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Abstract

Lattice gas cellular automata (LGCA) models provide
a relatively fast means of simulating fluid flow and can
give both quantitative and qualitative insights into flow
patterns around complex obstacles. Symmetry require-
ments inherent in the Navier-Stokes equation mandate
that lattice-gas approximations to the full field equa-
tions be run on triangular lattices in two dimensions
and on a 3-D projection of a four dimensional face cen-
tred hyper-cubic for three dimensions. Graphics Pro-
cessing Units (GPUs) offer powerful data-parallel pro-
cessing capabilities for many simulations as well as the
graphics calculations required to simulate them. We
describe how GPUs can be used to implement mesh
structures for simulating lattice gases. We present per-
formance data on how to optimise data layout in the
various levels of localised memory available in modern
GPUs and discuss data transfer issues between CPU
and GPU and between processing GPU and graph-
ics GPU in a unified simulation platform. We illus-
trate these ideas with algorithmic fragments in Com-
pute Unified Device Architecture (CUDA) - NVIDIA’s
GPU programming language.

Keywords: data parallelism; GPU; cellular au-
tomata; lattice gas; fluid simulation; triangular lattice;
CUDA.

1 Introduction

Computational fluid dynamics is a powerful tool for
exploring highly non-linear behaviour in complex fluid
systems. Solving the Navier-Stokes equations, even in
their simplest form is still a computationally intensive
task and requires sophisticated numerical solver tech-
niques. The lattice gas [1] cellular automaton [2] ap-

Figure 1: Lattice Gas Cellular Automaton flowing past
a plane barrier. System size is X × Y with rainbow
colour wheel cells representing flow direction averaged
over M bit cells.

proximation can however be used to explore some qual-
itative and quantitative aspects of certain fluid flows.
LGCA models and various sophisticated refinements
such a the Lattice Boltzmann approach [3] can be for-
mulated on more regular structures that is sometimes
possible for full-field Navier-Stokes equation formula-
tion. LGCA models are also highly data-parallelisable
and offer the potential of simulating large model sys-
tems. Many physical systems such as fluid-flow and par-
ticularly turbulent fluid flow [4] reveal interesting prop-
erties and behaviours on many different length scales.
A large simulation that can effectively capture several
powers-of-ten of different length scales can therefore
provide a useful simulation tool.

Fluid flow simulations are normally based upon a nu-
merical solution or time-integration of the relevant par-
tial differential equations. These are derived from the
continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

which is written here in terms of the fluid density ρ and
the time t and position dependent u velocity, which is



a vector field. For our purposes we restrict ourselves to
cases of constant density and this “incompressible fluid”
case gives: ∇ · u = 0. We use this to obtain a deriva-
tion of the Navier-Stokes equation is often expressed
in terms of the substantive derivative – the derivative
following the fluid motion, which is defined as:

Du
Dt
≡ ∂u

∂t
+ u · ∇u (2)

Which leads to the form of the general Navier-Stokes
form in D dimensions (typically 2 or 3) as:

D(ρu)
Dt

+ρ(u · ∇)u = −∇p+η2u+
(
ζ +

1
D
η

)
∇(∇·u)+F

(3)
including a general applied force term F and the bulk
viscosity ζ.. In the case of a fluid of constant density ρ
this yields the incompressible form:

ρ
Du
Dt

= −∇p+ η∇2u + F (4)

It is useful to focus for our purposes on the two di-
mensional case in simple Cartesian coordinates where
u ≡ (u, v) and:
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where we have written the kinematic shear viscosity
ν ≡ η/ρ.

There are various numerical approaches to solving these
equations to simulate systems with particular initial
flow conditions and boundary conditions. Many au-
thors have reported the use of differing solver meth-
ods [5] and detailed numerical approaches [6] that will
work well on various parallel architectures. The main
point remains however, that this is a highly floating-
point intensive calculation and is difficult to deploy on
desktop level processing platforms in interactive speed
for realistically large model systems.

The Lattice Gas approach to fluid-flow was first devel-
oped in earnest in the 1980s [7] with specific results such
as the cluster kinetics behaviour reported [8], and was
shown to be successful using supercomputers of the late
1980’s and early 1990’s era [9]. In this paper we discuss
the performance of GPUs for a Lattice Gas Cellular
Automaton approximation [10] to the incompressible
Navier-Stokes partial differential equations [11] that is
fast enough to look at complex fluid flow patterns on
commodity computing resources in interactive time.

Modern processing devices typically make use of mul-
tiple “cores” in a single chip to provide some on-chip
parallelism. Present generation CPUs typically offer
≈ 2, 4, 6, 8 processing cores that fully capable of in-
dependent operation. This is useful for many scien-
tific simulation purposes [12]. An alternative approach
for highly data-parallel simulations is to deploy devices
that have a much larger number (> 100) cores that can
operate in closer synchrony and which can yield dra-
matic performance gains for the right applications [13].

