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Abstract 

Grass grubs (Costelytra zealandica) are one of the major pests in New Zealand farm systems 

and have huge economic consequences. It is an ongoing problem for the agricultural sector in 

New Zealand. Early detection of a possible pest infestation is a crucial first step in reducing 

the production and economics risks. In this paper, we developed new and automated machine 

learning based methods to detect the presence of grass grubs larvae. Most supervised machine 

learning models require labelled data sets. However, in the agriculture sector, data labelling is 

an expensive task and requires highly skilled professionals.  To deal with the data labelling 

challenge, we used traditional trial data and augmented it with other disparate sources of data, 

such as remote sensing data. Using disparate data, we developed four machine learning (ML) 

models to predict the presence of grass grubs in paddocks. One of the biggest challenges in 

using disparate data sets is the measurement and the quantification of uncertainty. This paper 

highlights some of the challenges of working with disparate data sets and present two 

techniques to quantify uncertainty in ML modelling pipelines. 1 

 

Introduction  

Grass grub is a major pasture pest in New Zealand and has huge economic and agricultural 

production consequences (Jackson et al., 2012; Ferguson et al., 2019; Zydenbos et al., 2019). 

This pasture pest costs dairy farmers up to NZ$380 million per year, and sheep and beef farmers 

up to NZ$205 million each year, making it the most expensive pasture pest (Ferguson et al., 

2019). Grass grub infestation is an ongoing problem for the agricultural sector in New Zealand. 

While research to control the infestation of the grass grub is ongoing, currently no solution 

exists to totally eradicate it (Zydenbos et al., 2019). 

 

                                                           
1 This is a preliminary report of this study and more details will be published in a full paper. 
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Figure 1. Visual signs of grass grub larval infestation in the paddocks 
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Grass grub larvae are C shaped agricultural pests that live in the soil under the grass and feed 

on the pasture roots (Ferguson et al., 2019).  Damage is caused by grass grub larvae feeding 

on plant roots, creating discrete yellow coloured patches in the paddock (Figure 1). As the 

larval numbers build up, increasing root damage, these patches develop into areas of dead 

pasture Ultimately, when grazed by animals, the pasture plants are ripped up. If you see discrete 

yellowish patches like in the Figure 1, it is probably due to grass grub infestation.  

 

Early detection of a possible grass grub infestation is a crucial first step in reducing the 

production and economics risks. However, there still remains a key knowledge gap around how 

to automate methodologies to detect the pest early enough to apply cost-effective controls 

(Zydenbos et al., 2019). Current methods to detect the presence of grass grub on the farm are 

manual, where visual inspection of the paddocks is carried out to look for the signs of grass 

grub infestation and assess its potential risk. This normally happens in February of every year.  

If the presence of grass grubs is detected, there are three main strategies applied to mitigate this 

risk and minimise the loss of pasture production (Zydenbos et al., 2011; Gray, 2013; Zydenbos 

et al., 2019). First, application of chemicals on the affected areas such as Chlorpyrifos or 

diazinon. Second, use of a biological control that can prevent the build-up of damaging 

populations. Third, management strategies such as direct drilling that retains grass grub 

diseases in soil reducing the likelihood of damage (Gray, 2013). 

 

The main aim of this study was to develop an automated method using machine learning (ML) 

models to predict the presence of grass grubs in the paddocks. If successful, this method should 

help identify the presence of grass grubs before they can significantly impact soil health and 

pasture production. We used high resolution remote sensing image data from the Planet satellite 

(Team, 2017) and data on grass grubs larvae number collected as a part of a trial in 2018 

(Zydenbos et al., 2019). Both ML and deep learning (DL) models were developed in an effort 

to detect the presence of grass grub in the paddocks. One of the key challenges was to quantify 

both data and model uncertainty. We proposed two techniques to measure uncertainty in 

different stages of the ML modelling pipeline.   The method presented in this paper has the 

potential to work in a completely automated fashion to inspect farm paddocks for potential 

presence of grass grubs.   

 

Methods 

Data set 

In 2018, AgResearch ran a set of trials on a dairy farm near Rakaia, Canterbury region, to test 

the effectiveness of biopesticides in reducing the pasture production loss due to grass grubs. 

This data was collected at four time points in 2018. There were 35 sample collection points, 

which we refer to as blocks, each of area 10-metre square. One of the data items collected was 

the number of grass grubs larvae in each block.   

 

We acquired remote sensing image data from the Planet satellite for the corresponding dates to 

the trials (Team, 2017). Three types of the images were collected for the paddock, normalized 

difference vegetation index (NDVI), Near-Infrared and RGB.  

 

To prepare the data for the modelling, we cropped 50 by 50-pixel images corresponding to the 

locations of the sampling points in the paddocks. Grass grub numbers from the trial data were 

used as labels for these images.  



 
 

 

Data set challenges 

There are several data related challenges. First, although remote sense data acquired was of 

high resolution compared to other satellites, it was still not enough for the needs of the study. 

The image data from the Planet satellite is of three-metre square resolution i.e. each pixel 

represents three metres on the ground. As the sample block size was 10-metre square, each 

block was represented by roughly 9 pixels. Second, New Zealand in general, and Rakaia area 

in particular, is often covered with clouds. This reduces the number of usable images available, 

leaving less data for modelling purposes. Consequently, the models will be more sensitive to 

data noise.  Third, using multiple disparate data sources means compounding data uncertainty 

originating from the data collection, data curation and combining from multiple sources 

(Czarnecki and Podolak, 2013; Hariri et al., 2019).   We have proposed two techniques to deal 

with some of these issues. Please see the “Measuring and quantifying uncertainty” section in 

this paper.  

