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Abstract

Many scientific simulations and models are based upon one
or more coupled field equations. Fields are often modelled
as a regular mesh or grid of individual field variables where
each degrees of freedom or site variable is a scalar or vec-
tor quantity. Visualising such quantities interactively can be
a great aid to debugging as well as understanding and in-
terpreting the results of numerical simulation. We review a
number of different approaches and software technologies
for visualising scalar and vector fields as they time-evolve
in 1, 2 and 3 dimensional simulations. We present some per-
formance data that can be used to plan size and time scoping
for simulations on present interactive visualisation computer
technology. We discuss the particular merits of different ap-
proaches for dense 3-dimensional vector-field models such
as the Ginzburg-Landau equation. We offer some specula-
tions on how these techniques could be applied to simula-
tions of other field equations.
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1 Introduction

Visualising the results from the simulation or modelling of
partial differential equations is a long standing problem and
area of interest in several areas of computational science.
Many interesting physical, chemical and biological systems
can be modelled as field equations. A field equation model
is simply an equation or set of coupled equations based on
field variables that vary spatially and usually also in time.

For example, climate and weather systems are modelled
by field variables representing properties of the atmosphere

such as air temperature, pressure, moisture content and wind
direction. Ocean or fluid flow models have similar field vari-
ables describing water properties. The field variables are
sometimes known as the degrees of freedom of the model
and are usually arranged on some sort of spatial mesh or
grid. Sometimes meshes are regularly spaced, but they need
not necessarily be as irregular meshes are sometimes useful
to place extra degrees of freedom close to where the field is
changing rapidly. It is not always possible to generate sim-
ple regular geometric meshes. Weather and climate systems
suffer from the need to wrap a mesh around the near spheri-
cal surface of the earth for example.

In general then we are interested in being able to examine
one or more fields ¥(x,y, z,t) as they change in time over
some spatial set of coordinates r = (x,y,z) in a three-
dimensional coordinate system.

There are a number of successful approaches to this problem
- often based upon some sort of divide and conquer solution.
Visualising a single (z,y); (z, 2); or (y, z) surface at a time
is an obvious approach that lends itself well to a pixel based
display technology. Animating time sequences into movies
that can be started, stopped, speeded up, played forwards
or backwards is another obvious approach to visualising in
time.

A number of techniques can be applied to visualizing field
equations when the field variable is a single scalar variable
and we have reported on some work concerning scalar equa-
tions such as the Cahn-Hilliard system [1]. In this present
paper we consider some particular issues that arise when the
field variables are not just separate quantities but are com-
ponents of a vector quantity or the real and imaginary parts
of a complex field variable.

The Time-dependent Ginzburg-Landau (TDGL) equa-
tion [2] is an archetypal system that is based around a com-
plex field variable. The TDGL is used to model a number of



physical systems and gaining an understanding of its com-
plex field variable is crucial to gaining an intuitive interpre-
tation of the dynamical and static properties of the model.

In this paper we describe the Time-Dependent Ginzburg-
Landau equation in section 2. In section 3.2 we briefly
review some of the available software technologies for en-
abling a suitable visualization and rendering. We present
some visualisation results in sections 3.3 and 3.4 and offer
some discussion for future work and some concluding re-
marks in section 4.

2 The Ginzburg-Landau Equation

Ginzburg-Landau theory provides a framework for mod-
elling the thermodynamic or macroscopic properties of a su-
perconductor without recourse to simulation of microscopic
details such as individual atoms or spins. The formulation
is based on the concept of a free energy functional for the
superconductor that can be written in terms of a complex or-
der parameter, given here as ¢/. This order parameter give a
measure of how deeply the system is into its superconduct-
ing phase. The free energy function has the typical form:
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where F), is the free energy in the normal phase, o and (3
are phenomenological parameters, m is an effective mass,
A is the electromagnetic vector potential, and B (=rot A) is
the magnetic induction. Minimizing the free energy with
respect to fluctuations in the order parameter and the vector
potential give rise to the Ginzburg-Landau equations:
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where j is the electrical current density and Re the real part.
Equation 2 specifies the order parameter 1 in terms of the
applied magnetic field. This equation has a similar struc-
ture to the time-independent Schroeder equation. Equation 3
then determines the superconducting current.

These equations suggest that there are two characteristic
(physical) lengths that occur in a superconductor. These are
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usually known as the coherence length & Smlal’

which characterises the size of thermodynamic fluctuations
in the superconducting phase.
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The penetration depth ) is given by: A =

where 1) is the equilibrium value of the order parameter
in the absence of an electromagnetic field. The penetration
depth then characterises the depth to which an external mag-
netic field can penetrate the superconductor.

