OXIDATION OF C–H BONDS

Allylic Oxidation

Reagent:

\[\text{SeO}_2 \]

Transformation:

\[\begin{array}{c}
\text{R} \rightarrow \text{R} - \text{OH} \\
\end{array} \]

General Mechanism

- a series of sigmatropic rearrangements

\[\begin{array}{c}
\text{R} \rightarrow \text{R} - \text{Se} - \text{OH} \\
\rightarrow \text{R} - \text{Se} - \text{OH} \\
\rightarrow \text{hydrolysis} \\
\rightarrow \text{R} - \text{OH} \\
\end{array} \]

- \(\text{SeO}_2 \) toxic and hard to remove from product
- Catalytic variant developed using TBHP as stoichiometric co-oxidant
- Problem of side-reactions especially if alkene in ring
- Reaction also functions with other reagents such as PDC

Guidelines for Predicting Product

1. Hydroxylation occurs \(\alpha \) to the most substituted end of alkene
2. Order of oxidation is \(\text{CH}_2 > \text{CH}_3 > \text{CH} \)
3. If alkene in ring, oxidation will occur in ring if possible (but Bredt's rule applies)
4. Rearrangement products can and will (more often than not) be formed

Use in Synthesis

- selective by guideline 1
- selective by guideline 2

\[\begin{array}{c}
\text{HO} \\
\text{SeO}_2, \text{HCOOH} \quad 50\% \\
\end{array} \]

- wrong stereochemistry

- guideline 2

Gareth Rowlands (g.rowlands@sussex.ac.uk) Ar402, http://www.sussex.ac.uk/Users/kafj6, Reduction and Oxidation 2002
Related reaction: Formation of Dicarbonyl Compounds
Transformation:

\[\text{PhCHO} \]

Mechanism

\[
\begin{align*}
\text{SeO}_2 + \text{H}_2\text{O} &\rightarrow \text{SeOH} \quad \text{OH}
\end{align*}
\]

Use in Synthesis

What have we learnt?
- The position \(\alpha\)-to a double bond can be oxidised
- A set of guidelines allow some degree of predictability to this reaction
- The reaction proceeds via a series of sigmatropic rearrangements
- A related reaction results in the synthesis of dicarbonyl compounds
Oxidation of Activated C–H Bonds
\(\alpha\)-Hydroxylations

Reagent:

Davis’ Oxaziridine

\[
\text{Oxodiperoxymolybdenum(pyridine)-(hexamethylphosphoric triamide)}
\]

\(\text{MoOPh}\)

Transformation:

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^1 \\
\text{R} & \quad \text{R}^1 \\
\text{R} & \quad \text{R}^1
\end{align*}
\]

General Mechanism

Oxaziridine

\[
\begin{align*}
\text{R} & \quad \text{R}^1 \\
\text{R} & \quad \text{R}^1 \\
\text{R} & \quad \text{R}^1
\end{align*}
\]

MoOPh

Use in Synthesis

\[
\begin{align*}
\text{CH}_2\text{OBn} & \quad \text{CH}_2\text{OBn} \\
\text{H} & \quad \text{H} \\
\text{OMe} & \quad \text{OMe}
\end{align*}
\]

1. LDA
2. Davis’ oxaziridine
70 %
Use in Synthesis

- Chiral oxaziridines can be prepared allowing reagent control asymmetric reactions

Reaction with other Stabilised Anions
Reaction with other Stabilised Anions

\[\text{Nef-like Reaction} \]

\[\text{CN} \quad \text{LDA} \quad \text{MoOPh} \quad \text{base} \quad \text{CN} \quad \text{HO} \]

- Use of **oxaziridines** preferable to MoOPh (results & toxicity) but this is **substrate dependant**

What have we learnt?
- You can readily introduce hydroxyl group \(\alpha \)-to functionality
- Reaction can be achieved asymmetrically
- Reaction can be used to oxidatively cleave functionality
Miscellaneous C–H Oxidations

- Some recent developments in C–H oxidation
- Katsuki has used Mn-salen complexes to perform enantioselective C–H oxidations

\[
\begin{align*}
R & \quad (X = \text{O, NP}) \\
\text{PhIO, } -30^\circ \text{C, } \\
C_6H_5Cl & \\
\text{yield } &= 41-61 \% \\
e.e. &= 82-90 \%
\end{align*}
\]

