Introduction

• Labour market equilibrium coordinates the desires of firms and workers, determining the wage and employment observed in the labour market.

• **Market types** analysed in this chapter:
 - **Perfect competition** – many buyers and sellers
 - **Monopsony** – only one buyer of labour
 - **Monopoly** – only one seller of the output

• These market structures generate unique labour market equilibria.
• Only the competitive market is ‘efficient’ (example of the invisible hand theorem).
5.1 Equilibrium in a Single Competitive Labour Market

• Competitive equilibrium occurs when supply equals demand generating a competitive wage and employment level.

• It is unlikely that the labour market is ever in equilibrium, since supply and demand are dynamic. There are usually lots of shocks that shift both the demand and supply curve.

• The model suggests that the market is always in a state of moving toward equilibrium.
Efficiency

- It is important to note the technical meaning of efficiency in neoclassical economics:
 - Taken as **Pareto Efficiency**, this is the condition that exists when all possible gains from trade have been exhausted.
 - A corollary of this condition is that when the state of the world is Pareto Efficient, to improve one person’s welfare necessarily means another person’s welfare is decreased.
 - In policy applications, the efficiency criterion asks whether a change can make any one better off without harming anyone else. If the answer is yes, then a change is said to be “Pareto-improving”. **Note: Such situations hardly ever arise.**
The labor market is in equilibrium when supply equals demand; E^* workers are employed at a wage of w^*. In equilibrium, all persons who are looking for work at the going wage can find a job (i.e. no involuntary unemployment). The triangle P gives the **producer surplus**; the triangle Q gives the **worker surplus**. A competitive market maximises the **gains from trade**, or the sum $P + Q$, resulting in an ‘**efficient allocation**’ of labour resources.
5.2 Competitive Equilibrium Across Labour Markets

- Assume: Two regions. Workers in each region are perfect substitutes. To start off with, the equilibrium wages in the two regions differ.

- If workers were mobile and entry and exit of workers to the labour market was free, then the wage differential could not persist. There would be a single wage paid to all workers.

- The allocation of workers to firms equating the wage to the value of marginal product is also the allocation that maximises national income (this is known as allocative efficiency)

- The “invisible hand” process of self-interested workers and firms accomplishes a social goal that no one had in mind, i.e. allocative efficiency. (At least in theory!)
Efficiency Revisited

• The “single wage” property of a competitive equilibrium across markets has important implications for economic efficiency.

 - Recall that in a competitive equilibrium the wage equals the value of marginal product of labour. As firms and workers move to the region that provides the best opportunities, they eliminate regional wage differentials. Therefore, workers of given skills have the same value of marginal product of labour in all markets.
Figure 5.2: Competitive Equilibrium in Two Labour Markets Linked by Migration

Suppose the wage in the northern region \(w_n \) exceeds the wage in the southern region \(w_s \). Southern workers want to move North, shifting the southern supply curve to the left and the northern supply curve to the right. In the end, wages are equated across regions (at \(w^* \)). [Note: If firms move South, the northern labour demand curve shifts left, the southern labour demand curve shifts right.]
Figure 5.3: Wage Convergence Across US States

Wage and income convergence

• Figure 5.3: *Inverse relationship* between the two variables, i.e. US states that had low manufacturing wages in the base year 1950 had higher wage growth subsequently compared to states that had high manufacturing wages in 1950.

• There is a large empirical literature on **wage and income** (i.e. **per capita income**) **convergence** (a) across regions within countries and (b) between countries (e.g. do poor countries have a tendency to catch up with rich countries over time?).
Wage and income convergence ctd.

- There are a number of ‘convergence concepts’ in the literature. Borjas just mentions ‘conditional convergence’.

