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Abstract 

This study aims to quantify the spatial variation in soil health variables in a complex 

agroecological landscape using modern geospatial analysis tools and technologies. A wide 

range of soil attributes (soil organic carbon concentration, soil nutrient fertility, bulk density, 

and earthworm abundance), underlying factors describing the topographical characteristics of 

the land surface biophysical pattern, along with land use management practices, were utilised 

to model the spatially explicit pattern of each soil health component. Machine learning 

techniques were applied to predict soil attributes at a pixel-level across the whole landscape 

from a limited number of soil samples collected from specific locations. Soil health was 

quantified using a Composite Soil Health Index (CSHI), calculated from the mean value of the 

standardized individual soil health indicator which is obtained from the scoring functions for 

each grid cell. The approach was applied across farmlets that make up the long-term 

phosphorus (P) fertiliser and sheep grazing experiment at Ballantrae located near Woodville 

(Southern Hawke’s Bay, New Zealand). Results from our study reveal that the variables 

contributing to soil health varied both across the landscape and between soil health indicators. 

The study demonstrates that advanced spatial statistical analytics and remote sensing can be 

effective tools to address the challenge posed by the modelling of biophysical processes in 

complex agroecological landscapes. Applying such an approach provides a more complete 

picture on soil health and therefore, can advance the environmental planning and management 

of farms in New Zealand. 
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1. Introduction 

 Agricultural landscapes with a healthy soil can support sustainable agricultural 

production and multiple ecosystem services. This in turn strengthens landscape resilience to 

management pressures, climatic extremes and environmental disturbances (Doran, 2002; 

Lehmann et al., 2020; Papendick & Parr, 1992). Clearance of native vegetation for agricultural 

production coupled with agricultural practices on recent, poorly structured soils and shallow soils 

on medium and steep slopes, has the potential to significantly affect soil health and quality (Alori 

et al., 2020; Karlen et al., 2003). To protect and where necessary improve soil health, the essential 

course of action requires an adaptive management strategy, one which can apply the appropriate 

land use and practices for the targeted areas (Ngo-Mbogba et al., 2015; Safaei et al., 2019; Singh 

et al., 2014). Mapping soil attributes associated with soil health enables the spatially explicit and 
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detailed information to be quantified, to identify areas where improvement in soil health is 

needed.  

Traditionally, soil health is quantified using in-situ measurement in which soil attributes 

obtained from soil samples are averaged for the whole study area (Karlen et al., 2019). This 

provides information for the locations where soil samples were measured, however, is limited 

in providing a comprehensive pattern of soil health across space. Quantifying spatially explicit 

patterns of soil health, especially in complex agroecological landscapes, is challenging because 

soil attributes are heterogenous across space due to the variables in topographies, climate, land 

cover and land use practices. Often, this complexity cannot be effectively captured by using a 

limited number of soil samples and applying simple and straight forward models (e.g., 

interpolation, ordinary least squared regression) (Amirinejad et al., 2011; Svoray et al., 2015).  

Recent development in geospatial technologies provides a range of tools, models, and 

data that enable soil attributes that contributes to soil health to be spatially quantified 

(Fathololoumi et al., 2020; Padarian et al., 2019; Wadoux et al., 2020). Remote sensing for 

example provides an array of surface biophysical data which are important soil attributes 

predictors. Geographical information system (GIS) is a useful tool for the integration of 

different data sets and types from various sources in a spatial context to identify patterns in soil 

attributes. Machine learning can analyse large amounts of data and identify patterns and 

relationships that may not be apparent to the human eye. This can help to improve the accuracy 

of soil health models. Overall, using machine learning and GIS in modelling soil health can 

help to improve the accuracy and efficiency of soil health analyses, and provide a more 

comprehensive understanding of soil health.   

This paper sets out to demonstrate how spatially explicit information on soil attributes 

contributing to soil health in a complex agroecological landscape can be captured using 

advanced geospatial technologies integrating remote sensing, GIS, and machine learning. The 

soils from the long-term P fertiliser and sheep grazing experiment located near Woodville were 

used to test the effectiveness of the approach.   