The ratio k = A/ is usually known as the Ginzburg-Landau
Parameter. Type I superconductors are those for which x <
1/ \/(2), and Type II superconductors are those for which

k> 1/1/(2).

In Type I superconductors there is a first order phase transi-
tion from the normal state to the superconducting state, and
for Type 1II the transition is second order. This is consistent
with Ginzburg-Landau theory.

In 1957, Abrikosov [3] showed that for the case of a Type
II superconductor, a (high) magnetic field will penetrate the
system in quantized tubes of flux, often in a hexagonal geo-
metric pattern.

Ginzburg-Landau theory also arises as the scaling limit for
the XY model and also displays important similarities with
the Higgs mechanisms in particle systems. [4].

If we factor the constants and the physical units into scaled
variables, we can therefore obtain a simple form of the
Ginzburg Landau partial differential equation in term of a
dimensionless field u:
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where the constants p,q € C and v € R.

3 Modelling and Simulation

In this section we describe firstly the numerical methods we
employed, and secondly the visualisation techniques we ex-
plored for analysing a complex field. We elaborate on the
additional techniques used for visualising both 2-d and 3-d
fields and describe techniques particularly suited to complex
fields including either phase, magnitude or both.

3.1 Numerical Methods

We use the usual Laplacian centred spatial stencil (but with

complex numbers) for éd—;, so that we have a [+ — 2+] sten-
cil and hence:
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where we can use § = 1 subject to numerically scale the
factors of p, q,y. The memory access data stencil for this is
shown in figure 1 for 1-d, 2-d and 3-d field cases.
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Figure 1: Memory access stancil for 1-2, 2-2 and 3-d cases
of equation 5.

The numerical simulation of the Ginzburg-Landau equa-
tion 5 is somewhat more complicated than for a simple scalar
field. As each cell is a complex number, the calculations
for the numerical simulation of the field must be computed
using complex mathematics. The simulations used by this
research are implemented in C++ which allows a class with
overloaded operators to be defined. This allows the numeri-
cal integration methods to be written in the same notation as
for simple scalar fields.

A number of integration methods where considered but it
was determined that the Runge-Kutta 2"¢ (RK2) order inte-
gration method or Midpoint method was the most efficient.
The RK2 method provides the required level of stability and
accuracy without the time and memory overhead of higher-
order methods. This integration method was implemented
to operate with complex numbers and has been used for all
simulations in this research.

3.2 Visualising Complex Fields

Several methods are used for visualising complex or vector
fields such as: vector plots [5], image distortion [6], sur-
face plots [7], contour plots [2, 8], interface rendering [2] or
coloured field representations [2]. Each of these are valid
methods of visualisation, but often either loose data or are
not feasible in three-dimensions or for large field lengths.
We present here a method capable of rendering large and
three-dimensional fields without lose of information.

A number of software problem-solving environments and
mathematical modelling tools such as Matlab [9] and Math-
ematica [10] do support a static visualisation of scalar and
vector fields. We are particularly interested in large model
systems and also in the time dependent behaviour of such
models. Consequently it becomes necessary to develop our
own custom fast simulation codes and associated interactive
visualization tools.

To achieve this fast visualisation, a hardware-accelerated
graphics library is required. In our previous research [1]
our simulations were written in Java”™ [11] and visualised

using JOGL [12]. As the simulations in this research are
written in C++, OpenGL has been chosen to provide the
hardware-accelerated graphics capability.

3.3 Visualisation in Two-Dimensions

In previous work we have discussed the visualisation of
a scalar field equation [1], however vector fields such as
the Ginzburg-Landau equation present even more of a chal-
lenge. Because the field u is a complex number there is no
longer a single value that can be converted into a colour to
represent the state of the cell. Each of the cells within a vec-
tor field have a real and imaginary part (which can be trans-
formed into phase and magnitude values). The challenge is
to develop a method that can convey all the necessary data
to the observer in an easy to interpret way.

Vector Visualisation

The first method developed to visualise a Ginzburg-Landau
field displays each cell as a vector (also known as arrow
plots [13]). Instead of a single square of colour often used
to visualise scalar fields, each cell is represented by an ar-
row. Each cell is allocated a square of space and an arrow
is drawn from the centre of the square to an offset point de-
fined by the real and imaginary parts of the cell’s value. This
can be seen in Figure: 2.
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Figure 2: A Ginzburg-Landau field visualised using the Vec-
tor Visualisation method. The phase information or “direc-
tions”of the complex field variables are rendered as arrows,
with length scaled by field magnitude.