- Textbook example: Wages and International Trade
 - NAFTA created a free trade zone in North America.
 - The effect of free trade in the zone is to reduce the income differential between the US and other countries in the zone, such as Mexico.
 - Total income of the countries in the trade zone is maximised as a result of equalised economic opportunities across the countries in the zone. Winners and losers.
5.3/5.4 Application: Payroll Taxes, Subsidies, Mandated Benefits

• These two sections have not been covered in class. They are not compulsory (i.e. not relevant for examination purposes).
• NZ used to have a payroll tax in the 1970s, but it was quickly abolished.
5.5 Application: Labour Market Impact of Immigration

- We start with the simplest model:
 - Immigrants and natives are perfect substitutes in production, i.e. it is assumed they compete for the same types of jobs.
 - Short-run impact (capital held fixed): As immigrants enter the labour market, the supply curve shifts to the right (Figure 5.10).
 - Total employment increases. Equilibrium wage decreases.
 - Increases in immigration reduce the wages and employment of native-born workers.
Because immigrants and natives are perfect substitutes, the two groups are competing in the same labour market. Immigration shifts out the supply curve. As a result, the wage falls from w_0 to w_1, and total employment increases from N_0 to E_1. Note that at the lower wage, there is a decline in the number of natives who work, from N_0 to N_1.

Figure 5.10: The Short-Run Impact of Immigration when Immigrants and Natives are Perfect Substitutes
Native-born workers

- The simplest model is probably much too simple:
 - Immigrants and native workers might not be perfect substitutes.
 - If immigrants are less skilled than natives, native-born workers may be able to increase their productivity since they can specialise in tasks better suited to their skills.
 - Competing (low skilled) native workers will have lower wages; but higher skilled native workers will have higher wages.
 - Overall, immigrants and native workers might be complements in production (Figure 5.11).
If immigrants and natives are complements, they are not competing in the same labour market. The labour market in this figure denotes the supply and demand for native workers. Immigration makes natives more productive, shifting out the demand curve even though capital is fixed. This leads to a higher native wage and to an increase in native employment.
The Long-Run Impact of Immigration

• Assume again that immigrants and natives are perfect substitutes.
 - **Short-run impact**: Wage lower, return to capital higher.
 - **Long-run impact**: More capital will be attracted over time, shifting out the labour demand curve, thereby undoing (some?) of the negative impact on the wage of the initial outward shift of the labour supply curve.
 - Crucial question: By how much will the labour supply curve shift out in the long-run?
 • Depends on the technology underlying the production function.
 - Example: Cobb-Douglas production function with constant returns to scale (CRS).
 - If the capital-labour ratio is constant in the long-run, immigration will have NO EFFECT on the equilibrium wage and price of capital (in the long-run). Applies if the aggregate production function has CRS!
Because immigrants and natives are perfect substitutes, the two groups are competing in the same labour market. Immigration initially shifts out the supply curve. As a result, the wage falls from w_0 to w_1. Over time, capital expands as firms take advantage of the cheaper workforce, shifting out the labour demand curve.
Empirical tests of whether immigrants and natives are substitutes and complements seem to indicate that there is a very small negative correlation between native and immigrant wages (i.e. the two types of workers are weak substitutes).
Do Natives Respond to Immigration?

- Figure 5.13:
 - Initially, the equilibrium wage is the same in both labour markets (w_0).
 - Migrants to LA (or Auckland) shift the supply curve out to S_1. This fall in the wage causes some LA natives to move to Pittsburgh (or Wellington): The supply curve there shifts out, and the supply curve in LA (Auckland) shifts in somewhat.
 - In the new equilibrium, there is again the same wage in both labour markets, but it is lower then before!
 - As a result, all natives, regardless of where they live in the country, are worse off (in the short run) because of immigration. However, evidence on this is mixed.
Figure 5.13: The Native Labour Market’s Response to Immigration

(a) Los Angeles (or Auckland)

