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Abstract 

Sensitivity and uncertainty analyses provide information that helps to understand a science 

model’s performance and outputs. As the first step to better understanding N-loss estimates 

generated by the Overseer science model, sensitivity and uncertainty analyses were undertaken 

to identify key input parameters and interactions, that significantly alter model estimates for 

dairy, beef and sheep and cropping farm systems.  

 

This work utilised real-world anonymised farm setups to carry out local and global sensitivity 

analyses on a minimum of 30 parameters for different farm systems in Overseer. It confirmed 

that Overseer’s N-loss estimate was most sensitive to changes in key climate and soil 

parameters with minimal parameter interactions. Uncertainties for these inputs were propagated 

through the model, and the combined output uncertainties in the N-loss estimate relating to soil 

and climate, averaging 27±9% across all the farm systems, is consistent with other models in 

the field. The predicted uncertainty of other parameters identified in the sensitivity analyses, 

due to independence from parameter interactions, will also be discussed. 

 

Introduction 

Overseer is a farm management tool that uses a long-term, quasi-equilibrium agricultural 

science model (Wheeler et al., 2022) to estimate nutrient losses, including nitrogen (N) losses, 

from a farm system.  

The Overseer model, like most agricultural simulation models, utilises a large amount of data 

and input parameters to calculate its outputs. That said, it is common for a model of this nature 

that a subset of key parameters strongly influence the variability in certain model outputs. 

To provide a better understanding of the N-loss estimates from the Overseer model, it is 

important to understand the model’s sensitivity and uncertainty in the model output relative to 

the uncertainty in the key model inputs. The scope of this work was to first undertake a 

sensitivity analyses for the three main farming systems referenced in Overseer to identify which 

of the analysed inputs have the most significant impact on the modelled farm level N-loss. Next, 

this work aimed to study the uncertainty of this modelled farm level N-loss in relation to the 

uncertainty of the key parameters identified in the sentivity analysis.  
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Sensitivity analyses (SA) 

Approach 

The following approach, based on previous pilot studies (e.g., Wheeler et al. (2020)), is 

employed for the sensitivity analyses:  

 Inputs that significantly impact the modelled N loss at the total farm level are identified 

by a one-at-a-time (OAT) local SA (LSA). This method changes each input parameter 

around their nominal values one at a time and then quantifies the effect (sensitivity 

index) on the N-loss estimate.  

 The influences and the effects of the interactions between the most significant 

parameters identified in the local SA (OAT analysis) are then quantified by a global SA 

(GSA). The sensitivity of the most influential parameters and their interactions are 

assessed with a two-level full factorial analysis using a variance-based method for each 

farm system. 

Farm dataset 

All analyses are performed at the farm level using anonymised farm setups in the Overseer 

database. A specific advantage of this approach is that the analyses are carried out in an 

operational, real-world context capturing, for example, both climate information and the 

diversity of farm management. The three different types of agricultural systems defined for this 

study are: 

 Dairy farms: only dairy enterprise. 

 Beef & Sheep farms: beef and/or sheep and/or deer enterprises. 

 Cropping farms: only crops with no animal enterprise. 

To limit bias in comparisons of results and ensure analyses represent real rather than 

hypothetical farm systems, comparable farm setups were also selected using the following 

criteria:  

 Geolocated: to ensure the accuracy of climate data selection. 

 Overseer ‘Year-end’ run type, describes the current farm system: to ensure the farm 

setup represents the farm system, not a scenario. 

 Most recent ‘Year-end’ farm description file Overseer: to ensure the most up-to-date 

farm setup. 

 

Local sensitivity analysis – OAT method 

The most effective approach to a SA for a model with a significant number of input parameters 

is to vary each parameter of interest one at a time, while keeping the remaining parameters fixed 

at their nominal values. This type of analysis is called a local sensitivity analysis (LSA). The 

variation in a model output (in this case N-loss) due to the change in an input parameter 

quantifies the model’s sensitivity to that variable. The sensitivity index (𝑆𝑖) of an input 

parameter quantifies the rate of increase or decrease in a model output (i.e. N-loss). The method 

of calculation is explained in Overseer (2022a) and is based on Helton (1993) and Borgonova 

(2008). 