Graphical Processing Units (GPUs) have recently
proven highly effective processing performance accel-
eration tools both for simulation computations [14, 15]
as well as for enabling interactive-time quality graphi-
cal visualisations of simulated systems [16]. GPUs can
in a range of different architectures and have proven to
be some of the most effective multi-core processing ar-
chitectures in recent times. These devices make use of
regular and highly structured memory and core layouts
and are programmed using a data parallel approach to
parallelism. The key to achieving high performance for
a given application is to find the right match between
the different memory layers and capabilities of the de-
vice and the computational data structures required by
the application.

The LGCA model is implemented in terms of simple
gas particles that flow on the lattice and which can
generally be represented by a very small number of bits
rather than as by full double precision fields describing
velocity, pressure, and so forth. GPU memory at all lev-
els in generally in limited supply - the amount available
is highly correlated with the cost of a GPU card. It is
therefore important to find ways to optimally compress
the LGCA particle bit data to make maximum use of
available GPU memory but also to minimise communi-
cation overheads between GPU and its control-hosting
CPU.

There are various symmetry requirements of the Navier-
Stokes equations for fluid flow that mandate use on non-
trivial lattice structures for LGCA approximations. It
has been shown that for a two dimensional system a
simple square lattice has insufficient symmetry and a
triangular lattice - with cells having six nearest neigh-
bours, is necessary. Similarly to use LGCA approaches
in three dimensions it is necessary to employ a 3-D
projection of what is effectively a face-centred four di-
mensional hyper-cubic lattice structure [17]. These lat-
tices are not trivial to implement and present additional
challenges for efficient implementation on GPU mem-
ory.

In this paper we describe various ways of laying out in
GPU memory a simple lattice gas cellular automaton



model. We summarise the LGCA model in Section 2
and describe some of the GPU architecture in Section 3
and the GPU programming implementation ideas we
used in Section 4. We present some selected perfor-
mance results for various GPU devices in Section 5. We
discuss their implications for large scale LGCA simula-
tion on multiple GPU systems and offer some conclu-
sions and areas for further work in Section 6.

2 Lattice Gas Cellular Automata

As previously mentioned the LGCA method provides a
efficient way to simulate large scale fluid-flow by moving
particles within a triangle mesh (see Figure 2) and ap-
plying simple collision rules conserving mass, momen-
tum and energy. A triangular lattice is used to sat-
isfy the required interaction constraints established by
the Navier-Stokes equation. The resulting system does
not correctly model physics at a microscopic level but
produces satisfactory bulk properties at a macroscopic
level. Each site has six neighbours that it can inter-
act with based on the collision rules identified by the
direction of the velocity vectors within the site (see Fig-
ure 3). There are 256 possible particle configurations
with applicable rules to be set and stored in a lookup
table. Fortunately the rules for the presence or absence
of a particle are opposite which allows us to specify only
half of the rules and flip the bits on both the input and
output to produce the other half based on the status of
the particle in question.
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Figure 2: A Triangular mesh as it is used conceptually
(left) and the same mesh distorted for ease of storage
and computation (right).

Each particle can be represented by one byte, the first
six bits from zero to five represent the six velocity vec-
tors. Because mass, momentum and energy are con-
served the interaction between the particles is solely
based on the collision rules thus allowing the velocity
and direction to be identified using only one bit. Bit six
represents a rest particle while bit seven, when set al-
lows a particle to act as a barrier that blocks all incom-
ing particles. For example a stationary particle acting

as a barrier will be formatted 11000000. To improve
memory management we have compacted four lattice
sites into one 32bit int allowing the size of the array
storing the data to be one quarter of the size it would
be if a full int was used for each site.

Figure 3: The collision rules of the Lattice Gas Cellular
Automata.

The lattice gas model is well suited to parallelisation as
the update calculation of each particle is independent
of all others in the current time-step and is based purely
on the previous arrangement. In the follow section we
describe the GPU architecture and several LGCA im-
plementations.

As part of our code debugging and testing we devel-
oped a graphical interface implemented in OpenGL and
which supports various schematic and bulk system met-
rics as the flow pattern develops. We implemented a
barrier pattern import mechanism that allows arbitrary
barrier patterns to be developed using a drawing pack-
age and transformed into an appropriate bit-mask on
the model triangular lattice. Figure 4 shows the steady-
state fluid flow around an embedded barrier made up
of some text. This is a somewhat complex flow pattern
however and the standard pattern of a plane barrier as
shown in Figure 1 was used for the benchmarking data
presented in this paper.

