Regional Stochastic Population Projections in New Zealand: Prospect and Challenges

Michael P. Cameron and Jacques Poot

Pathways Conference, Wellington, 21-22 October 2013
Background

- New Zealand is experiencing significant population changes
- The demographic changes vary considerably by region
- There is considerable uncertainty regarding future regional populations
- It is therefore useful to explicitly model the uncertainty in population projections at the regional level for New Zealand
The deterministic cohort component method

The population usually resident in area \(i \) at the end of year \(t \)

\[
= \text{The population usually resident in area } i \text{ at the beginning of year } t
\]

\[+ \text{ births to mothers residing in area } i \text{ during year } t\]
\[– \text{ deaths of residents of area } i \text{ during year } t\]
\[+ \text{ inward migration from other regions into region } i \text{ during year } t\]
\[+ \text{ inward migration from overseas into region } i \text{ during year } t\]
\[– \text{ outward migration of residents from area } i \text{ to other regions during year } t\]
\[– \text{ outward migration of residents from area } i \text{ to overseas during year } t\]

Note: All migration is conventionally combined into one net migration number (by region, age and sex)
Parameters in deterministic projections

- Deterministic projections implicitly assume correlation between fertility, mortality and migration assumptions that may not be consistent with past trends.
Advantages of stochastic projections (e.g., Bryant 2005)

- Statements that the future population will be between x and y with z% probability are more informative than just quoting low, medium and high projections.
- Probabilistic statements can also be made regarding other interesting demographic indicators, such as demographic dependency ratios (e.g., pop. 65+ / pop 15-64).
- Moreover, differences in regional uncertainty can be quantified in terms of differences in the underlying parameter distributions.
- The consistency of fertility, mortality and migration assumptions can be assured through modelling.
Stochastic projections in New Zealand

• Wilson (2005) was the first to apply stochastic population projections methodology in NZ
• Cameron and Poot (2010; 2011) were the first to apply the method at the subnational level (for parts of the Waikato Region, at the TLA level)
• Statistics NZ began producing experimental stochastic projections at the national level in 2011 (Dunstan, 2011)
 • No subnational stochastic projections yet, though
Output from stochastic projections

Projected age-sex pyramid probability distribution

2061

Source: Dunstan, 2011
Modeling the uncertainty in projections

- Future mortality (survivorship)
 - Infant and child mortality
 - Life expectancy at age 5
 - Life expectancy at age 65
- Future fertility rates
 - Total fertility rate
 - Sex ratio at birth
- Future net migration rates
 - Internal migration
 - International migration
Drivers of national population change in New Zealand, 1951-2013
Stochastic projections in NTOM

• We apply a bottom-up approach to subnational projections, as opposed to the top-down approach favoured by Stats NZ
• We use gross migration *rates* as opposed to absolute levels of net migration
• We extend the methodology in Cameron and Poot (2011) by:
 • Explicitly modelling the time series of mortality and fertility parameters by region (similar to Stats NZ’s national methodology)
 • Using a gravity model to estimate and project gross internal migration; and calculate net migration as the difference
 • Modelling gross international migration separately from gross internal migration
 • Applying the methodology to all regions in NZ (14 – Nelson/Tasman/Marlborough as a single region)
 • Comparing the aggregate results for validation against national deterministic and stochastic projections
Indicative net migration rates

Source: Cameron and Poot, 2010
Indicative results, Hamilton City

Source: Cameron and Poot, 2011
Population growth rates and variability

Source: Cameron and Poot, 2011
NTOM Projections: Prospects and Challenges

• Through the projections methodology, the NTOM project is linked to the MBIE-funded Climate Change: Impacts and Implications (CCII) project
 • The gravity modelling of internal migration rates will investigate the impact of differences in climate between the NZ regions
 • The potential impacts of climate change on future mortality is another consideration, but impacts on fertility rates are unlikely (Cameron, 2013)
 • Assumptions regarding future international migration may make use of CGE modelling of international economic conditions that are also affected by climate
NTOM Projections: Prospects and Challenges

- A key challenge is how to try to project the regional population along additional dimensions, including:
 - Industry (broad groups, plus unemployment and not in the labour force)
 - Skills (low, medium, high)
 - Migrant status (NZ born, foreign born)
 - Ethnicity (Asian, European, Maori, Pasifika, Other)
- Additional transition parameters are required in order to model how people change between labour force status and industry; and to account for the impact of these characteristics on fertility, mortality and migration
 - For example, potential differences in fertility, mortality, migration between skill groups have not been explicitly considered in past projections, and have not been explored in a systematic and holistic way
 - Thus, projecting the population in a high dimensional space presents considerable challenges
 - Additionally there can be interaction effects, for example between skill and ethnicity on fertility
NTOM Projections: Prospects and Challenges

• If sufficient data on all transitions would be available, dynamic microsimulation would be the appropriate technique

• Instead, our preferred solution at this point is to project shares across each dimension and then ‘attach’ attributes to the population accordingly
 • This is consistent with the approach used by SNZ to generate household, labour force and ethnic projections
References