The OAT SA is carried out at the farm level, which means that the key parameters are identified 

at the farm level. 
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Parameter selection 

With more than 100 inputs or parameters, the most likely parameters influencing the N-loss 

estimate are selected to better manage the analyses. The selection of parameters is informed by 

previous reports on this topic e.g., Wheeler et al. (2020), experts’ advice and users’ feedback.  

This process identifies 46 (input and internal) parameters as potentially influencing the N loss 

for the farms with animals, and 36 parameters are identified for the crop farms. The full 

description of these parameters can be found in Overseer (2022a). 

LSA results 

For each selected parameter and each selected farm, the sensitivity index (𝑆𝑖) is determined by 

varying the value of each parameter around its nominal value, while the other parameters 

remain constant. The 𝑆𝑖 values are then classified by type of farms. The distributions obtained 

thus classify the influence of the parameters on the N-loss at the farm level. The influence of a 

parameter is characterised by the interquartile range (IQR) of the distribution. IQR is the width 

of an interval that contains the middle 50% of the values in the distribution. The interquartile 

ranges of the sensitivity index distributions of each selected input parameter for dairy farms are 

presented in Figure 1.  

 

Figure 1: Interquartile range of the sensitivity index for the selected dairy farms. 

The main conclusions of the analysis are: 

 The most influential input parameters are rainfall, potential evapotranspiration (PET), 

temperature, soil profile available water (PAW), applied fertiliser, number of animals, 

milk production, average animal weight, distributed supplements, and pasture 

utilisation. 

 The large IRQ for temperature is due to the fact that certain processes modelled in 

Overseer have a nonlinear relationship with the temperature. For example, the pasture 

growth rate increases with the temperature above a certain threshold and can be limited 

by low soil moisture, which is also partly a function of temperature, thus giving a 
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complex relationship between pasture growth and temperature. Therefore, the width of 

the 𝑆𝑖 distribution interquartile range across New Zealand is larger than the others 

because of the different temperature and soil moisture ranges across New Zealand. 

All the results of the LSA concerning the other enterprises as well as for the different regions 

and for the different types of farms can be found in Overseer(2022a). For all types of farms, the 

climate parameters (rainfall, temperature, and PET) and the soil water holding capacity (from 

which PAW is calculated) are the most influential input parameters. 

 

Global sensitivity analysis (GSA)  

GSA, based on a variance method, estimates individual parameter variables' statistical influence 

and interactions with other parameters (Sobol & Kuchereko, 1993). The sensitivity of a given 

input parameter measures its contribution to the model output variance. The two standard 

sensitivity indices are (1) the first-order index (or ‘main effects’), which measures the direct 

contribution to the model output variance, and (2) the total-order index (or ‘total effects’) which 

measures the overall contribution (direct and indirect through interactions with the other 

parameters of interest) to the model output variance (Homma & Saltelli, 1996). The first-order 

index used in this analysis is also called global sensitivity index (GSI) and ranks the parameters’ 

influence. The computation of the GSI in this study used a full factorial design and a classical 

analysis of variance decomposition (Lamboni et al.,2011). 

Parameter selection 

The main parameters identified as the most influential with the OAT analysis are the inputs for 

the GSA. The GSA follows a two-level full factorial design. The parameters are discretised in 

two levels, ‘low’ and ‘high’. For each farm, the low and the high level are set as the parameter’s 

nominal value minus 25% and plus 25%, respectively. This design requires 2M model 

evaluations per farm, where M is the number of parameters. 

The GSA is carried out with a subset of farms selected randomly across New Zealand. It is 

anticipated that future analyses will include expanding the number of farms and parameters to 

better understand the model’s sensitivities. 

GSA result for dairy farms 

The GSIs (Global Sensitivity Index) for a subset of 109 randomly distributed dairy farms across 

New Zealand are presented in Figure 2. The first observation is that most of the variance in the 

model output can be explained through the input parameters in the analysis, such that only 1% 

,on average, of the output variance cannot be explained (Figure 2, in pale yellow). 