Oxidation of Unactivated C–H Bonds
Dioxirane Strikes Back

- Dioxiranes are amazingly reactive (sometimes)

\[
\begin{align*}
\text{Oxidation} & \\
\text{Dioxirane} & \\
\text{Back} & \\
\text{Dioxiranes} & \\
\text{Reactive} & \\
\text{(sometimes)} & \\
\end{align*}
\]

- Can be quite slow so more reactive dioxiranes have been developed:

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{O} \\
\text{18 min., } -20^\circ \text{C} & \\
& \\
98\% & \\
\end{align*}
\]

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{O} \\
\text{20 equiv., DCM / } & \\
\text{H}_2\text{O, } -20^\circ \text{C} & \\
74\% & \\
\end{align*}
\]

Possible Mechanism

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{R} \\
\end{align*}
\]
MISCELLANEOUS OXIDATIONS

Ozonolysis

Reagent:

\[O_3, \text{DMS} \text{ or } PPh_3 \text{ or } \text{LiAlH}_4 \]

Transformation:

\[
\begin{array}{c}
\text{R-} \\
\text{R-} \\
\text{R-} \\
\text{R-} \\
\end{array}
\xrightarrow{\text{O}}
\begin{array}{c}
\text{R-} \\
\text{R-} \\
\text{R-} \\
\text{R-} \\
\end{array}
\]

General Mechanism

- Ozonide then has to be broken down (they can be isolated but not advisable)

Decomposition with DMS, PPh$_3$ or H$_2$Pd / C

\[
\begin{array}{c}
\text{R-} \\
\text{R-} \\
\text{R-} \\
\text{R-} \\
\end{array}
\xrightarrow{\text{PPh}_3}
\begin{array}{c}
\text{R-} \\
\text{R-} \\
\text{R-} \\
\text{R-} \\
\end{array}
+ \text{O=PPh}_3 \text{ or (DMSO)}
\]

Reductive Decomposition with LiAlH$_4$, NaBH$_4$

- Quite shockingly this gives the alcohol

Oxidative Decomposition with peracids or hydroperoxides

\[
\begin{array}{c}
\text{R-} \\
\text{R-} \\
\text{R-} \\
\end{array}
\xrightarrow{H_2O_2}
\begin{array}{c}
\text{R-} \\
\end{array}
\]

Selectivity

- More *electron-rich* alkenes react faster
- Enol ethers give esters on ozonolysis

\[
\begin{array}{c}
\text{OMe} \\
\end{array}
\xrightarrow{O_3, \text{DMS}}
\begin{array}{c}
\text{OMe} \\
\end{array}
\]
Use in Synthesis

Fischer indole

• lactam formation and isomerisation
• attacks electron-rich alkene

O₃, AcOH

The Lemieux–Johnson Reagent

Reagent:
OsO₄, NaIO₄

Transformation:

General Mechanism
• Use catalytic quantities of osmium which is reoxidised by the periodate
• Dihydroxylation as before (vide supra)
• NaIO₄ cleaves the diol...

What have we learnt?
• Alkenes can be oxidatively cleaved in a number of ways
Baeyer-Villiger Oxidation

Reagent:

RCO_3H

Transformation:

![Chemical structure](attachment:image.png)

General Mechanism

Migratory aptitude

- Unsymmetric ketones have a choice of which substituent will migrate
- Normally most nucleophilic group / group that can stabilise δ^+ charge best migrates
 t-alkyl $> \text{cyclohexyl} = \text{secondary alkyl} = \text{benzyl} > \text{vinylc} > \text{primary alkyl} > \text{methyl}$
- Reason:
 - Migration is concerted
 - During migration 2 e^- spread over 3 atoms
 - Any group stabilising the electron deficiency will be favoured

As the migration is concerted (bonds broken and formed at same time) it occurs with

retention of stereochemistry
• The methyl group has a very poor migratory aptitude, consequently the Baeyer-Villiger reaction is an excellent way to make acetates.
• Acetates are readily cleaved, therefore the Baeyer-Villiger is equivalent to:

$\text{R} \xrightarrow{\text{O}} \text{R-OH}$

Use in Synthesis

- **Problem:** If alkenes are present a possible competitive reaction is *epoxidation*.
- **Conditions:** Under acidic conditions, Bayer-Villiger favoured.
- **Conditions:** mCPBA + inert solvent at low temperature encourages epoxidation.

