

Multiple Dating Methods in the Auckland Volcanic Field: Including the Kitchen Sink

Mark Bebbington and Shane J. Cronin

¹Volcanic Risk Solutions, Massey University, Palmerston North, New Zealand

Core Data

24+ tephras within cores (Molloy et al. 2009). Thicknesses known, ages inferred from direct dating, tephrochronology or accumulation rates

ID	Thickness (mm)				Age (ka)					
	Pupuke	Hopua	Orakei	Onetopo	Pukaki	Pupuke	Hopua	Orakei	Onetopo	Pukaki
AVF24	22					0.8±0.1				
AVF23		3					10.0±0.7			
AVF22					1					15.1±0.7
AVF21		290			3		20.0±0.7			19.7 ± 0.7
AVF20		235			3		20.5±0.7			19.7 ± 0.7
AVF19					1					24.4±0.8
AVF18		40	8		0.5		26.6±0.8	24.5±0.8		24.7±0.8
AVF17			5					24.7±0.8		
AVF16					50					25.5±0.8
AVF15			12					26.7±0.9		

Can invert the simple ashfall-attenuation function of Rhoades et al., 2002:

$$r = -1.85V^{1/3} + \exp\left[(8.67 + 1.13\log V - \log T) / 2.38\right]$$

V = volume (km³); T = thickness (cm); r = distance (km).

etc.

VOLCANIC RISK SOLUTIONS

Tephra Attenuation (Pupuke)

5 mm 10^{-1} Expected tephra 3 mm 22 mm 2 mm 7 mm thickness 0.5 mm Scoria, tuff and ash volume $(km^3)_{e_0}$ 42 15 3233 23 10⁻⁴ Distance to Pupuke (km)

Massey University

- Wind-direction (low level) assumed random throughout record
- Stratigraphy must be maintained
- Assigned tephras must be consistent with reliable dates
- Tephras must not "skipover" sites to be only at distal areas
- All tephras must be assigned

Age/Ordering Results

Massey University

Resulting ordering/age model via Monte Carlo simulation

Maungataketake	41.4	0.4	11	15	
One Tree Hill	37.4	0.7	12	17	-
Motukorea	36.1	0.9	13	20	
Mt Albert	35.2	0.9	14	21	
Kohuora	35.1	1.0	13	21	_
Crater Hill	34.1	0.3	15	22	
Hopua Basin	33.6	0.4	18	23	_
Puketutu	3.0	0.5	19	25	
North Head	32.9	0.4	19	26	_
Hampton Park	32.4	4.8	12	41	
Panmure Basin	32.3	0.3	21	27	
Taylors Hill	32.0	1.9	13	39	
Mt Roskill	32.0	1.9	16	34	
Ash Hill	31.8	0.2	21	30	
McLennan Hills	31.7	0.2	22	30	
Mt Victoria	31.5	0.6	22	33	
Mt Cambria	31.4	1.2	16	38	
Wiri Mountain	30.9	0.4	24	32	
Mt Richmond	29.9	0.6	25	35	
Three Kings	28.8	0.3	29	35	-
Mt Eden	28.4	0.3	31	36	oto
Waitomokia	28.1	0.8	27	39	
	20.1	0.0	27	57	

Palaeomagnetic Excursions

Massey University

Redo tephra matching

Massey University

• • • • • • •

. . . .

Assign AV11 to Wiri Mountain Robertson Hill.

Assign AV9 to Panmure Basin

Assign AV6(Pukaki) to Crater Hill

Assign AV18,20,21 to Mangere Lagoon, Mt Mangere and Mt Smart, respectively

Assign AV8(Orakei, Pukaki) to Puketutu

Assign AV16 to Waitomokia Matakarua

Assign AV8(Pupuke, Onepoto) to North Head. Must follow Mono Lake

Assign AV10 to Mt Victoria

Assign AV7 to Hopua. Hopua is allowed to fall within an excursion.

Stratigraphy places it after Crater Hill, and before Puketutu.

Assign AV15,17 to Pigeon Mountain, Robertson Hill Little Rangitoto Assign AV22 to Matakarua Styaks Swamp

Revised Monte Carlo Ordering Algorithm

- Wiri Mountain and Puketutu assigned ages from Normal distribution (within ML excursion)
- Remaining ML events assigned ages from a Uniform distribution, width 1 ka
 - Taylor's Hill either oldest or youngest of ML events
 - 35 events with est. ages and errors assigned an age from a Normal distribution.
 - Otara Hill and Hampton Park within 0.1 ka
 - Mt Cambria ~ Mt Victoria.
- Otuataua = Maungataketake U(0,0.1) ka.
- Sample 1ka Lashamp excursion from N(40.4,1.1)
 - If overlaps Maungataketake/Otuataua, resample all 3
- If sampled ages violate the stratigraphy, redo
 - NOTE: Tephra matches generate additional implied stratigraphy.
- •No events except those in D can occur among ML events, during Lashamp, between Otuataua and Maungataketake, or between Otara Hill and Hampton Park
- Remaining 8 events assigned age uniform between any upper and lower stratigraphic bounds, etc ...