2. Research methods 

2.1. Data and study area 

 The soils of the Ballantrae long-term P fertiliser and sheep grazing experiment located 

near Woodville in southern Hawke’s Bay were used as a case study. Three farmlets that have 

been under different fertiliser management practices include low fertility (LF: 125 kg single 

superphosphate ha-1year-1), high fertility (HF: 375 kg single superphosphate ha-1year-1), and no 

fertility (NF: 0 kg single superphosphate ha-1year-1) (Figure 1). Annual mean stocking rates 

were 6.0, 10.6, and 16.1 SU ha-1 for the NF, LF, and HF farmlets, respectively. See Mackay et 

al. (2021) for detailed description of the study area. A total of 47 soil samples measuring nine 

soil attributes (Table 1) were used for model training and validation. A further 17 samples that 

were not used in the modelling stage, were utilised to independently assess the prediction 

performance.  



 
 

 

Figure 1: Location of the study area (a), soil attributes sampling sites and three farmlets 

presenting different fertiliser management practices (b). 

Soil attributes predictors (i.e., explanatory variables) cover factors describing the 

underlying topographical characteristics, land surface biophysical information, and soils and 

land use management practices. Topographical variables include slope, elevation, aspect, solar 

radiation, topographical wetness, and roughness. These predictors were calculated from 1m 

LiDAR-derived Digital Elevation Model (DEM) acquired from the Ballantrae dataset from the 

long-term experiment. Surface biophysical data variables derived from Sentinel 2 data were 

normalized difference vegetation index, soil moisture index, bare soil index, normalized 

difference tillage index, and clay minerals ratio.  

Table 1: Soil attributes and descriptive statistics from soil samples collected at the Ballantrae 

Hill Country Research Station.  

Indicators Units Mean Median Min Max Range Variance 
Std. 

dev 

TC % 5.2 5.0 3.4 8.4 5.0 1.7 1.3 

TP mg/kg 559.9 417.0 188.0 2120.0 1932.0 164985.6 406.2 

TN % 0.39 0.38 0.22 0.67 0.45 0.01 0.12 

SO4 mg/L 15.0 10.0 4.0 56.0 52.0 154.0 12.0 

Olsen P mg/L 24.0 6.0 0.0 147.0 147.0 1286.0 36.0 

CEC cmol+/kg 10.0 10.0 5.0 27.0 22.0 16.0 4.0 

BD g/cm3 1.32 1.32 1.02 1.62 0.60 0.02 0.13 

EW EW/m2 398.0 217.0 0 1425 1425 147762 384 

pH mol/L 5.4 5.3 5.0 5.8 0.8 0.0 0.2 

Total soil carbon (TC), total soil phosphorus (TP), total soil nitrogen (TN), sulphate-S (SO4), 

phosphorus availability (Olsen P), cation exchange capacity (CEC), bulk density (BD), 

earthworm abundance (EW)  



 
 

2.2. Spatially explicit soil health modelling  

 In this study we utilised different machine learning tools and algorithms to model the 

spatially explicit pattern of soil attributes used to describe soil health. These are automated 

machine learning (AutoML), Forest-based Classification and Regression (FCR), and Empirical 

Bayesian Kriging (EBK) Regression Prediction. AutoML is a machine learning tool that allows 

the model training and prediction to be automatically implemented. This tool employs and 

optimises several algorithms (i.e., Decision Tree, Linear regression, XgBoost, Light GBM, 

Random Forest, Extra Trees, and Ensemble) to find the best prediction option (Giner, 2022). 

The FCR tool trains a model based on known values provided as part of a training dataset. This 

prediction model can then be used to predict unknown values in a prediction dataset that has 

the same associated explanatory variables. The tool creates models and generates predictions 

using an adaptation of the random forest algorithm, which is a supervised machine learning 

method developed by Leo Breiman and Adele Cutler (Breiman, 1996; Cutler et al., 2012). The 

tool creates many decision trees, called an ensemble or a forest, that are used for prediction. 

