This paper takes a wide range of examples from everyday life to illustrate concepts of organic and biological chemistry. The structure, properties and reactions of organic compounds, identification of organic compounds using spectroscopy, and the mechanisms of organic reactions are covered. It also introduces the concepts of chemical equilibrium, particularly as they are applied to acids and base, and chemical kinetics.
- **Pre-requisites:** Students will be assumed to have studied at least 20 credits from NCEA Level 3 Chemistry and achieved at least 14, or passed Bursary Chemistry or 123.103 or an acceptable alternative.

Extramural: Available extramurally

- Assessment: Laboratory Reports 20% Mastery Tests 10% Semester Test 20% Final Examination 50%
- Textbook: Chemistry Author: Blackman et al Publisher: Wiley, 2008

YEAR ONE - Semester 2

122.102	Biochemistry of Cells
Paper Co-ordinator:	Assoc Professor Kathryn Stowell
Learning Outcomes: 1.	Students who successfully complete this paper will be able to: Understand and explain in writing the basic concepts of protein structure and how this relates to function, including the basic concepts of enzymology, such as mechanisms of catalysis and
2.	basic kinetic parameters. Understand and explain in writing the basic concepts of carbohydrate structure and function, lipid structure and function, the structure and function of biological membranes and movement of molecules across membranes.
3.	Demonstrate an understanding of how energy is obtained from food and utilized by living organisms, with reference to the pathways of glycolysis, the citric acid cycle, oxidative phosphorylation and gluconeogenesis, lipid and protein metabolism and basic concepts of metabolic regulation of these processes.
4.	Demonstrate an understanding of the importance of ATP and proton gradients to living systems, including some aspects of muscle action and of photosynthesis.
5.	Carry out some basic biochemical laboratory procedures and related biochemical calculations, including use of spectrophotometers, quantitative analysis of biological samples and measurement of enzyme activity.
6	Use a modern biochemistry textbook for reference or further learning.
Outline:	A foundation course that introduces molecular aspects of the cellular processes occurring in humans, animals, microbes and plants. An exploration of the molecules of life, proteins and enzymes in action, energy for living and energy storage with applications to the environment, health and disease, biotechnology, nutrition, sport and exercise. Theoretical aspects are supported by a practical laboratory programme.
Pre-requisites:	123.101 and 162.101.
Extramural:	Not available extramurally
Assessment:	Semester test15%Mastery Biology Assignment5%Lab Assignment5%Lab Reports5%Lab Theory Test10%Final examination60%
Textbook:	No set textbook

YEAR ONE - Semester 2

123.102	Chemistry and the Material World
Paper Co-ordinator:	Dr Mark Waterland
Learning Outcomes:	Students who successfully complete this paper will be able to:
1. 2. 3.	Discuss how chemistry and its applications impact society, and describe modern experimental techniques for chemical analysis and structure determination.
4.	transition metal complexes.
	Use the concepts of non-covalent interactions to explain the properties of matter including gases and liquids and phenomena such as self-assembly. Calculate the electrochemical potential of cells using the IUPAC convention and the Nernst equation, predict spontaneity of chemical processes and
7.	apply the concepts to electrolytic processes. Demonstrate proficiency with basic practical techniques in the chemistry laboratory, and be familiar with the structures and names of the elements, and simple complexes, cations and anions.
Outline:	This paper begins with a discussion of the impact of chemistry and its applications on modern society. Within this context, students will learn of the central role of energy dispersal in chemical and electrochemical transformations. Atomic structure will be related to the properties of elements and fundamental bonding theories will be used to rationalise molecular structures. Transition metal chemistry will be used to illustrate these concepts. Students will learn of the importance of intermolecular forces in determining the properties of matter.
Pre-requisites:	NCEA Level 3 Chemistry, studied 20 credits achieved 14 credits minimum, or Bursary Chemistry, or 123.103.
Extramural:	Available extramurally
Assessment:	Mastery tests10%Semester test20%Laboratory test10%Laboratory work10%Final examination50%
Textbook:	Highly Recommended: Chemistry Author: Allan Blackman ISBN: 9 78047081 Edition: 1st Edition (2008) Publisher: John Wiley & Sons Australia

