Lecture three

C–X disconnections get more complex

Fenfluramine
neuroactive drug
N-unsubstituted imines are notoriously unstable.

Amide formation followed by reduction

synthesis

Amide formation followed by reduction
tryptophan ester

\[
\begin{align*}
\text{tryptophan ester} & \quad \xrightarrow{\text{amine formation}} \quad \text{amide formation} \\
\text{70\% three steps} & \quad J. Am. Chem. Soc. 2003, 125, 5628
\end{align*}
\]
Azides have a nasty habit of suddenly reverting to nitrogen gas when heated or, with the smaller examples, tapped with a metal spatula. In English, this means they can explode.

Tetrahedron 1987, 43, 3083

Tf = triflate = trifluoromethanesulfonate or F3CSO2−
two-group C–X disconnections

one-group disconnection

\[
\begin{align*}
R^1_1X_2R^2 & \quad \Rightarrow \quad R^1_1X_2^+R^2_2 \\
\end{align*}
\]

two-group disconnection

\[
\begin{align*}
R^1_1X_2R^2 & \quad \Rightarrow \quad R^1_1X_2^+R^2_2 \\
\end{align*}
\]
retrosynthesis

route A

\[
\begin{align*}
\text{Me} & \quad \text{Me} & \quad \text{Me} & \quad \text{OH} & \quad \text{OH} & \quad \text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} & \quad \text{OH} & \quad \text{OH} & \quad \text{Me} & \quad \text{Me} & \quad \text{OH} & \quad \text{OH}
\end{align*}
\]
chemoselectivity

route B
route B: synthesis

Sn2 reaction of epoxides favours attack at the least hindered end.

One functional group gives two functional groups.
Retrosynthesis
Why do we get mono-alkylation of the amine? Its because of the electron withdrawing effect of the hydroxyl formed from opening the epoxide...

Did you know?

Cl is more electrophilic than chloride.
did you know?

OClNuc123Cl123NucO123NucO
does this make a difference?

does this make a difference?
yes!
1,3-diX

Ns = 2-nitrobenzenesulfonyl, a good nitrogen protecting group
retrosynthesis

\[
\text{Ph-S-S-Ph} \quad \text{C-X} \quad \text{Ph-S-S-Ph} \quad + \quad \text{Ph-S-S-Ph}
\]

\[
\text{Ph-SH} \quad \text{Br-CH-CH-OMe} \quad \text{?}
\]

retrosynthesis

\[
\text{Ph-S-S-Ph} \quad 1,3\text{-di-X} \quad \text{Ph-S-S-Ph} \quad + \quad \text{Ph-S-S-Ph}
\]

\[
\text{Ph-SH} \quad \text{=CH-CH-OMe} \quad \text{?}
\]
Proton can be replaced by other electrophiles to allow more complex molecules to be prepared.

1,3-diXRO RO123!
retrosynthesis

\[
\text{O} \quad \text{N} \quad \text{H}_2 \quad \text{O} \quad \text{N} \quad \text{H} \quad \text{F} \quad \text{G} \quad \text{I} \quad \text{reduction} \quad \text{1,3-diX} \\
\text{O} \quad \text{N} \quad \text{H} \quad \text{Ph} \quad \text{N} \quad \text{O} \quad 1,3\text{-diX} \quad \text{N} \quad \text{Ph} \quad \text{O} \\
\text{not just carbonyl groups}
\]

retrosynthesis

\[
\text{Ph} \quad \text{N} \quad \text{O} \quad \text{1,3-diX} \quad \text{Ph} \quad \text{N} \quad \text{O} \quad \text{1,3-diX} \\
\text{not just carbonyl groups}
\]