Counting the spanning trees of the 3-cube using edge slides

Christopher Tuffley

Institute of Fundamental Sciences
Massey University, Manawatu

2009 New Zealand Mathematics Colloquium
1 Introduction
 - Cubes and spanning trees
 - Counting spanning trees: ways and means

2 The 3-cube
 - Edge slides
 - Counting the trees

3 Higher dimensions
The n-cube is the graph Q_n with:

- vertices the subsets of $[n] = \{1, 2, \ldots, n\}$;
- an edge between S and R if they differ by adding or deleting a single element.

\[
\begin{align*}
\emptyset & \quad \{1\} & \quad \{2\} & \quad \{3\} \\
\{1\} & \quad \{1, 2\} & \quad \{1, 3\} & \quad \{2, 3\} \\
\{2\} & \quad \{1, 3\} & \quad \{2, 3\} & \\
\{3\} & \quad \{2, 3\} & & \\
\end{align*}
\]
Spanning trees

Definition

A *spanning tree* of a connected graph G is

- a maximal subset of the edges that contains no cycle;
- equivalently,
- a minimal subset of the edges that connects all the vertices.
Counting trees — the matrix way

Theorem (Kirchoff’s Matrix-Tree Theorem)

The number of spanning trees of a simple connected graph G is given by the determinant of a matrix associated with G — the Laplacian of G, with row i, column i deleted.

$$
\begin{pmatrix}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}
$$

1

2

3

4
Theorem (Kirchoff’s Matrix-Tree Theorem)

The number of spanning trees of a simple connected graph G is given by the determinant of a matrix associated with G — the Laplacian of G, with row i, column i deleted.

$$\begin{vmatrix}
2 & -1 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 1 \\
\end{vmatrix} = 3$$

Counting the spanning trees of the 3-cube

Christopher Tuffley (Massey University)
Counting trees — the combinatorial way

Model: Prüfer code for spanning trees of K_n (Prüfer, 1918)

The *Prüfer code* is a bijection

$$\text{spanning trees of } K_n \leftrightarrow \{1, \ldots, n\}^{n-2}$$

— recovering Cayley’s Theorem that K_n has n^{n-2} spanning trees.

Prüfer code 3411

Counting spanning trees: ways and means
Spanning trees of the n-cube

Known result

The n-cube has

\[
\prod_{\substack{S \subseteq [n] \\ |S| \geq 2}} 2|S| = 2^{2^n-n-1} \prod_{k=1}^{n} \binom{n}{k}
\]

spanning trees.

For $n = 3$ this gives $2^4 \cdot 2^3 \cdot 3 = 384$ spanning trees.

Proof.

The Matrix-Tree Theorem + clever determination of eigenvalues.
See e.g. Stanley, *Enumerative Combinatorics*, Vol II.
Spanning trees of the n-cube

Known result

The n-cube has

$$\prod_{S \subseteq [n], |S| \geq 2} 2|S| = 2^{2^n - n - 1} \prod_{k=1}^{n} k^{n \choose k}$$

spanning trees.

For $n = 3$ this gives $2^4 \cdot 2^3 \cdot 3 = 384$ spanning trees.

Proof.

The Matrix-Tree Theorem + clever determination of eigenvalues. See e.g. Stanley, *Enumerative Combinatorics, Vol II.*

Problem

Stanley: “A direct combinatorial proof of this formula is not known.”
A weighted count

Theorem (Martin and Reiner, 2003)

With respect to certain weights $q_1, \ldots, q_n, x_1, \ldots, x_n$ we have

$$
\sum_{\text{s. trees of } Q_n} q^\text{dir}(T) x^\text{dd}(T) = q_1 \cdots q_n \prod_{S \subseteq [n]} \sum_{|S| \geq 2} q_i (x_i^{-1} + x_i).
$$

- degree of q_i in $q^\text{dir}(T)$ is the number of edges in direction i
- degree of x_i in $x^\text{dd}(T)$ is the number of edges in the “upper” i-face minus the number in the “lower”.

Suggests that

a spanning tree of Q_n

\[\uparrow \]

a choice of element and sign at each vertex of cardinality 2.
A weighted count

Theorem (Martin and Reiner, 2003)

With respect to certain weights $q_1, \ldots, q_n, x_1, \ldots, x_n$ *we have*

$$
\sum_{s. \text{ trees of } Q_n} q^{\text{dir}(T)} x^{\text{dd}(T)} = q_1 \cdots q_n \prod_{S \subseteq [n]} \sum_{i \in S, |S| \geq 2} q_i (x_i^{-1} + x_i).
$$

- degree of q_i in $q^{\text{dir}(T)}$ is the number of edges in direction i
- degree of x_i in $x^{\text{dd}(T)}$ is the number of edges in the “upper” i-face minus the number in the “lower”.

Suggests that

a spanning tree of Q_n

\[\uparrow\]

a choice of element and sign at each vertex of cardinality 2.
Edge slides

Definition
An edge of a spanning tree is *slidable* if it can be “slid” across a face of the cube to give a second spanning tree.

Observation
An edge that may be slid in direction \(i \) must lie on the path joining two \(i \)-edges.
Definition

An edge of a spanning tree is *slidable* if it can be “slid” across a face of the cube to give a second spanning tree.

Observation

An edge that may be slid in direction i must lie on the path joining two i-edges.
Definition

An edge of a spanning tree is *slidable* if it can be “slid” across a face of the cube to give a second spanning tree.

Observation

An edge that may be slid in direction i must lie on the path joining two i-edges.
Edge slides

Definition
An edge of a spanning tree is *slidable* if it can be “slid” across a face of the cube to give a second spanning tree.

Observation
An edge that may be slid in direction i must lie on the path joining two i-edges.
Edge slides

Definition
An edge of a spanning tree is *slidable* if it can be “slid” across a face of the cube to give a second spanning tree.