122.231 Genes and Gene Expression DNA Strand **Paper Co-ordinator:** Assoc Prof Kathryn Stowell Students who successfully Learning Outcomes: complete this paper will be able to: 1. Demonstrate a detailed understanding of the main components of DNA structure at the molecular and macromolecular level. 2. Demonstrate a detailed understanding of the major molecular mechanisms involved in DNA replication, transcription and regulation of gene expression in E.coli. 3. Understand and explain the basic tools and techniques required to carry out in vitro manipulation of recombinant DNA and associated techniques, including the preparation and use of both genomic and cDNA libraries. 4. Design basic experimental strategies to construct recombinant plasmids. 5. Carry out basic experimental techniques central to the manipulation of recombinant DNA, eg: plasmid DNA preparation, restriction endonuclease digestion, agarose gel electrophoresis, bacterial transformation and the polymerase chain reaction. 6 Competently carry out numerical calculations required for general laboratory work required for biochemistry and molecular biology. **Outline:** Structure of DNA. Replication, DNA repair and transcription. Regulation of prokaryote gene expression. Technologies used in the study of genes and gene expression: plasmids, sequencing, restriction enzymes, libraries, PCR, Southern, northern and western analysis, expression vectors and the production of recombinant proteins. A practical course that illustrates concepts presented in the lectures. **Pre-requisites:** 162.101 Biology of Cells **Extramural:** Not available extramurally. **Assessment:** Laboratory exercises 2.5% Laboratory Report 5% Numeracy Test 2.5% Lab Theory Test 20% Semester test 10% Final examination 60%

Textbook:	Molecular Biology	Author: Weaver	Edition: 4th

162.211Biology and Genetics of Microorganisms

Paper Co-ordinator:	Dr Jan Schmid
Learning Outcomes:	Students who successfully complete
1.	this paper will be able to: Be familiar with fundamental aspects of
1.	the biology of the major groups of
	microorganisms, including their
2.	structure, physiology, metabolism and genetics.
Ζ.	Recognise the importance of microbes in human affairs, that they are essential parts of all local and global ecosystems, and indispensable for
	sustaining life on earth.
3.	Recognise the importance of microbes for all disciplines of biological research.
4.	Be able to apply theoretical knowledge on how microbes function and
	technical skills taught to successfully carry out basic manipulations of
	microorganisms as required within biological sciences and related disciplines.
5.	Describe key immunological techniques.
6	Describe career paths open to microbiology graduates.
Outline:	Structure and metabolism of bacteria and their relationship to the environment. Bacterial genetics. Eukaryotic microbes – structure, physiology and genetics. Life cycle of viruses. The immune response. Practical training in the manipulation of microorganisms.
Pre-requisites:	162.101
Extramural:	Not available extramurally.
Assessment:	Semester Test 19%
	Lab Exercise Assessment 18%
	Career Exercise 2%
	Final Examination 61%
Textbook:	Biology of Microorganisms - Author: Madigan, M.T., Martinko, J.M, Dunlap, P.V. & Clark, D.P Edition: 13th Publisher: Prentice-Hall (Notes:

Earlier editions are adequate for most of the material covered)

203.203		Human Genetics	Nº 1 . 4
Paper Co-ordinator:		Dr Neville Honey	- 8 8 8 8 8 8 W
Learning Outcomes:		Students who successfully completion this paper will be able to:	lete
	2.	Understand genetic principles. Understand the role of genetics i Communicate his/her understand	
Outline:		include chromosome abnorm	important in human biology. Topics nalities, genes and genetic disease, eing, complex traits, family studies
Pre-requisites:		162.101	
Extramural:		Available extramurally, alternate	years.
Assessment:		Semester test Online test Poster Final Examination	15% 15% 15% 55%
Textbook:			Applications Author: Lewis, R. Edition: tes: 8th or 9th edition is acceptable)