 

Problem formulation and model development   

Originally, we formulated this as a regression problem, i.e., to the predict the density or 

population of grubs larvae in the sample block.  However, as we did not have enough data to 

predict grass grub numbers from image patches, we transformed this into a classification 

problem with three classes (Gray, 2013): 

 Low infestation (< 200 grass grubs per metre square) 

 Moderate infestation (between 200 to 300 grass grubs per metre square) 

 High infestation (300 and more grass grubs per metre square) 

Two model types were fitted to the data,  XGBoost, a ML model in python (Chen and Guestrin, 

2016; Arnold, 2017) and a DL model using the keras interface for the R programming language 

(Abiodun et al., 2018). Inputs to these models were image patches and the level of grass grub 

as class labels.  We used 80% percent of the data for training and the remaining 20% for testing 

the models.  

 

First, a convolutional neural network (CNN) model was developed for the RGB, NDVI and 

near-infrared images. Models were evaluated using classification accuracy performance 

metrics, which is the ratio of correct prediction by total number of predictions. RGB and near-

infrared model images are noisy, and the model’s accuracy was not any better than random 

noise, i.e., around 50%. The model based on NDVI data showed some promise, achieving about 

60% accuracy. Considering the limitations of the data set available, this is a relatively good 

result.  

 

Second, we developed a XGBoost model, where instead of image patches, we used 3X3 pixels 

at the centre of the blocks as a nine input features and class labels as output. We were able to 

achieve 69.3% accuracy, which is very promising considering the limitations of available data.  

NDVI Near-infrared RGB 

Figure 2. Type of remote sensing image data acquired from the Planet setellite 



 
 

 

Measuring and quantifying uncertainty 

Putting together data sets from multiple open/found and disparate data sources to answer 

important questions is an interesting area of research.  However, as the volume and variety of 

data increases, so does the uncertainty inherent within.  This leads to a lack of confidence in 

the resulting modelling process and decisions made thereof (Czarnecki and Podolak, 2013; 

Hariri et al., 2019). Total uncertainty of the model’s outputs is not a linear / additive function 

of number of disparate data sources, but rather a multiplicative function. Also, each step in the 

modelling pipeline contributes towards the compounding effect on the total uncertainty such 

as data transformation or choices and assumption about models.  This makes measuring and 

quantifying uncertainty very difficult.   

 

Some of the key questions that need to be answered are: how to represent data uncertainty and 

bias in the models? how to measure compounding uncertainty in combined data sets? and how 

to differentiate the uncertainty and variations in the results due to the modelling techniques and 

because of the input data?  

Figure 3. Types of uncertainties in in different stages of the ML modelling pipeline 

 

Proposed techniques  

To measure the compounding uncertainty in the modelling pipeline is a very difficult task 

(Czarnecki and Podolak, 2013; Hariri et al., 2019). It requires measuring and mitigating 

uncertainty in each step of the modelling pipeline. We have done some preliminary work and 

started developing a framework and methods to represent and measure different types of 

uncertainties in this context.  

 

First, to represent data uncertainty in the ML models, we introduced a weighted sampling 

approach (Efraimidis and Spirakis, 2006). This is a simple but effective approach in which the 

data analyst or domain experts assign weights to the data points based on the confidence they 

have in them, i.e., the higher the confidence, the higher the weight assigned and vice versa.  

Weights are decimal numbers between 0 and 1. For example, if an image is partially covered 

by the clouds, a lower weight would assigned compared to a clearer image, or if trials were 

conducted using very accurate methods, associated data would have higher weights compared 

to trials conducted using cruder methods.  

  

As most of the ML/DL models train in the batch mode, in each batch training step a sample is 

selected with the associated weights as a selection probability. This way, the data for which we 

are most confident contributes more information in the model training phase than the less 

certain data. This is a first step towards ‘data uncertainty aware’ modelling. This is an early 



 
 

report of this work and we are analysing the detailed properties of this technique, which will 

be published in a journal paper soon.  

 

The second method is based on bootstrap sampling, where a random subsample with 

replacement is selected as a training data set and a complete model is trained and tested on it 

(Kleiner et al., 2014). This process is repeated multiple times and a confidence interval is 

calculated from the results from multiple models. This way we can measure model prediction 

or classification variation.  However, this method requires a big data set so that each time a 

representative subsample can be generated to train the model.  

 

Conclusions  

The proposed machine learning based method has shown some promise as an automated and 

low-cost solution to detect the possible pest infestation of grass grubs in paddocks. This method 

has the option to inspect pasture frequently and provide an early alert for the signs of a pest 

infestation so that proper control could be applied timely. We have also demonstrated the 

usefulness of traditional trial data as labels to develop supervised ML models. This has the 

potential to solve some of the data labelling challenge in the agriculture sector with some 

caveats.  

   

One of the biggest challenges in using disparate data sets is the measurement and the 

quantification of uncertainty. This paper highlights some of the challenges of working with 

disparate data sets and present two techniques to quantify uncertainty in a ML modelling 

pipeline. Representing, measuring and mitigating different types of uncertainties in ML/DL 

modelling process is very complex and require comprehensive frameworks.  We have made 

some progress, but there is still a long way to go.  
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