EBK Regression Prediction is a geostatistical interpolation method that uses Empirical 

Bayesian Kriging (EBK) with explanatory variable rasters  (i.e., continuous surfaces, discrete 

information) that are known to affect the value of the data being interpolated (Bennett, 2018). 

This approach combines kriging with regression analysis to make predictions that are more 

accurate than either regression or kriging can achieve on their own. Performance assessment 

was carried out to evaluate the model’s outcomes and results obtained from the most effective 

model was used for further analysis.  

2.3. Composite Soil Health Index 

 The soil indicators that contribute to soil health were standardised (i.e., rescaled) into a 

scoring scale (from 0-100) by applying the Gaussian transformation function. The Gaussian 

function transforms the input values using a normal distribution. The distribution of each of 

the soil variables was assessed based on a Gaussian distribution function (Moebius-Clune et 

al., 2011). Scores were developed from cumulative normal distribution (CND) functions as in: 

𝑝 = 𝑓(𝑥, µ, 𝜎) =
1
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where 𝑝 is the probability (between 0 and 1) that a single observation will fall at a 

given position in the interval (+∞, −∞), µ is the mean and 𝜎 is the standard deviation of the 

variable. Thresholds for soil variables were determined based on target values published in 

the literature [Olsen P (Monaghan & Roberts, 2003; Taylor et al., 2016); cation exchange 

capacity (Drewry et al., 2017); SOC, total soil N, bulk density (Sparling et al., 2008); and 

earthworm abundance (Schon et al., 2020)]. When absolute thresholds were not established, 

the target threshold was estimated using local condition (i.e., the max, min, and mean value 

of soil indicator in the study area). 

To normalize the score to the 0 to 100 range, the CND was multiplied by 100, where 

larger scores are considered to signify better soil functioning. Outputs from this step are nine 

raster layers measured in the same scale representing each layer of each soil indicator. The 

“composite soil health index” was computed as the mean value of nine soil attributes layers: 

𝐶𝑆𝐻𝐼 =
∑ 𝑝1,…𝑛

𝑛
 

Where 𝑝 is the standardized soil health indicator (i.e., the CND functions), 𝑛 is the number of 

soil health indicators contributing to soil health (𝑛 = 9 in this study). The CSHI used in this 



 
 

study was constructed to just demonstrate how soil attributes contributing to health could be 

pulled together.  

3. Results and Discussion 

3.1. Prediction performance among machine learning techniques 

Table 2 summaries statistical information on the prediction of nine soil attributes 

including the R2 and prediction error (i.e., root mean squared error; RMSE) obtained from 

different machine learning algorithms. This provides the model evaluation results for both 

training and test datasets. The predicted R2 values ranged from 0.45 to 0.97 for training data, 

and from 0.05 to 0.8 for the independent assessment data.  

Table 2: Soil attributes prediction performance using different machine learning techniques for 

(a) model set, (b) independent assessment set. 

Indicators Units 
Auto ML FCR 

EBK 

Regression 

R2 RMSE R2 RMSE R2 RMSE 

(a) Model set 

TC % 0.76 0.66 0.78 0.43 0.74 0.53 

TP mg/kg 0.93 84.35 0.80 140.05 0.93 86.87 

TN % 0.77 0.033 0.77 0.038 0.78 0.05 

SO4 mg/L 0.02 4.79 0.51 3.52 0.72 4.19 

Olsen P mg/L 0.15 25.59 0.79 11.53 0.94 7.05 

CEC cmol+/kg 0.70 2.40 0.57 1.72 0.97 0.63 

BD g/cm3 0.75 0.040 0.71 0.042 0.73 0.057 

EW EW/m2 0.56 158 0.53 186 0.69 122 

pH mol/L - - 0.60 0.05 0.45 0.087 

(b) Independent evaluation set 

TC % 0.62 0.75 0.56 0.47 0.57 0.87 

TP mg/kg 0.58 181.94 0.39 57.30 0.55 198.14 

TN % 0.71 0.041 0.60 0.048 0.61 0.08 

SO4 mg/L 0.16 2.84 0.05 3.5 0.49 3.58 

Olsen P* mg/L n/a n/a n/a n/a n/a n/a 

CEC cmol+/kg 0.80 1.60 0.10 1.32 0.35 2.32 

BD g/cm3 0.44 0.081 0.57 0.047 0.40 0.133 

EW* EW/m2 n/a n/a n/a n/a n/a n/a 

pH mol/L - - 0.02 0.06 0.034 0.182 

 * Not available due to missing samples. 