(b) Pittsburgh (or Wellington)
5.6 The Economic Benefits from Immigration

- How to estimate the net economic impact of immigration?
- Figure 5.16:
 - Area under the labour demand curve up to the equilibrium point gives the value of the national income.
 - Assume natives and immigrants are perfect substitutes in production (would this be realistic in the NZ case?).
 - Calculate ‘immigration surplus’ (the increase in national income due to immigration; it goes to natives).
 - Why is there such a surplus? Because all immigrants hired except for the last one increase national income by more than it costs to employ them.
 - Note: The immigration surplus only exists if the native wage rates fall (not if demand curve for natives is perfectly elastic). Immigration redistributes income from labour to capital!
Prior to immigration, there are N native workers in the economy and national income is given by the trapezoid $ABN0$. Immigration increases the labor supply to M workers and national income is given by the trapezoid $ACM0$. Immigrants are paid a total of $FCMN$ dollars as salary. The immigration surplus gives the increase in national income that accrues to natives and is given by the area in the triangle BCF.
The Immigration Surplus

- See formula to calculate the immigration surplus (p. 195).
 - The estimates seem to be small.

- The ‘immigration surplus’ concept has some weird implications:
 - It is only a short-run concept.
 - In the long-run, neither the wage rate nor the return to capital is affected by immigration, i.e. the immigration surplus is zero (GDP↑ due to immigration, but in the end former immigrants receive what they contribute to GDP).
 - In a sense, the economic benefit of the immigration surplus requires that natives get hurt by immigration (in form of a lower wage). The lower the native wage as a result of immigration, the greater the economic benefits! **OKAY IF YOU ARE A CAPITALIST!**
5.7 The Cobweb Model

• Two assumptions of the cobweb model:
 - Time is needed to produce skilled workers (e.g. engineers, medical doctors, IT specialists, academics). Therefore, assume the short-run supply curve is perfectly inelastic!
 - Persons decide to become skilled workers by looking at conditions in the labour market at the time they enter university or polytechnic. (Is this a realistic assumption?)

• A “cobweb” pattern forms around the equilibrium.
Cobweb Model (continued)

• The cobweb pattern arises when people are misinformed.
• The model implies naïve workers who do not form “rational expectations”.
• Rational expectations are formed if workers correctly perceive the future and understand the economic forces at work.
 - Note: How economic agents form expectations is a big and crucial topic in (micro- and macro-) economics. ‘Rational expectations’ a misnomer. It is better to call them ‘model-consistent expectations’.
• However, it takes time and resources to get all the information necessary to form rational expectations. It can be rational not to have rational expectations!
 - Note: Cobwebs do exist in many professional labour markets! Economic forecasting is very difficult.
The initial equilibrium wage in the engineering market is w_0. The demand for engineers shifts to D', and the wage will eventually increase to w^*. Because new engineers are not produced instantaneously and because students might misforecast future opportunities in the market, a cobweb is created as the labour market adjusts to the increase in demand.
5.8 Noncompetitive Labour Markets: Monopsony

• A monopsonistic market exists when a firm is the sole buyer of labour (acting as a sole employer of labour in the market; it has “monopsony power”). Example: One company town.

• Such a firm must increase wages to attract more workers, i.e. it faces an upward-sloping labour supply curve.
 - This is the key feature and might apply even if the firm is not the sole employer in a labour market (see p. 204 on mobility and monitoring costs)!

• Two types of monopsony: Perfectly discriminating & Nondiscriminating.
Discriminating Monopsonist

- Able to hire different workers at different wages.
- When “perfectly discriminating” each worker is paid his or her reservation wage.
- The monopsonistic firm should hire workers up to the point where the last worker’s contribution to firm revenue (or VMP_e) equals the marginal cost of labour.
 - This results in the same employment level as under perfect competition. But note that the ‘equilibrium’ wage is not the competitive wage because it is only paid to the last worker hired!
 - If this happened in reality, most people would greatly resent it.
A perfectly discriminating monopsonist faces an upward-sloping supply curve and can hire different workers at different wages. The labour supply curve gives the marginal cost of hiring. Profit maximisation occurs at the intersection point. The monopsonist hires the same number of workers as in the case of a competitive market, but each worker gets paid his/her reservation wage.
Nondiscriminating Monopsonist