5

YEAR TWO - Semester 2

122.232 Protein Biochemistry

Paper Co-ordinator:		Dr Gill Norris	5353
Learning Outcomes:	2. 3. 4.	Students who successfully complete paper will be able to: How proteins are synthesized in the transported to their different destina the cell to carry out their various role the role of post-translational modifica- targeting and tuning function. Basic enzyme kinetics. The relationship of protein functions primary and tertiary structure. The properties of and models for the membranes and the proteins within the detergents on membrane component through membranes. The structure and function of some r channels and receptors. The techniques required to carry of How to interpret experimental data format.	cell then tions in es and ations in to both e organization of cell and organelle those membranes. The effect of ts; the transport of molecules membrane proteins, including ion out basic biochemical experiments.
Outline:		How proteins are synthesised in the various roles. Topics will include pro translational modification, the relat and function, catalytic proteins, st membrane proteins. Lectures will course focused on developing skills t	tein biogenesis, targeting and post- tionship between protein structure ructural proteins, membranes and be complemented with a practical
Pre-requisites:		122.102 Biochemistry of Cells	
Extramural:		Not available extramurally.	
Assessment:		Practical work Reports Mid Semester Test Final Examination	5% 15% 20% 60%
Textbook:		Biochemistry Author: D. Voet and 2 0471250 Edition: 3rd Edition Publis 2003	

122.233	Metabolic Biochemistry	
Paper Co-ordinator:	Dr Jeong Park	
Learning Outcomes:	Students who successfully complete this paper will be able to: Have a basic understanding of the dynamic aspects of cellular processes and of the integration of bio- chemical processes within cells (including an understanding of cellular communication and metabolism). Be adequately prepared to undertake an advanced course in practice biochemistry.	cal
Outline:	Energy metabolism. Biosynthesis of carbohydrates and the metabolis of polysaccharides. Lipid metabolism. Nitrogen metabolism. Integration and regulation of carbohydrate, lipid and amino acid metabolism Cellular communication systems.	on
Pre-requisites:	122.102 Biochemistry of Cells	
Extramural:	Not available extramurally.	
Assessment:	Laboratory reports/assignments20%Semester Test20%Final Examination60%	
Textbook:	Textbook of Biochemistry with Clinical Correlations Author: Dev ISBN: 9780470281734 Edition: 7th Publisher: John Wiley & Sons	lin

		Phylog	jenetic Tree of Life
196.207	Biological Evolution	Bacteria	Archaea Eucaryota
Paper Co-ordinator:	Assoc Professor Steven Trewick	Bacteroides Cytophaga	ntus Entamoetaa Sime Animals Kethanorarcina Methanorarcina Methanorarcina T.celer T.celer Troportu
Learning Outcomes:	Students who successfully complete this paper will be able to:	Themotoga Aquifex	Diplemonads
	 Explain the geological, biological, p evolution. 	hylogenetic and	d rational evidence for
	2. Express the concepts and implication mechanism in evolution and descri		election as a
	3. Understand the basis of evolutiona genetic processes that underlie spe	, , ,	oopulations and the
	 Synthesise information learnt throu integrate evolutionary theory across 	ighout the cour	,
	5. Understand and interpret the patter	rns that underl	
	and their use in testing evolutionar6. Think in an innovative way, under	stand and appl	y the scientific method
	of hypothesis formulation and testi	ng.	
Outline:	A general review of modern ex theories, encompassing micro- and on genetic and environmental populations and among species. It of evolutionary thinking, the origin prehistoric biodiversity. Other top DNA, human evolution, origin of species arise. Laboratory classes in and computing exercises in popula management.	d macro-evolution processes that explores the high gins and age pics include evolution life, the nature include a range	ion. The paper centres t operate in natural story and development of life on earth, and volutionary changes in e of species and how of theoretical, practical
Pre-requisites:	A basic understanding of cell biolo Cells)	ogy and geneti	cs (162.101 Biology of
Extramural:	Available extramurally.		
Assessment:	Written Report Laboratory Practicals Semester Test Final Examination	20% 15% 20% 45%	
Textbook:	Biology Author: Campbell and I	Reece Edition	: 9th or recent

203.202	Genetic Analysis
Paper Co-ordinator:	Dr Neville Honey
Learning Outcomes:	 Students who successfully complete this paper will be able to: Understand the importance and role of genetics in living organisms. Understand genetic principles. Perform methods of genetic analysis. Understand the role of genetics in populations and evolution. Perform basic laboratory techniques and analyse the results.
Outline:	A general course on methods and applications of genetic analysis. Topics include genetic variation, cytogenetics, gene inheritance, gene mapping, gene function, quantitative genetics, population genetics and evolution, cell and developmental biology.
Pre-requisites:	162.101 Biology of Cells
Extramural:	Not available extramurally.
Assessment:	Practical Reports8%Prac Theory test15%Semester Test15%Online tests5%Final Examination57%
Textbook:	Concepts of Genetics Author: Klug et al (2012) Edition: 10th edition Publisher: Pearson International Edition.