Among machine learning methods used in this study, Auto ML was found to be better 

than others in the prediction performance of TC, TP, TN, and CEC, with a good R2 and RMSE 

values for both training and test datasets. EBK Regression obtained very high prediction 

performance for training data, however, this decreased significantly in test data. The FCR 

method was better than others in the prediction of soil pH and BD. These results suggested that 

a range of different machine learning methods are required for mapping soil attributes in 

complex hill country landscapes. This ensures that more accurate and spatially explicit soil 

attributes are achieved and therefore, provides better information for mapping soil attributes 

contributing to soil health and their subsequent evaluation.  

 



 
 

3.2. Spatially explicit pattern of soil attributes 

Results from the model performance assessment were used to produce a set of soil 

attributes maps for the study area (Figure 2). Soil pH showed a low variation so is not presented. 

The map (Figure 2a) shows high SOC concentration levels in the west, southeast, and 

southwest of the southern paddocks. Whereas the northern, central south, and the south areas 

of the study site had low SOC concentration. It also demonstrated that SOC variation within a 

paddock could be significantly high, showing that a single paddock may have different levels 

of SOC concentration. A similar pattern to SOC content was found in the distribution of total 

N (Figure 2c) and earthworm abundance (Figure 2h), whereas soil bulk density (Figure 2g) 

presented an inverse pattern compared to these attributes.  

The pattern of total P (Figure 2b) demonstrated very high values in the south and low 

values in the north of the farm while low to medium values were seen in the centre, reflecting 

the different P fertiliser histories. Olsen P and Sulphate-S patterns in the south end paddocks 

were relatively aligned with that of total P distribution. It is noted that the Olsen P pattern 

showed very low values in the eastern part, extremely high values in the southern part, and 

relatively low values in the remaining area of the study site. This pattern is closely aligned with 

the fertiliser management practices applied in the study area.   



 
 

 

Figure 2: Maps of predicted soil attributes in the study area: (a) Total C (%), (b) Total Phosphorus (mg/kg), (c) Total Nitrogen, (d) Sulphate-S (mg/L), (e) Olsen 

P (mg/L), (f) Cation exchange capacity (cmol+/kg), (g) Soil bulk density, and (h) Earthworm abundance (Ind./m2).



 
 

 The functions for selected soil attributes in the study area obtained using the CND 

function are presented in Figure 3. The horizontal axis within each graph shows absolute values 

of each individual soil attribute. The vertical axis represents equivalent standardised scores. 

Olsen P, total P, and Sulphate-S had similar shaped curves. The shape of soil functions for these 

indicators shows that the midpoint of the normal distribution obtained the highest score, and 

standardised scores decrease as values of the soil attributes move from the midpoint until 

reaching the least preference values. Earthworm abundance, total N, total C, cation exchange 

capacity, and soil pH showed a similar scoring function. The shape of the scoring function for 

these attributes demonstrates that soil attributes achieve the highest score when their absolute 

measurements are greater than the target values. Bulk density presented an opposite scoring 

function in comparison to these soil attributes. It is important to noted that the shapes and 

distributions of soil functions presented here are specific for the soils in the study area, it may 

vary dependent on different target values and across study areas. 

 

Figure 3: Cumulative normal distribution functions for the relationship between a change in the soil 

attribute contributing to soil health and its contribution to the standardised soil health score. 

