

Understanding sheep milk composition in the NZ environment

M. Broadhurst¹, A. Bekhit². M. Vyssotski³, L. Samuelsson⁴, L. Day⁴

- ¹ AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand
- ² Department of Food Science, University of Otago, Dunedin, New Zealand
- ³ Callaghan Innovation, Gracefield Research Centre, Lower Hutt, New Zealand
- ⁴ AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand

Research Objective 1.1; Understanding product characteristics

<u>Question:</u> What are the effects of seasonality, ewe lactation status, farm of origin, and breed on the composition, physico-chemical properties, and nutritional value of NZ sheep milk and the consequent effects of processing, storage, and desired product qualities?

Outcomes:

Information on nutritional characteristics of sheep milk produced at all stages of the year;

- animal management
- product development
- marketing
- regulatory/compliance purposes.

CATLEY EDWARDS FAIRFAX NZ

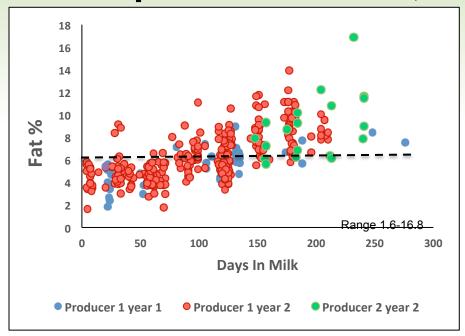
Mobile sampling

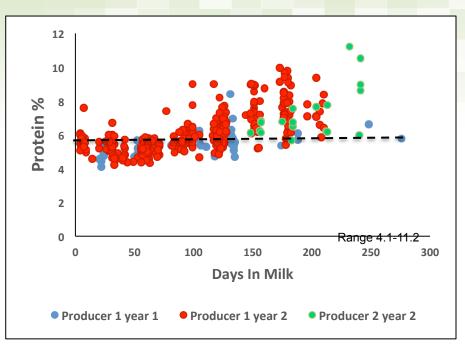
Full milking volume from each animal at each collection time

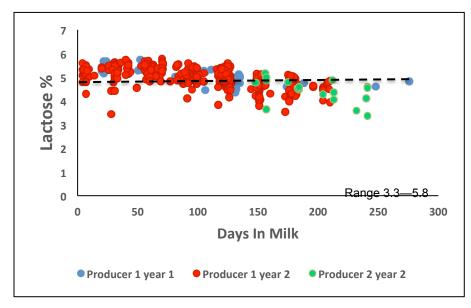
Composition Study;

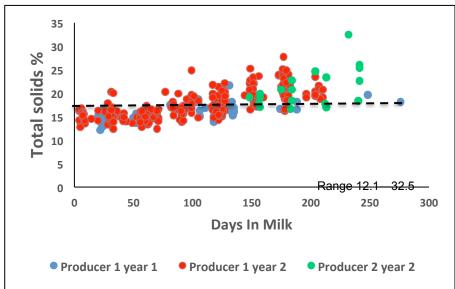
400 Individual milk samples; 300 random samples