120.304Plant Biotechnology

Paper Co-ordinator:	Dr Paul Dijkwel	A 19 16
Learning Outcomes:	 Students who successfully complete paper will be able to: Describe some classical and modern methods for plant improvement throutissue culture and modern biotechno Discuss ethical issues surrounding the in New Zealand. Show an understanding of practical sespecies and to assay the GFP reporter confocal microscopy. Show an understanding of some praplant improvement. 	ugh logical methods. e use of genetically modified plants steps to genetically modify one plant er gene in transgenic plants using
Outline:	An overview of modern methods b provide new genetic material for use and industry. This paper links basic the dramatic progress being made DNA technology, QTL analysis and is on both prospects and limital environmental, ethical and regulatory	in agriculture, horticulture, forestry and applied science and focuses on in plant tissue culture, recombinant marker-assisted selection. Emphasis tions, and includes discussion of
Pre-requisites:	120.101 Biology of Plants 122.231 Genes and Gene Expression	
Extramural:	Not available extramurally	
Assessment:	Research paper analysis Laboratory record Mid Semester Test Final Examination	10% 20% 10% 60%
Textbook:	No set textbook	

203.300	DNA Technology
Paper Co-ordinator:	Dr Jasna Rakonjac
Learning Outcomes: 1.	Students who successfully complete this paper will be able to: Describe the biology that underlies
2.	DNA technology. Describe the ways in which this underlying biology is manipulated in
3.	DNA technology. Identify and describe the questions that can be addressed using DNA technology.
4.	Demonstrate use of advanced skills in experimental molecular biology and DNA technology and explain the theoretical basis of these
5.	techniques. Critically analyze, accurately observe and interpret experimental data from laboratory work and from the scientific literature.
Outline:	DNA structure, topology and recombination. The contributions of bacteriophage to DNA technology. Advanced applications of gene cloning, PCR, microarrays and gene targeting. Practical experience will be gained with DNA quantification, molecular cloning, PCR, DNA sequencing, computer analysis and expression of heterologous genes.
Pre-requisites:	122.231 Genes and Gene expression
Extramural:	Not available extramurally
Assessment:	Laboratory notebook5%Assignment10%Laboratory test15%Semester Test10%Final Examination60%
Textbook:	Molecular Biology _ Author: Weaver, R.F. ISBN: 0071316868 5th edition Publisher: McGraw-Hill

edition Publisher: McGraw-Hill

203.307	Advanced Cell Biology
Paper Co-ordinator:	Dr Tracy Hale
Learning Outcomes:	 Students who successfully complete this paper will be able to: Have acquired advanced skills in experimental cell biology and understand the theoretical basis of these techniques. Describe the function and biogenesis of organelles. Describe the organisation of the nucleus. Describe how the cell cycle is controlled. Describe the roles of signal transduction pathways in relaying signals from the extracellular environment to the nucleus and their contribution to cancer. Describe how cell lineages arise and are regulated.
Outline:	A paper with a strong emphasis on the structure and function of cell components and the interactions between cells. Topics covered include chromosome structure and function, cell cycle, signal transduction, cytoskeleton and molecular motors, extracellular matrix, cell motility stem cells, cell death and cancer. The practical component has a strong emphasis on biochemical, genetic and microscopic methods that are used to study cells.
Pre-requisites:	162.101 Biology of Cells, 122.231 Genes and Gene Expression.
Extramural:	Not available extramurally.
Assessment:	Chromosome lab test10%Reports (3)15%Semester Test20%Final Examination55%
Textbook:	Molecular Cell Biology Author: Lodish et al. Edition: 6th edition Publisher: WH Freeman and Co.