3.3. Spatial variation in soil attributes contributing to soil health  

 The spatially explicit CSHI pattern for the study area is presented in Figure 4. Both 

heterogenous and homogenous patterns of CSHI were found in the study area. High CSHI 

(score > 70) accounted for only 3.6% of the total land area. Moderate CSHI (50 < CSHI ≤ 70) 

occupied 26% and were mainly concentrated in the flat paddocks (e.g., LF farmlet (P27), NF 

farmlet (P23, P15, P18)) located in the central north area and southeast of the study site. Low 

and very low CSHI values were dominant classes (80% of the study area’s land) and distributed 

in the north (NF farmlet) and southwest areas (HF farmlet). It is also seen that the CSHI values 

were variable between paddocks. For example, mean CSHI values by paddock in Figure 4 

revealed a significant contrast between paddocks. For instance, CSHI values were four times 



 
 

greater in the highest paddock (P27) than in the lowest paddock (P33). The CSHI values also 

varied within a single paddock. For instance, both highest and lowest CSHI values were 

observed in some paddocks (e.g., P21, P19, P25). The CSHI values were closely aligned with 

the pattern of topography, showing that high values often appeared on flat areas (i.e., low slope) 

such as hilltops and valley floors whereas steepland areas (i.e., slopes > 25o) tended to have 

lower CSHI values.    

 

Figure 4: Composite Soil Health Index values across the study area (a). The area percentage chart is 

classified into 5 levels: high (score > 70, moderate (50 < overall score ≤ 70), low (30 < overall score ≤ 

50), very low (overall score < 30). 

The radar plots (Figure 5) demonstrate the contribution of different soil attributes to soil 

health by paddock under different P fertilization regimes and grazing management. Highly 

fertilised paddocks (P1-P9, orange) had low and very low CSHI values. This is because these 

paddocks had very low scores in Sulphate-S, total P, and bulk density. Different CSHI values 

were found in LF and NF paddocks, indicating that soil health is not only impacted by land 

management but also dependent on landscape patterns (e.g., topography and soils). 



 
 

 

Figure 5: Predicted soil attributes contributing to soil health in the study area by paddock across the 

high fertilised paddocks (orange), low fertilised paddocks (blue), no fertilised paddocks (red). The green 

line presents mean CSHI value for the farm. Total C (TC), Total Phosphorus (TP), Total Nitrogen (TN), 

Earthworm abundance (EW), Soil bulk density (BD), Sulphate-S (SO4), Cation exchange capacity 

(CEC), and soil pH (pH).  

3.4. Implications for soil health mapping and management practices 

Studying soil health in the hill country of New Zealand presents several challenges, 

including the complexity and heterogeneity of the soils and topographies, and often limited number 

of soil sample sites. As such, it is difficult to obtain an understanding of the variation that is found 



 
 

in the soil attributes that contribute to soil health and how they change across the landscape from 

the influence of management practices. To overcome this limitation, we applied an approach that 

integrated remote sensing, GIS, and machine learning to model the spatially explicit soil attributes 

that contribute to soil health where there was only a limited number of soil samples. Our study 

demonstrated that using this integrated modelling approach provides a more complete picture of 

the changes that occur in soil attributes that contribute to soil health. This approach provides vital 

information for farmers/land managers to help them identify areas to focus on and define relevant 

management practices. Geospatial models such as this one can help precision decision making and 

therefore minimise management costs and maximise the positive impacts of soil management on 

farm. Work is ongoing to 1) analyse the relationship between soil attributes pattern and underlying 

environment and management factors, 2) explore which soil attributes may be most informative for 

soil health in a geospatial context, and therefore the most important to manage for farmers 3) how 

scoring functions can better represent soil health targets, and 4) how to maintain soil attribute level 

detail that is hidden within a composite soil health score.     

5. Conclusions 

 Advanced remote sensing, GIS, and statistical methods can facilitate the mapping of 

soil health, which is critical for sustaining production and efficient environmental management. 

These tools can effectively map the spatially explicit pattern of the soil attributes that contribute 

to soil health and show variations between and within paddocks. Soil health is influenced by 

various factors, including topographical patterns, surface biophysical features, soil types, and 

management practices. Work is ongoing to refine this approach further. Mapping soil attributes 

contributing to soil health at the farm scale provides vital information that can inform 

sustainable environmental management practices. The use of these advanced techniques allows 

farmers and land managers to gain a better understanding of the distribution of soil health across 

their land, enabling them to make informed decisions about land use and management practices 

that can lead to more efficient and sustainable agricultural practices.  
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