This method displays all the raw data of the field, but it is not
easy to see all the domains in the field and is only feasible for
displaying small fields (the arrows cannot be distinguished



in a large field). However, this visualisation provides vi-
tal insight necessary for developing an improved method. It
can be seen in the Figure: 2 that the cells have aligned them-
selves in terms of phase and magnitude, display either of
these values will provide a useful visualisation.

Colouring the vector field can act as a guide to the eye, but
this approach is still limited in making it clear where the
model field is forming structures and interfaces are being
formed.

Phase Visualisation

The phase visualisation method includes only the phase of
the cells in the visualisation, the phase of a cell can be eas-
ily calculated from its real and imaginary parts. The phase
of the cells provides a single value that allows the complex
Ginzburg-Landau field to be visualised in a similar way to a
simple scalar field. A rgb colour c(; ) is calculated from the
absolute value of each cell’s phase |¢, )| using equation: 6.

Clz,y) = (10 - ‘d’(z,y)l? |¢(z,y)|700) (6)

Once these colours have been calculated, the method visu-
alises the field as many squares where each square’s cor-
ners are located at the centre of four neighbouring cells. The
four colours at the corners of these squares are automatically
blended by OpenGL to produce a smooth visualisation even
for small field lengths. A screen-shot of a field visualised
using this method can be seen in Figure: 3.

This method of visualisation is easier for the human eye to
interpret than the vector method and is still useful for large
field sizes. However, all information about the magnitude of
the cells is lost. As the magnitude of the field is not uniform
across the field it represents important information and must
be included in the visualisation in some form.

Magnitude Visualisation

Like the phase of the cells, the magnitude is a single value
calculated from the real and imaginary parts of the cell and
can be visualised in a similar manner to the phase. Visu-
alising the magnitude suffers the same issue as the phase
visualisation in that it loses some information about the cell
values. However, this method shows the patterns and infor-
mation that the magnitude values form and is a necessary
step in producing an improved visualisation.

Figure: 4 is an example image created by this method of
visualisation. The patterns the magnitudes form are unlike
those seen in the Phase Visualisation and thus represent im-
port information that must be included in the visualisation.

Figure 3: A Ginzburg-Landau field visualised using the
Phase Visualisation method. This works well for this par-
ticular model configuration and highlights the formation of
vortex structures.

Figure 4: A Ginzburg-Landau field visualised using the
Magnitude Visualisation method. This method is less in-
sightful than visualising the phase information — for this par-
ticular data set.



There is a need for a method of visualisation that displays
all of this information in an easy to interpret way.

Phase-Magnitude Visualisation

The phase-magnitude visualisation method is designed to vi-
sualise both the phase and the magnitude of the field in a sin-
gle display. It combines the previous two methods by defin-
ing the ratio of red and green according to the phase and then
scaling by the magnitude. This is effectively controlling the
hue according to phase and the brightness according to mag-
nitude. The rgb colour c(, ) is defined by the absolute value
of the cell’s phase |¢(, ,| and magnitude |u](, ) according
to equation: 7.

) = (1.0 = [Be,p)]) X [tl(z,9), D) X [tl(z,4),0.0) (7)

Using this calculation for the colour, both the phase and
magnitude is visualised in a single image. Figure: 5 is an ex-
ample of this method. In this image the phase is visualised
by the red-green or hue of the image and the magnitude can
be distinguished by the dark and bright areas. In this way a
vector field can be visualised without loss of information.

Figure 5: A Ginzburg-Landau field visualised using the
Combined Visualisation method. The red and green areas
represent cells with phase 0 and 7 respectively. The dark
areas represent cells with a magnitude close to 0.0 and the
bright areas magnitudes tending to 1.0.

Surface Distortion Visualisation

The surface distortion visualisation method is based to the
phase-magnitude visualisation method in that the cells are
represented by a number of squares coloured according to
equation: 7. However, the squares are no longer limited to a
single plane. The surface is distorted based on the magnitude
of the cells. The height of each square’s corners is distorted
by the magnitude of the four cells it covers. This method is
designed to increase the visibility of the magnitude values to
allow easier interpretation of the image. Such a visualisation
can be seen in Figure: 6.

Figure 6: A Ginzburg-Landau field visualised using the Sur-
face Visualisation method. The changing boundaries in the
model field show up as crenelations or vein-like structures
in the rendered surface.