![Chemical diagram showing the Baeyer-Villiger reaction and catalytic asymmetric variation.](image-url)

Catalytic Asymmetric Baeyer-Villiger

Yield = 62%
e.e. = 91%
97SL1151

Gareth Rowlands (g.rowlands@sussex.ac.uk) Ar402, http://www.sussex.ac.uk/Users/kafj6, Reduction and Oxidation 2002
Tamao-Fleming Oxidation

Reagent:

KF, KHCO₃, H₂O₂ or EX / RCO₃H / base

Transformation:

\[\text{SiR}_2X \rightarrow \text{OH} \]

General Mechanism

X = heteroatom or H

- concerted migration so retention of stereochemistry

Use in Synthesis

- Silyl groups relatively unreactive
- C–Si bond only easily broken when carbon functionality allows it *eg:*

\[\text{SiR}_2X \rightarrow \text{Me}_3\text{Si} \rightarrow \text{OH} \]

- Silyl group very useful - can be thought of as *super-proton* - it activates double bonds, encourages substitution rather than addition, controls regio- and stereochemistry (97CR2063)

Tamao Oxidation

\[\text{SiR}_2X \stackrel{\text{KF, KHCO}_3}{\rightarrow} \text{OH} \]

Fleming Oxidation

- More useful silyl groups BUT harsher conditions

1. BuLi
2. \(\text{BF}_3\)
3. 1. \(\text{H}_2\text{O}_2\), NaHCO₃, KF
4. \(\text{SiPh}_2\text{Cu}\)

Gareth Rowlands (g.rowlands@sussex.ac.uk) Ar402, http://www.sussex.ac.uk/Users/kaff6, Reduction and Oxidation 2002
Wacker-Type Oxidations

Reagent:

PdCl$_2$(cat), or CuCl, O$_2$

Transformation:

\[R\ce{\text{-}}\text{CH}_2\text{-}R' \xrightarrow{\text{PdCl}_2\text{L}_n} \text{R}\text{-CH}_2\text{-OH} \]

General Mechanism

\[\text{Pd(2)L}_n \xrightarrow{\beta\text{-elimination}} \text{Pd(0)L}_n \xrightarrow{\text{re-oxidises palladium}} \text{PdClL}_n \]

Use in Synthesis

- allows these 2 stereocentres to be set-up via the reliable Brown or Roush crotylation

\[\text{Me}\text{CO}_2\text{O} + \text{MeO} \xrightarrow{20 \text{ mol}\% \text{PdCl}_2\text{, CuCl}, \text{O}_2\text{, H}_2\text{O} / \text{DMF}} \text{85\%} \]

\[\text{OMe} \text{OTBS} \text{CO}_2\text{Me} \]

Problems:

- alkene isomerisation
- chlorination (especially if CuCl$_2$ used)
- regiochemistry
- acid sensitivity of molecule as HCl produced

Gareth Rowlands (g.rowlands@sussex.ac.uk) Ar402, http://www.sussex.ac.uk/Users/kafj6, Reduction and Oxidation 2002
Modifications to the Wacker Reaction

Smith’s Modifications

- HCl destroying product
- Replace CuCl with Cu(OAc)₂ - no HCl generated only the weaker AcOH
- Yield increased to 86%

Oxo-mercurial Variant

\[
\text{NBn} \quad \text{PhSO}_2 \quad \text{Bu} \quad 1. \text{THF}:\text{H}_2\text{O}, \text{Hg(OAc)}_2 \\
2. \text{THF}, \text{PdCl}_2, \text{CuCl}_2 \\
\]

- Proceeds via oxo-mercuriation then transmetallation
- Standard Wacker resulted in a maximum yield of 45%

Intramolecular Wacker-Type Oxidation

Asymmetric Intramolecular Variant

\[
\text{Pd(O}_2\text{CCF}_3)_2 \\
\]

Gareth Rowlands (g.rowlands@sussex.ac.uk) Ar402, http://www.sussex.ac.uk/Users/kaff6, Reduction and Oxidation 2002