Observation
An edge that may be slid in direction \(i \) must lie on the path joining two \(i \)-edges.
The 3-cube

Existence

Lemma
A minimal path joining two i-edges contains a unique edge that may be slid in direction i.

Proof (length three case only).
Vertices u and v must meet edges of the tree. There are three possibilities.

Corollary
A tree with k edges in direction i has $k - 1$ edges that may be slid in direction i, for a total of exactly four possible slides.
Existence

Lemma

A minimal path joining two i-edges contains a unique edge that may be slid in direction i.

Proof (length three case only).

Vertices u and v must meet edges of the tree. There are three possibilities.

Corollary

A tree with k edges in direction i has $k - 1$ edges that may be slid in direction i, for a total of exactly four possible slides.
Existence

Lemma

A minimal path joining two i-edges contains a unique edge that may be slid in direction i.

Proof (length three case only).

Vertices u and v must meet edges of the tree.

There are three possibilities.

Corollary

A tree with k edges in direction i has $k - 1$ edges that may be slid in direction i, for a total of exactly four possible slides.
Existence

Lemma

A minimal path joining two i-edges contains a unique edge that may be slid in direction i.

Proof (length three case only).

Vertices u and v must meet edges of the tree. There are three possibilities.

Corollary

A tree with k edges in direction i has $k - 1$ edges that may be slid in direction i, for a total of exactly four possible slides.
Existence

Lemma

A minimal path joining two i-edges contains a unique edge that may be slid in direction i.

Proof (length three case only).

Vertices u and v must meet edges of the tree.
There are three possibilities.

Corollary

A tree with k edges in direction i has $k - 1$ edges that may be slid in direction i, for a total of exactly four possible slides.
Independency

Lemma

“Parallel” edge slides on the same tree are independent.

Proof.

Our existence proof above was purely local.
Orientations

- Root each spanning tree at \emptyset.
- Orient each edge towards the root.
- Let u_i be the number of “upward” edges in direction i.

Lemma

1. The effect of an i-slide on (u_1, u_2, u_3) is to change u_i by ± 1. The sign is determined by the direction of slide.
2. There is a “downward” i-slide $\iff u_i > 0$.
Orientations

- Root each spanning tree at \emptyset.
- Orient each edge towards the root.
- Let u_i be the number of “upward” edges in direction i.

Lemma

1. The effect of an i-slide on (u_1, u_2, u_3) is to change u_i by ± 1. The sign is determined by the direction of slide.
2. There is a “downward” i-slide $\iff u_i > 0$.
Orientations

- Root each spanning tree at \emptyset.
- Orient each edge towards the root.
- Let u_i be the number of “upward” edges in direction i.

Lemma

1. The effect of an i-slide on (u_1, u_2, u_3) is to change u_i by ± 1. The sign is determined by the direction of slide.

2. There is a “downward” i-slide $\Leftrightarrow u_i > 0$.
Upright trees

Definition

A spanning tree is *upright* if it has only “downward” edges.

Given a spanning tree T, carry out all possible *downward* steps:
1. 3-slides; then
2. 2-slides; then
3. 1-slides.

The result is an upright tree canonically associated with T.
Upright trees

Definition

A spanning tree is *upright* if it has only “downward” edges.

Given a spanning tree T, carry out all possible *downward* edges:

1. 3-slides; then
2. 2-slides; then
3. 1-slides.

The result is an upright tree canonically associated with T.
Upright trees

Definition

A spanning tree is *upright* if it has only “downward” edges.

Given a spanning tree T, carry out all possible *downward* 3-slides; then 2-slides; then 1-slides.

The result is an upright tree canonically associated with T.
Upright trees

Definition
A spanning tree is *upright* if it has only “downward” edges.

Given a spanning tree T, carry out all possible *downward*

1. 3-slides; then
2. 2-slides; then
3. 1-slides.

The result is an upright tree canonically associated with T.
Upright trees

Definition

A spanning tree is *upright* if it has only “downward” edges.

Given a spanning tree T, carry out all possible *downward*

1. 3-slides; then
2. 2-slides; then
3. 1-slides.

The result is an upright tree canonically associated with T.
The 3-cube
Counting the trees

Theorem

There are

1. $2^3 \cdot 3$ upright trees, and
2. 2^4 trees associated with each, for a total of $2^4 \cdot 2^3 \cdot 3 = 384$ trees.
Theorem

There are

1. $2^3 \cdot 3$ upright trees, and
2. 2^4 trees associated with each, for a total of $2^4 \cdot 2^3 \cdot 3 = 384$ trees.
Counting the trees

Theorem

There are

1. $2^3 \cdot 3$ upright trees, and
2. 2^4 trees associated with each, for a total of $2^4 \cdot 2^3 \cdot 3 = 384$ trees.

Decide in turn whether to carry out each

1. 1-slide;
2. 2-slide;
3. 3-slide

— a total of four yes-no decisions.
Counting the trees

Theorem

There are

1. $2^3 \cdot 3$ upright trees, and
2. 2^4 trees associated with each, for a total of $2^4 \cdot 2^3 \cdot 3 = 384$ trees.

Decide in turn whether to carry out each

1. 1-slide;
2. 2-slide;
3. 3-slide

— a total of four yes-no decisions.

The count can be made bijective with additional attention to orientation.
Can we carry out a similar programme in higher dimensions?
Higher dimensions?

Question

Can we carry out a similar programme in higher dimensions?

Not yet...

- every tree can be made upright using downward slides,
- but choices are required:
 - a tree may have “extra” edge slides;
 - parallel slides need not be independent
 (perhaps only for $n \geq 5$?).

New ideas are needed to make these choices systematically.