The second observation is that the direct effect of key input parameters explains 92±3% of the 

N loss variance. Interactions between key input parameters (Figure 2, in grey) can be attributed 

to only 7±2% of the variance in N loss. The relative importance of these interactions is also 

tested with a linear regression model using the 11 most influential parameters as inputs. The 

relative weakness of interactions for each studied farm is confirmed by an average adjusted R-

squared value of 0.92±0.03 from a linear regression between N loss and key input parameters. 

Consequently, the sensitivity indexes (𝑆𝑖), which quantify the impact of input parameters, may 

also be used as indicators of the direction of change of N-loss when an input parameter varies. 
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Figure 2: GSI (proportion of variance explained) for each selected dairy farm. 

 

The GSA results for the different types of farms can be found in Overseer (2022a). Overall, the 

GSA confirmed the results from the OAT analysis, whereby rainfall and profile available water 

(PAW) are identified as the most influential parameters. This finding was expected as N-loss is 

governed by drainage, which is mainly a function of rainfall and the capacity of the soil to 

contain the water. 

 

Uncertainty analysis 

The aim of this analysis is to determine the uncertainty relating to the most influential 

parameters (rainfall, temperature, PET, and soil water holding capacity) common across three 

main farm systems in Overseer (dairy, beef & sheep, cropping) and to quantify the uncertainty 

in the N-loss estimate due to these key parameters. In this report, the uncertainty of a parameter 

defines the variability or dispersion of the values assigned to this parameter. It is quantified by 

the standard deviation of the distribution of the assigned values. 

In line with the sensitivity analyses, the uncertainty analysis is based on real farm systems and 

conditions referenced in the Overseer database. The Monte Carlo technique is used to propagate 

the uncertainty of the rainfall, temperature, PET, and soil water holding capacity (from which 

PAW is calculated) parameters within the model by sampling the distributions of these input 

parameters to quantify the uncertainty of the N-loss estimate. 

Method 

Climate uncertainties 

Knowing the averages and standard deviations of the climatic input data makes it possible to 

view each climate input parameter as a random variable normally distributed as a first 

approximation. The central limit theorem (30 monthly measurements over the period 1991-

2020) allows us to create reasonable statistical models of sample averages, hypothesising a 

normal distribution (Stirzaker, 2003). The model uses a monthly scale for input climate data. 

Accordingly, each month is treated independently and represented by a normal distribution, a 

mean, and a standard deviation estimated at the farm’s location. For a given location, each 
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normal monthly distribution is independently randomly sampled (Monte Carlo method) and 

used as an input parameter to calculate the estimate of N-loss. The process is repeated 100 

times. 

Soil water holding capacity uncertainties 

Overseer uses S-map soil data, where available, to provide users with soil property information 

(Lilburne et al., 2012). Soil information is provided as a map of areas containing one or more 

soils (siblings). A sibling is a member of a soil family. Further information about S-map and 

soil properties is available on the Landcare (Manaaki Whenua) website 

(https://smap.landcareresearch.co.nz/). Each sibling has a defined set of soil parameters. As the 

output parameters of the S-map model are strongly correlated, Landcare provides 100 parameter 

sets (‘realisations’) per S-map sibling, giving a reasonable and statistically valid representation 

of the distribution in soil water holding capacity parameters (Lilburne et al., 2016). Therefore, 

the model is run 100 times with different soil water holding capacity values. 

N-loss estimate uncertainty 

The resulting replications are used to assess the variance of the N-loss estimate distribution. 

The mean and the standard deviation of the N-loss estimate distribution are subsequently used 

to assess the average uncertainty in the N-loss estimate due to the input uncertainty. The relative 

standard deviation (RSD), defined as the ratio of the standard deviation to the mean of the N-

loss estimate distribution, is used to compare the uncertainties between parameters whose 

values are variable.  

The uncertainty analysis is carried out on the same farm datasets as the sensitivity analyses, 

further requiring soil characteristics to be provided by S-map. 