117.345Genetics for LivestockImprovement

Paper Co-ordinator:	Dr Rebecca Hickson	
2 3 4	 Students who successfully complete this paper will be able to: Apply Mendel's principles of inheritance and discuss the importance of these and their exceptions in breeding programmes, particularly with respect to lethal and detrimental genes and changing gene. Apply complex principles of inheritance heritability, genetic variation, breeding well as identify the impact of reproduce. Predict an animal's breeding values bar records. Be familiar with the structure of the midentify the strengths and weaknesses genetic gain. Calculate and interpret genetic relation mating plans and maternal effects. 	e to breeding schemes, including g values and selection indices as ctive technologies on genetic gain. ased on own, pedigree or progeny nain livestock industries and s of the structures with respect to
Outline:	The relative influence of genetic quantitative traits. Methods of calcula exploit genetic variation in quantitative utilise pedigree and performance resistance, the use of new reproductive gain and the potential importance improvement. Maternal influences and components. Crossbreeding and inbre	ating breeding values or indices to ve traits. The use of computers to records. Selection for disease ve technologies to enhance genetic of molecular genetics in livestock d methods of selecting for maternal
Pre-requisites:	117.254 Principles of Animal Production	on or 203.202 Genetic Analysis
Extramural:	Available extramurally alternate years	
Assessment:	Assignment 2 Assignment 3	10% 20% 20% 50%

Textbook:

None

120.302	Plant Development A matiene trichome
Paper Co-ordinator:	Dr Vaughan Symonds
Learning Outcomes:	 Students who successfully complete this paper will be able to: Be familiar with various levels of plant organisation. Understand basic patterns of morphogenesis and histogenesis in plants, including those associated with embryogenesis and organogenesis at the root and shoot apical meristems. Understand how molecular, genetic and developmental methods of analysis can be applied to address specific problems in plant development. Be able to critically assess the current literature in plant developmental biology.
Outline:	Diverse patterns of plant development that were initially described from cytological and morphological perspectives are beginning to be understood at a mechanistic level through the use of molecular and genetic techniques. This paper provides an introduction to classic literature pertaining to different aspects of plant development and integrates it with more recent molecular genetic studies. The role of plant hormones and other signalling molecules in plant developed is also covered.
Pre-requisites:	120.101 Plant Biology, plus any two approved papers at 200 level 120.217 is recommended.
Extramural:	Not available extramurally.
Assessment:	Writing assignment10%Laboratory notebook5%Laboratory interview5%Research Report10%Semester Test20%Final Examination50%
Textbook:	No set textbook

Neisseria meningitidis MC58

YEAR THREE – Semester 2

122.328	Genome Analysis	
Paper Co-ordinator:	Dr Claudia Voelckel	chromosome 2272360 bp
Learning Outcomes:	Students who successfully complete this paper will be able to:	
1.	Explain the strategies involved in whole ge annotation and data analysis.	nome sequencing, gene
2.	Use appropriate bioinformatic tools to sear protein sequence databases to identify seq functions.	•
3.	Design strategies to investigate genotype a whole genome analyses.	and phenotype based on
4.	Interrogate protein structure databases an of the relationships between primary seque and function.	•
5.	Interpret nucleotide and protein sequence	
6.	evolutionary relationships between organis Explain the principles of transcriptomic epigenomic and metagenomic analyses and biology.	ic, proteomic, metabolomic,
Outline:	An interactive and self-directed learning explore the analysis of genomes, tran metabolomes. The emphasis will be on u range of methodologies involved in extr information from both existing and novel d	nscriptomes, proteomes and understanding and applying a racting biologically significant
Pre-requisites:	203.300 DNA Technology	
Extramural:	Not available extramurally.	
Assessment:	Weekly computer exercises Assignment (whole genome analysis) Assignment (functional genomics) Assignment (elective)	40% 20% 20% 20%
Textbook:	No set textbook	

Textbook: No set textbook

203.303	Gene Regulation
Paper Co-ordinator:	Assoc Prof Kathryn Stowell
Learning Outcomes:	 Students who successfully complete this paper will be able to: Demonstrate an understanding of the experimental approaches used to identify the DNA sequences that control gene expression and the proteins that interact with these sequences. Demonstrate an understanding of the transcription apparatus in eukaryotes and a global switch in gene expression in prokaryotes. Describe and critically discuss the role of chromatin structure in gene regulation. Explain the molecular mechanisms of RNA splicing and the regulation of splicing as a means of altering gene expression, with an emphasis on discussion of the experimental work used to develop the associated models. Demonstrate an understanding, in the context of experimental evidence, of the regulation of globin gene/gene expression in mammals, sex determination in Drosophila and iron homeostasis in mammals. Demonstrate an understanding of the biogenesis, in vivo and in vitro uses of siRNA and miRNA.
Outline:	An advanced course on gene regulation. Topics include methods and experimental strategies for studying gene promoters and associated transcription factors, transcription initiation, transcription activation, role of chromatin structure in gene regulation, RNA processing and cytoplasmic control.
Pre-requisites:	203.300 DNA Technology
Extramural:	Not available extramurally.
Assessment:	Problem sheets (2)10% eachOral presentation10%Semester Test10%Final Examination60%
Textbook:	Molecular Biology. Weaver. 4th edition, McGraw-Hill, New York