3 GPU Architecture Issues

We have made use of NVIDIA’s CUDA and GPUs to
increase the size of the lattice we can simulate in a rea-
sonable time-step. The computational throughput of
GPUs can decrease simulation time allowing for larger
and effectively more accurate simulations to be com-
puted. The lattice gas simulation is well suited to paral-
lel computation on GPU architectures as the time-step
for each cell in the mesh can be computed indepen-
dently. However, for this simulation there is some in-
creased complexity as a triangular lattice must be used.



Figure 4: The Lattice Gas Cellular Automata simulating fluid flow past the “Massey University barrier”. The
cells are coloured using the HSV colour model with hue defined by the direction of the flow and the brightness
determined by the velocity.

To properly explain how the simulation can be opti-
mised for GPU architectures and memory optimisation,
we provide a brief overview of GPU architectures.

NVIDIA CUDA-enabled GPUs all have similar archi-
tectures. In general GPUs are designed to manage,
schedule and execute large numbers of threads (thou-
sands or millions of threads are common), as this thread
management is performed in hardware it presents little
overhead. These threads are separated into blocks (each
block can contain up to 512 threads) which are executed
on the GPU’s Multi-Processors (MPs). Each MP con-
tains eight Scalar Processors (SPs) which execute in-
dividual threads. As there is no automatic caching on
GPUs (at least the current generation GTX 200 series),
GPUs contain several types of explicitly accessed mem-
ory types. These are as follows:

Global memory is the largest (and slowest) type of
memory. All data input from the CPU or to be copied
out to the CPU must be placed in this global memory.
Thread access time to global memory can be reduced by
the use of coalescing. When sequential threads access
sequential values from global memory the transactions
can be coalesced into a single memory access.

Shared memory is an 16KB area of memory on the
MPs, threads in the same thread block can share data
with this memory type. This can be very useful as it
can reduce the number of required accesses to global
memory.

Texture memory is a cached method for accessing
global memory. Arrays can be bound to a 1D, 2D or
3D texture to tell CUDA to use the texture cache. This
is useful when threads in the same block access values
in the same spatial locality.

Constant memory is another cached method of access-
ing global memory. However, this cache is designed to
allow threads to access the same value in memory at

the same time.

When implementing any program on a GPU, carefully
consideration of memory type and access patterns is
necessary to make full use of the card’s computation
capabilities.

4 LGCA on the GPU

To simulate the LGCA on the GPU we must first deter-
mine how to decompose the simulation among individ-
ual threads. The task of updating each cell in the trian-
gular mesh can be performed independently, we create
one thread for each cell. Each thread should read in the
value of the cell and the necessary neighbouring cells
from memory, apply the appropriate collision rules and
write the new value to an output array. At this point
is should be noted that each cell in the mesh does in
fact contain four sites packed into a single integer. To
determine the optimal memory configuration we have
implemented six kernels which use different types of
CUDA memory for both the mesh and the rule lookup
table.

4.1 Memory for triangular mesh

We have used two types of GPU memory for accessing
the triangular mesh - Global and Texture. In previ-
ous neighbour-based, square lattice GPU simulations it
was found that texture memory provided the best per-
formance [14]. However, we have tested both types as
the access patterns are different for triangular lattices.
The first three kernels (A,B,C) read the cell and neigh-
bouring values directly from global memory whereas
the last three kernels (D,E,F) make use of the texture
cache when accessing these values.

While the spatial caching of texture memory is advan-



tageous for accessing neighbouring values, it does re-
quire a additional memory copy from the output array
into the texture-bound array. This overhead must be
weighed against the performance benefits the spatial
caching provides.

4.2 Memory for Rule Look-up Table

The other consideration that should be made is how the
threads should access the collision rule look-up table.
In this case we use three types of memory - Global,
Shared and Constant. In kernels A&D, the threads
read the necessary values from the rule look-up table
(LUT) directly out of global memory. As these accesses
will be uncoalesced in most cases, we expect this to be
the slowest implementation. Kernels B&E still read the
look-up table from global memory but instead of each
thread reading the value it requires, each thread reads
one value and stores it in shared memory. The threads
can then access the required look-up table values from
the faster shared memory. Finally kernels C&F use
the constant cache for accessing the LUT, this should
provide some benefit over the global memory method
as it will allow multiple threads in the same block to
access the same value at the same time.

5 Performance Results

To test the performance of the LGCA implementations,
we have executed the six kernels (A-F) on four differ-
ent NVIDIA GeForce 200 series graphics cards. The
cards tested are the GeForce 210, GT 220, GTX 260+
(factory overlocked to 666MHz) and a GTX 295. The
GPU implementations are also compared to two CPU
simulations of the LGCA in Java and C++ running on
an Intel Core i7 920 2.66GHz with 6 GB of DDR3-1600
memory and on an Intel Core 2 Quad 2.66 GHz with
8GB of DDR2-800 memory. First we compare the dif-
ferent GPU kernels.