Age selected animals

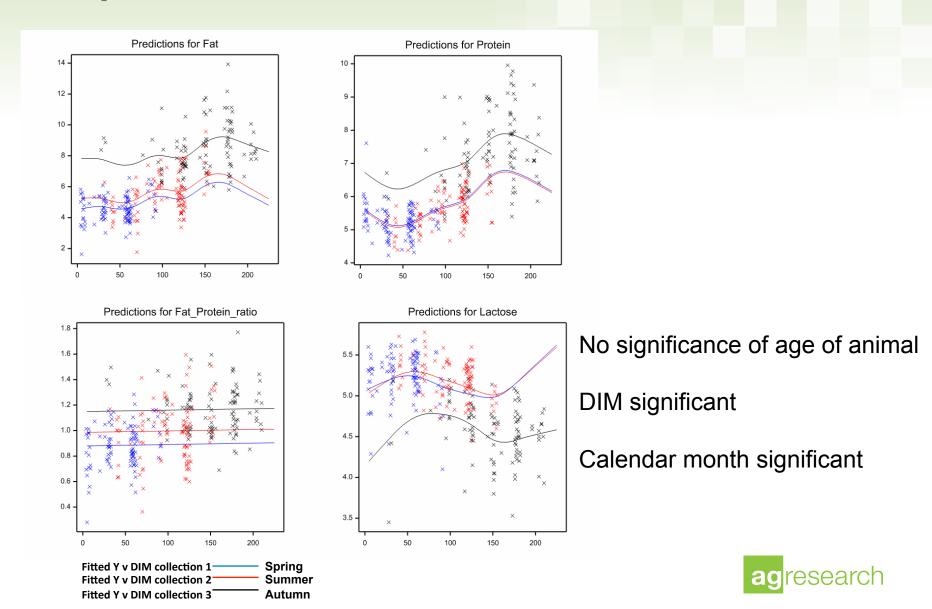

Lactation cycle selected animals

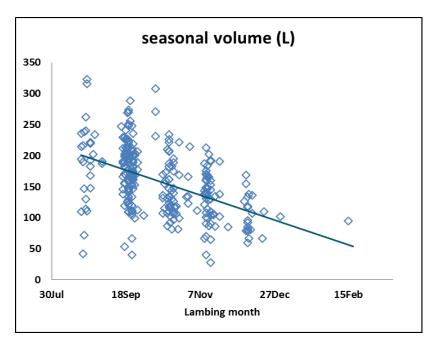

Mixed genetics / selected genetics

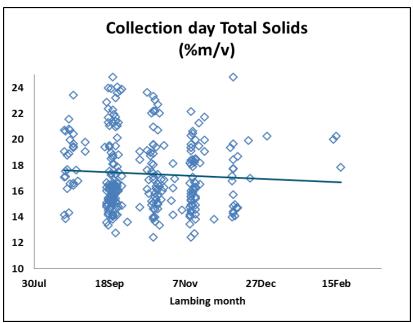

Variability of major milk components; lactation cycle (DIM),
animal age (lactation No)
calendar month



Composition results;






Composition results;

Composition results;

Effect of lambing month on season volume and total solids concentration

Sheep study and cow milk comparison

Component	NZ Sheep milk		Cow milk*
	Range	Average	
Total protein (%)	4.1 –11.2	6.1	3.0 - 3.9
Casein	4.1 – 5.0	4.7	2.5 - 2.8
Whey	0.78 – 1.40	1.0	0.55 - 0.70
Non-protein nitrogen	0.04 - 0.05	0.046	0.03 - 0.04
Fat (%)	1.6 –16.3	6.3	3.3 - 5.0
Phospholipids (%)	0.03 - 0.12	0.053	0.01 - 0.03**
Cholesterol (mg/100mL)	10 – 23	15	13 – 31
Lactose	3.4 – 5.5	4.9	4.4 - 5.6
Ash	0.89 - 0.93	0.91	0.7 - 0.8
Total solids	12.1 – 32.5	17.4	11.8 – 13.0
Water (by diff)	78.3 – 84.7	81.9	87.0 - 88.2

^{*}Claeys, W. L. et al(2014). Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42(0), 188-201.

^{**}adapted from Braun M et al. Quantification of phospholipids in infant formula and growing up milk by high-performance liquid chromatography with evaporative light scattering detector. Journal of AOAC International. 2010;93(3):948-55. Epub 2010/07/16

Summary

- Component composition;
 variability driven by fat and protein content = high total solids
 effect Lactation cycle (DIM) and calendar month -processing impacts
- Averaged composition consistent across NZ producers, across years and with reported levels
- Studies to address the impact of processing on composition underway input into optimisation of storage and processing conditions.