162.312	Molecular Microbiology	EcoRI
		hisG hisG
Paper Co-ordinator:	Dr Jan Schmid	
Learning Outcomes:	Students who successfully complete this paper will be able to:	
1.	Explain biochemically and geneticall bacterial cells.	ly the targeting of proteins in
2. 3.	Discuss screening methods for virul Discuss the detailed molecular orga for surface proteins of eubacteria.	ence factors. nization, function, and genetic basis,
4.	Illustrate how environmental chang virulence determinants in pathogen	•
5.	Explain the molecular basis of antig	
6.	Understand the life cycle of the HIV	
7.	-	ar approaches to studying microbial
8.	ecology of the gastro-intestinal trac Understand the cross-talk between within the gastro-intestinal tract.	
9.		research techniques for investigating
10.	5, 1 5 5	s to a problem in microbiological
	research, to carry out the research,	
Outline:	function and export of bacteria environmental change. Molecular pathogens. Developmental signa	ogy. Molecular analysis of structure, al surface proteins. Response to typing and population dynamics in als and differentiation in micro- opportunity to design, implement and problem in microbiology.
Pre-requisites:	162.211, 203.300	
Extramural:	Not available extramurally.	
Assessment:	Semester Test In-lecture questions Laboratory Assessment Final Examination	10% 8% 22% 60%
Textbook:	No set textbook	

203.305 Advanced Practical Genetics

			Normalized and Temp-Shifted Difference Plat
Paper Co-ordinator:		Prof Barry Scott	
Learning Outcomes:	2. 3. 4. 5.	Students who successfully complete this paper will be able to: Carry out experiments in advanced practical genetics, understand the theory behind those experiments and Analyse and evaluate experimental da the literature, and to communicate, by presentations, summaries of experime Read, comprehend, describe and mak topics described in textbooks, reviews Prepare and present a research propo- specific hypothesis. Explain their experimental data based notebook. To write paper critiques, laboratory re	ata from laboratory work and from y written reports and oral ental findings. The oral presentations on Genetics and the primary literature. The ball that is designed to test a on detailed records kept in their
Outline:		An advanced course in laborator Emphasis is on understanding the the data evaluation and on the application questions in biology. Practicals include tagging, human microsatellite and expression.	eory behind the methods used, on on of genetic techniques to various de microarray analysis, transposon
Pre-requisites:		203.202 Genetic Analysis 203.300 DNA Technology	
Extramural:		Not available extramurally.	
Assessment:		Oral presentation Lab notebook write-up Lab interview Research proposal-oral Research proposal-written	10% 10% 10% 4% 16% 40%

Textbook: No specified texts for this paper

YEAR THREE – Semester 1, 2 and Summer School

Research in Biosciences 247.300

Paper Co-ordinator: Dr Vaughan Symonds

Learning Outcomes:

Students who successfully complete this paper will be able to: Gain practical research experience 1.

in biological sciences.

- Understand how to plan and implement a research project. 2.
- Become familiar with data interpretation, analysis and presentation. 3.
- 4. Become a self-sufficient laboratory worker.
- Become familiar with a wide range of biological science techniques, 5. projects, and literature.

Outline: The paper provides an opportunity for third year undergraduate students in the biological sciences to gain research experience in an academic laboratory. Under supervision of faculty students will develop a short research proposal, carry out the proposed research, write a research report, and present their findings.