- Must pay all workers the same wage, regardless of each worker’s reservation wage.
- Must raise the wage of all workers when attempting to attract more workers, i.e. the labour supply curve no longer gives the marginal cost of hiring.
 - Try to understand the numerical example in Table 5.4
- As the firm expands, i.e. hires more workers, it incurs an ever higher marginal cost. The Marginal Cost of Labour curve (MC_E) is upward sloping and lies above the labour supply curve.
- The nondiscriminating monopsonist hires up to the point where $MC_E = VMP_E$. As a result, the firm (a) employs fewer workers than would be employed if the market were competitive and (b) pays less than the competitive wage (w_M instead of w^*)(also note that w_M is less than the VMP_M).
A nondiscriminating monopsonist pays the same wage to all workers. The marginal cost of hiring exceeds the wage, and the marginal cost curve lies above the supply curve. Profit maximisation occurs at point A; the monopsonist hires E_M workers and pays them a wage of w_M.

Figure 5.19: The Hiring Decision of a Nondiscriminating Monopsonist

- VMP_M: Vertical Marginal Product of the Monopsonist
- MC_E: Marginal Cost of Employment
- S: Supply Curve
- w^*: Wage at which the supply curve intersects the marginal cost curve
- w_M: Wage paid by the monopsonist
- E_M: Number of workers hired by the monopsonist
- E^*: Employment level at which profit maximisation occurs
Monopsony and the Minimum Wage

• IF the government sets a minimum wage somewhere between w_M and the competitive wage, both the wage and employment will increase in this labour market.
 - Empirical studies suggest this might be the case of youth employment in the fast food industry in the US (the argument is that unskilled teenagers can find little other employment).

• In theory, the minimum wage could be set at the competitive wage level, thereby resulting in the employment level that would be observed in a competitive market.
The minimum wage may increase both wages and employment when imposed on a monopsonist. A minimum wage set at w^- increases employment to E^-.
5.9 Noncompetitive Labour Markets: Monopoly

- **Monopoly**: Only one seller of the output in the market.
- Firms that have monopoly power can influence the price of the product that they sell.
- Monopolist faces a downward sloping market demand curve for its output, i.e. marginal revenue is lower than output price p.
 - If the firm wants to sell another unit of output, it has to reduce p for all customers!
 - Marginal revenue keeps declining with increase in output and eventually becomes zero or negative!
- Profit-maximising point for monopolist where $\text{MR}=\text{MC}$. A monopolist sells less output at a higher price than a competitive firm!
A monopolist faces a downward-sloping demand curve for its output. The marginal revenue from selling an additional unit of output is less than the price of the product. Profit maximisation occurs at point A; a monopolist produces q_M units of output and sells them at a price of p_M dollars.
Monopoly and Labour Demand

- Because MR is below p, the VMP_E as defined in chapter 4 is not relevant for the monopolist’s hiring decision.

- The additional revenue from hiring an extra worker is, instead, the Marginal Revenue Product (MRP):
 \[\text{MRP}_E = \text{MR} \times \text{MP}_E \]

- The condition where the contribution of the last worker hired equals his/her cost to the firm (the profit-maximising condition) is therefore:
 \[\text{MRP}_E = w \]

- Because MR<p \Rightarrow \text{MRP}_E < \text{VMP}_E \] (see Figure 5.22)
The marginal revenue product gives the worker’s contribution to a monopolist’s revenues and is less than the worker’s value of marginal product. Profit maximisation occurs at point A; the monopolist hires fewer workers (E_M) than would be hired in a competitive market.

Note last paragraph p. 206: In practice, monopolist may pay a higher wage than the market wage w.
End of chapter 5