This Surface Distortion Visualisation method provides an ef-
fective way of conveying information about the phase and
magnitude of the two-dimensional Ginzburg-Landau equa-
tion. As both the phase and magnitude are visualised, this
method should be able to visualise any complex field ef-
fectively, however the exact parameters for distortion and
colouration are based on the tendency of the Ginzburg-
Landau cell magnitudes in the range [0, 1]. This may not be
the case of other complex fields and certain adjustments to
the visualisation may be necessary on a case-by-case basis.

3.4 Visualisation the Three-Dimensions

Visualising a complex field in three-dimensions is even more
challenging than in two. In three-dimensions, visualising the
cells as vectors is no longer feasible as the arrows become
impossible to see. Instead the field can be rendered with
colour values determined from the phase and magnitude val-
ues (as with the two-dimensional case). We present here
three methods of rendering a three-dimensional Ginzburg-
Landau field.

Combined 3D Rendering Method

The simplest method developed for visualising the three-
dimensional field is by rendering six faces for each side of



the field. This is performed simply by rendering six rectan-
gular faces coloured exactly the same manner as the com-
bined visualisation method. A snapshot of a field visualised
in this way can be seen in Figure: 7.

Figure 7: A snapshot of the Phase-Based Surface Distortion
Method. The 3-d cube is rendered with flat surfaces that are
only coloured by the field data.

This method is effectively the three-dimensional application
of a two-dimensional rendering method. The method does
display the field but looses all information about the centre
of the field. Only the outside faces of the cubic field can be
seen.

Combined 3D Surface Distortion Method

The second method of rendering a three-dimensional field
uses a similar method as the two-dimensional surface-
distortion visualisation method. Like the combined 3D ren-
dering method, the field is displayed as six faces display-
ing the outside of the field and coloured according to phase.
However, the positions of the rectangles representing each
cell is distorted according to the phase of the cell.

Figure: 8 shows a snapshot of a Ginzburg-Landau field vi-
sualised using this method. This distortion and colour-
ing coupled with suitable surface normals provide a three-
dimensional visualisation that is easily interpreted by the
human eye. However, like the previous method the visu-
alisation is limited by the fact that it can only display infor-
mation on the edges of the field, the internal state of the field
is unseen.

Figure 8: A snapshot of the Phase-Based Surface Distortion
Method. The field data are used to distort the surfaces of the
cube as well as to colour them. This emphasises the forming
boundaries.

Interface Rendering Method

The interface rendering method was developed to address
the issue of visualising data from within the centre of the
three-dimensional field. To overcome the problems faced
by the previous methods, this method does not attempt to
display the information of all the cells of the field. Instead,
only the interfaces between regions are rendered. Rendering
only these interfaces allows the user to rotate and move the
model to see details from all sections of the field. Results
from this method can be seen in Figure: 9.

There has been previous reporting in the literature of render-
ing of interfaces boundaries for both scalar and vector fields;
however, the interface visualisation has been a single colour
and thus information has been lost. This method colours
the rendered interfaces and thus conserves data while also
allowing the internals of the field to be visualised.

4 Discussion and Conclusions

We have presented some approaches to visualising the com-
plex field variable of the Time-Dependent Ginzburg-Landau
equation as it might be simulated on a regular mesh in mul-
tiple dimensions.

We have explored a number of ways of representing the real
and imaginary parts of the field, in terms of phase ¢ and
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Figure 9: A snapshot of the Interface Rendering Method.
This shows how the data field is used to guide what parts
of the solid model should be rendered. Only the interface
regions are shown, allowing a cut away inspection of the
model interior.

magnitude |¢| in terms of colours for scalar potential repre-
sentations and as explicit arrows to render the vector nature
of the field. We have described and presented renderings
based on geometrical surface distortions and on interface
boundary detection and subsequent colouring. Of particular
note was the use of colour and model interface information
to allow a cut away rendering of the evolving system, giving
important insights into its interior structure and evolution.

We are developing our system to allow a more detailed and
exhaustive exploration of the properties and emergent be-
haviours of the TDGL. Of particular interest are the vor-
tex and interface boundary structures we found in the ren-
dered images. Encountering these patterns visually gives
insight into the mixing and phase separation behaviour but
also suggests various pattern classification and detection al-
gorithms [14] we might apply to count and categorise these
structures semi-automatically.

We have framed our experiments and discussion in terms of
the TDGL, but we believe these ideas and approaches would
apply equally well to other field equations and model sys-
tems that are based on complex number fields.
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