- **Pre-requisites:** Permission of Programme Director (A- average required for this paper)
- **Extramural:** Not Available extramurally.
- 20% Assessment: Mini-research proposal 20% Research activities Oral report 10% Research Report 50%

Textbook: No set textbook

\sim
ò
Q
₽
p
F
Ť
luate
a
글
Ř
Ĕ
rgra
ē
g
5
ر
Ŋ
e - Genetics
Ъ
č
'n.
G
Ð
ğ
5
Ψ.
5
SC:
Sci
ų_
r of Sci
lor of Sci
elor of Sci
chelor of Sci
chelor o
chelor o
chelor o
I - Bachelor of Sci
u - Bachelor o
u - Bachelor o
chelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
awatu - Bachelor o
y University Manawatu - Bachelor o
y University Manawatu - Bachelor o
y University Manawatu - Bachelor o
awatu - Bachelor o

	BSc Genetics	
YEAR ONE	YEAR TWO	→ YEAR THREE
S1: 123.101 Chemistry & Living Systems	S1: 122.231 Genes and Gene Expression	S1: 203.300 DNA Technology
S1: 162.101 Biology of Cells	S1: 162.211 Biology and Genetics of Microorganisms	S2: 203.305 Advanced Practical Genetics
S1: 119.155 Communications in Sciences	S1: 203.203 Human Genetics	PLUS two of: S1: 203.307 Advanced Cell Biology
S2: 122.102 Biochemistry of Cells	S2: 203.202 Genetic Analysis	S2: 203.303 Gene Regulation
S2: 161.130 Biometrics	for all v	S2: 122.328 Genome Analysis
Examples of elective papers in Sem 1 and 2:	Examples of elective papers in Sem 1 and 2:	Examples of elective papers in Sem 1 and 2:
S1: 159.101 Programming Fundamentals	S2: 122.232 Protein Biochemistry	S1: 120.304 Plant Biotechnology
S1: 199.101 Biology of Animals	S2: 122.233 Metabolic Biochemistry	S1: 162.303 Immunology
S2: 120.101 Biology of Plants	S2: 196.207 Biological Evolution	S2: 117.345 Genetics for Livestock Improvement
S2: 123.102 Chemistry & the Material World	For a	S2: 120.302 Plant Development
S2: 159.102 Computer Science Fundamentals		S2: 122.327 Advanced Biochemistry
		S2: 162.312 Molecular Microbiology

Research

The Institute of Molecular BioSciences at Massey University (Manawatu) in Palmerston North has active research programmes carried out by staff and postgraduate students. Here we list only the main areas of interest of academic staff. Students should be aware that summer studentships are available and will be advertised in October/November each year. Check on the Massey website: http://imbs.massey.ac.nz/Teaching/Summer_Fellowships.htm

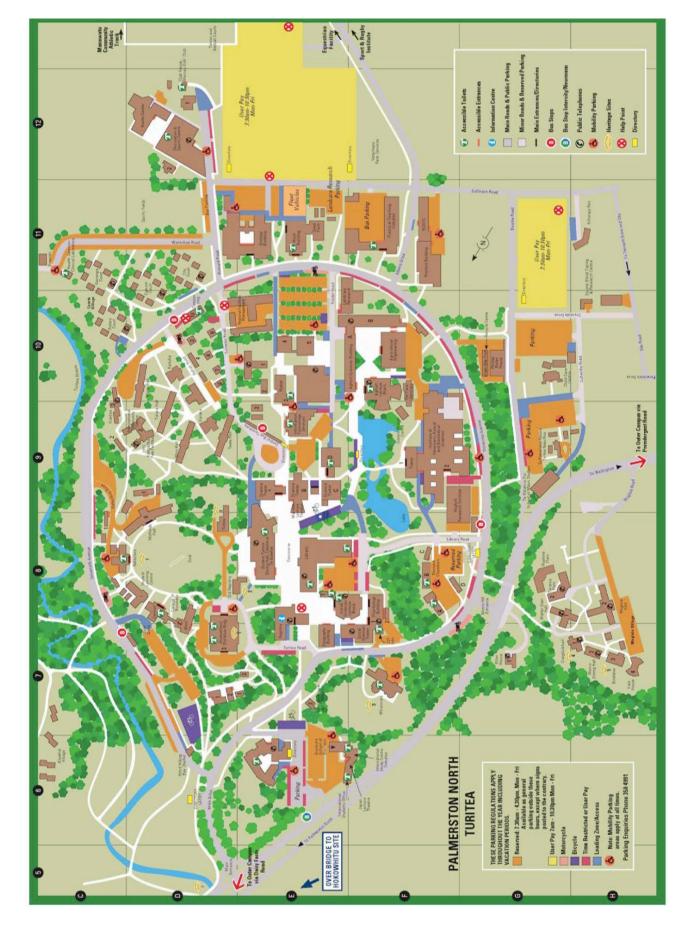
Research Interests of Academic Staff in Genetics