N-loss estimate uncertainty due to soil and climate data 

The uncertainties of the N-loss estimate due to the combined effect of the climate and soil 

uncertainties were determined by sampling both the climate and soil information distributions 

for the 2175 farms with S-map data comprised of 1166 dairy, 960 beef & sheep, and 49 crop 

farms. 

The standard deviation of the N-loss distribution for soil and climate was estimated by sampling 

different climate data distributions and soil realisations in combination with 100 replications 

per farm. Figure 3 shows the RSD versus the N-loss mean for each studied farm. The mean and 

the standard deviation of the N-loss RSD values when farms are stratified into 5 groups with 

an equal number of farms are also represented by red crosses. 

The combined uncertainties of the soil and climate data result in an average uncertainty of N-

loss of 27±9% for all the farms studied. Overall, the uncertainty results for N-loss are equivalent 

across the different types of farming (Overseer, 2022b). 

For N-loss values less than 10 kg N/ha/yr, the average relative uncertainty reaches 35% with a 

significative variability (±15%), which is explained by the fact that Overseer is a threshold 

model. This type of model predicts no effect below a critical value which depends on a set of 

thresholds, while an effect of some magnitude exists above this value. This effect leads to 

significant variability near threshold values, i.e., at low N-loss values in the case of Overseer.  

https://smap.landcareresearch.co.nz/
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Figure 3: Relative standard deviation (RSD) of the N-loss distribution versus the N-loss mean 

for each studied farm for the different types of farming referenced in Overseer when climate 

and soil parameters uncertainty distributions are sampled. Each point stands for a farm. Red 

crosses represent the mean and standard deviation of the RSD when farms are stratified into 5 

groups with an equal number of farms. 

 

Conversely, beyond 100 kg N/ha/yr, the average uncertainty on the N-loss estimated by 

Overseer is 15±5%. The general trend is a decrease in N-loss uncertainty with increasing N-

loss estimates. This observation is similar for the variability (±5%), allowing to narrow the 

confidence interval with the high values of N-loss. The results for the different types of farms 

referenced in the Overseer can be found in Overseer (2022b). 

 

Conclusions 

The LSA quantifies the influence of input parameters on the N-loss estimates at the farm level. 

The most influential input parameters are identified for farm types referenced in Overseer. 

Across all types of farms, climate data (rainfall, PET, temperature) and soil water holding 

capacity are the most crucial input parameters for the N-loss estimate at the farm level. 

The GSA results indicate that the impact of the interactions between the studied input 

parameters on farm level N-loss estimates is considered to be weak compared to the direct 

effects. Under these conditions, the value of sensitivity indexes (𝑆𝑖) can be used directly to 

predict the direction of change of N-loss due to a variation in the input parameters, i.e., a 

variation of x% of an input parameter leads to a variation of 𝑆𝑖*x% in the N-loss estimate at the 

farm level. 

For all types of farms, the climate parameters (rainfall, temperature, and PET) and the soil water 

holding capacity are the most influential input parameters. 

The combination of the soil and climate data uncertainties lead to an average uncertainty on the 

N-loss estimated by Overseer of 27±9% for the studied farms (2175 in total). This value 

increases to 35±10% at low values of N-loss (<10 kg N/ha/yr) and decreases to 25±7% when 

the value of the N-loss is greater than 40 kg N/ha/yr. The average uncertainty is less than 20% 

when the N-loss value exceeds 70 kg N/ha/yr. 
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In the absence of significant interactions between influential parameters, it is possible to use 

the sensitivity index to predict the contribution of a parameter’s uncertainty to the uncertainty 

in the N-loss estimate. In this context, the parameters defining the climate and the soil contribute 

most of the uncertainty on the losses of nitrogen. The contribution of the other parameters is 

minimal. 

Future improvements of the sensitivity analyses should consider widening the range of inputs 

e.g., monthly animal numbers or the different uses of farm structures. For the uncertainty 

analysis, the other sources of uncertainty (e.g., internal parameters and calibration data) should 

be characterised. 
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