To determine the fastest kernel, we have tested all six on
our fastest GPU (the GTX 260+) computing fluid flow
around a simple barrier (see Figure 1). These kernels
computed the simulation for 1024 steps for field lengths
of N={256-8192}. These performance results can be
seen in Figure 5.

The two kernels that used Global memory for the rule
look-up table (kernels A and D) clearly performed the
worst. The results for the other four kernels where very
close, with kernel B (using Global memory for the lat-
tice and Shared memory for the rule look-up table) pro-
viding the best results. Interestingly the kernels that

use texture memory for accessing the lattice (kernels
D, E and F) performed worse than their Global mem-
ory counterparts. These findings were unexpected as in
previous, similar rectilinear simulations texture mem-
ory provided an important performance gain [14].

We believe that the reason for this different perfor-
mance is the different memory access patterns of the
triangular lattice. Because the cells on odd and even
rows have different neighbour access patterns, the tex-
ture memory cache cannot be used to full efficiency.
The added time of the extra memory copy from the out-
put array to the texture-bound input array outweighs
the caching benefits. It should also be noted that tex-
ture memory caching is also less important on GeForce
200 series cards due to the improved coalescing of global
memory transactions.

We have also compared the best CUDA implementation
(kernel B) on several GeForce 200 series cards and also
to several CPU implementations. The CPU simulations
have been implemented in Java and C++ and have been
tested on an Core 2 Quad and a Core i7 920. The results
comparing these various CPUs and GPUs are presented
in Table 1.

Table 1: Performance results for the different imple-
mentations of the LGCA simulating 1024 time-steps on
a 4096x4096 triangular lattice. All CUDA implemen-
tations use kernel B (Global memory for lattice and
Shared memory for look-up table).

Implementation Time Million hits
(seconds) per second

Java (i7 920) 73.6 ± 1.3 233 ± 4
C++ (Core 2 Quad) 101.3 ± 0.7 169 ± 1

C++ (i7 920) 51.7 ± 0.6 332 ± 4
GeForce 210 46.6 ± 3.4 369 ± 27

GT 220 11.1 ± 0.04 1,548 ± 6
GTX 260+ 2.8 ± 0.005 6,136 ± 11
GTX 295 2.9 ± 0.005 5,924 ± 10

The performance for the GPUs is very positive (the
GTX 260+ provides a 18x speedup over the i7), yet
the speed-up factors are not as high as seen in previ-
ous square-lattice simulations [14]. The performance
between the GTX 260+ and the GTX 295 are very
similar (note that only one of the GPUs in the GTX
295 was used) with the GTX 260+ performing slightly
faster. As seen previously [13] the higher clock speed of
the GTX 260+ (666MHz vs 576 MHz) has more impact
the the slighter higher number of cores in the GTX 295
GPU (240 vs 216).



Figure 5: Performance results of the size LGCA kernels (A-F) on a GTX 260+. Results shown in normal scale
(left) and ln-ln scale (right).

The performance results of the i7 920 is particularly
impressive compared to the Core 2 Quad. Both pro-
cessors have the same clock-speed yet the i7 can com-
pute the simulation almost twice as fast. We attribute
this performance improvement to the processor design
and also the memory speed. The Core 2 Quad is using
DDR2-800 memory while the i7 has DDR3-1600. This
increased memory frequency also contributes to the in-
creased performance.

6 Discussion and Conclusions

We have described how a simple lattice gas cellular au-
tomaton can be implemented on a two-dimensional tri-
angular lattice, where each node has six nearest neigh-
bours. We have implemented and measured the perfor-
mance of this in Java and in C for CPU platforms and
using CUDA for various NVIDIA GPUs with selected
combinations of cores and memory configurations.

We find that our CUDA version scales well with the
number of cores in the GPU architecture. However we
also find that while the GPU is capable of significantly
accelerating the performance of the algorithm, the tri-
angular lattice requires some unexpected choices for
GPU memory usage to attain optimal speed. Normal
rectilinear simulations that exploit data-parallelism of
the GPU performs best using Texture memory for lat-
tice access whereas we find the triangular lattice of the
LGCA simulation performs best with simple Global
memory.

This appears to be due to alternating access patterns

required for the triangular mesh. We believe the differ-
ing access patterns restrict the GPU from making full
use of the GPU texture cache.

We implemented an interactive-time graphical render-
ing of the simulated system with OpenGL graphics code
and this has proved invaluable for debugging purposes.
The performance analysis has been done without graph-
ics overheads. An area for future work is to combine the
power of multiple GPUs to accelerate both the graphics
and the simulation itself.

We also plan to extend this work to use suitable hyper-
cubic face-centred cubic lattices to yield an effective 3-
d simulation system with appropriate symmetries. We
expect this will also scale well on the GPU architecture
although will quite likely also present some unexpected
memory choices due to the symmetry constraints.
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