Barry Scott	Gene regulation and expression in plant-microbe interactions
Rosie Bradshaw	Fungal molecular genetics and genomics
Kathryn Stowell	Biochemistry, genetics and pathophysiology of human disorders
Peter Lockhart	Molecular Evolution in Plants
Vaughan Symonds	Plant Molecular Genetics
Jennifer Tate	Plant Systematics and Evolution
Neville Honey	Genetics Education
Tracy Hale	Cell Biology
Paul Dijkwel	Regulation of Leaf Senescence

General Information

Student Services

Student Services at Massey University Manawatu provide support to particularly first-year students to successfully integrate into university life and academic study. Check the website to find more out about their role: http://students.massey.ac.nz/


Student Learning Centre

The Student learning Centre offers a whole range of support classes for undergraduate, postgraduate, internal, extramural or international students. For details, please see: http://learning.massey.ac.nz/. Students with poor English language skills are advised to include 192.102 (Academic writing for speakers of other languages) in to their degree programme.

Extramural Study

At present it is not possible for students to complete an extramural BSc with a major in Biological Sciences. However, some papers of relevance to Biological Sciences students are offered from time to time. For details, check the 'Enrolment Science' Handbook.

Notes

31

To find information about the BSc programme, majoring requirements for Genetics and papers offered, the following information is provided on the Massey University website:

Bachelor of Science (BSc)

Bachelor of Science (Genetics)

Entry Requirements

All students must have a university entrance qualification. Students beginning their study of Genetics should have a sound background in Chemistry and Biology at NCEA Level 3.

However, if you do not have a background of chemistry at the Year 13 level then you can take 123.103 Introductory Chemistry extramurally through Massey University over the summer before your first year of full-time study. This paper will introduce you to basic chemical vocabulary and provides training in the important chemical principles. You do need to already have a university entrance qualification or to expect to obtain one by sitting NCEA Level 3 at the end of this year. If you are interested in this suggestion get in touch with one of the College of Sciences contact people. Similarly, if you have not done NCEA Level 3 Biology you can take 162.103 Introductory Biology over the summer.

In their first year, students intending to major in Genetics should take 123.101 and 162.101 in Semester One and 122.102 in Semester Two. In addition they are strongly recommended to take Biometrics (161.130), and a second paper in Chemistry (123.102) in Semester Two.

For general entry requirements see Massey University entry requirements.

Bachelor of Science (Genetics) Structure

The Genetics programme at Massey University is the most comprehensive on offer at a New Zealand university, covering molecular, developmental, population, quantitative and evolutionary genetics. Graduates in Genetics will have a working knowledge of all these aspects of Genetics yet have the opportunity to specialise in an area of particular interest such as molecular genetics, cytogenetics or genomics. Massey University graduates will also be familiar with the bioethical issues that confront genetics and have a working knowledge of the regulations and codes of practice under which research in genetics is carried out. They are expected to have acquired good analytical skills and to be good communicators of their subject. In a rapidly moving field such as genetics the emphasis is on preparation for the future rather than skills for the present.

Majoring Requirements

123.101 Chemistry and Living Systems,
122.102 Biochemistry of Cells,
162.101 Biology of Cells,
122.231 Genes and Gene Expression,
162.211 Biology and Genetics of Micro-organisms
203.202 Genetic Analysis

203.203 Human Genetics 203.300 DNA Technology 203.305 Advanced Practical Genetics Plus two of 122.328 Genome Analysis 203.303 Gene Regulation 203.307 Advanced Cell Biology

Papers

162.103 Introductory Biology 162.101 Biology of Cells 123.101 Chemistry and Living Systems 122.102 Biochemistry of Cells 162.211 Biology and Genetics of Microorganisms 203.202 Genetic Analysis 203.203 Human Genetics 122.231 Genes and Gene Expression 122.232 Protein Biochemistry 196.207 Biological Evolution 122.328 Genome Analysis 203.300 DNA Technology 203.303 Gene Regulation 203.305 Advanced Practical Genetics 203.307 Advanced Cell Biology 122.322 Protein Structure and Function 117.345 Genetics for Livestock Improvement 120.302 Plant Development 120.304 Plant Biotechnology 162.312 Molecular Microbiology 247.300 Research in Biosciences