Tank Farm, Onepoto, St Heliers, Orakei Basin, Hopua, Pukaki, Kohuora, Little Rangitoto, Pukeiti

Changes in order?

Name	Mean Age	Age Error	
Little Rangitoto	92.3	57.7	
Maungataketake	41.4	0.4	
One Tree Hill	37.4	0.7	
Motukorea	36.1	0.9	
Mt Albert	35.2	0.9	
Kohuora	35.1	1.0	
Crater Hill	34.1	0.3	
Hopua Basin	33.6	0.4	
Puketutu	33.0	0.5	
North Head	32.9	0.4	
Hampton Park	32.4	4.8	014
Panmure Basin	32.3	0.3	Order
Taylors Hill	32.0	1.9	eraer
Mt Roskill	32.0	1.9	
Ash Hill	31.8	0.2	
			`Magnetic'
Wiri Mountain	30.9	0.4	
Mt Richmond	29.9	0.6	Order
Three Kings	28.8	0.3	
Mt Eden	28.4	0.3	
Waitomokia	28.1	0.8	
Otara Hill	25.9	0.7	
Pukeiti	22.3	4.2	
Otuataua	16.4	4.3	
Matakarua	15.1	0.7	

Name	Mean Age	Age Error
Waitomokia	200.2	54.3
Pukeiti	122.5	56.1
Maungataketake	41.5	0.4
Otuataua	41.4	0.4
One Tree Hill	36.6	0.8
Motukorea	35.3	0.8
Kohuora	34.0	0.3
Mt Albert	33.5	0.7
Ash Hill	32.4	0.1
Crater Hill	32.0	0.2
Wiri Mountain	32.0	0.3
Hopua Basin	31.9	0.3
Mt Richmond	31.8	0.3
Taylors Hill	31.8	0.3
Puketutu	31.7	0.3
North Head	31.4	0.1
Panmure Basin	31.4	0.1
Three Kings	28.9	0.3
Mt Eden	28.5	0.3
Mt Hobson	28.1	0.4
Matakarua	27.8	0.6
Pigeon Mt	27.7	0.4
Little Rangitoto	27.2	0.4
Mangere Lagoon	26.7	0.4
Hampton Park	25.9	0.7
Otara Hill	25.9	0.7

Excursion events within 100 years?

Ash Hill	32.0	0.1
Crater Hill	31.9	0.1
Wiri Mountain	31.9	0.1
Hopua Basin	31.9	0.1
Mt Richmond	31.9	0.1
Taylors Hill	31.9	0.1
Puketutu	31.9	0.1
North Head	31.8	0.1

Spatio-temporal Structure?

Massey University

1000 Monte Carlo repetitions: no spatial clustering between sequential events (top); no correlation between interevent time and distance (bottom)

VOLCANIC

Conclusion: Independent temporal and spatial terms justified in model

Time-Varying Eruption Rate

Massey University

1000 Monte Carlo repetitions, kernel smoothing excess

excess of both short and long reposes

'self-exciting' model

Spatial Structure, Second Order Analysis University

1000 Monte Carlo repetitions, sequential pair azimuths show tendency to AVOID alignments

Spatial Likelihood

Massey University

- Kernel estimate of spatial probability (Connor and Connor 2009)
 - Ruaumoko location not relatively unlikely ⁽²⁾

Conclusions

Massey University

- Paleomagnetism contradicts C14 ages
- Paleomagnetism during an excursion should be more reliable than C14
 - How tight are the resulting constraints?
 - Other excursions?
- Spatio-temporal independence is unaffected by the change from C14 to paleomagnetism,
 - although the ordering changes, as do a number of other estimated ages.

References

- Bebbington M, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bulletin of Volcanology 73:55-72.
- Cassidy J, Hill MJ (2009) Absolute palaeointensity study of the Mono Lake excursion recorded by New Zealand basalts, Physics of the Earth and Planetary Interiors 172:225-234.
- Cassidy J, Locke CA (2010) The Auckland volcanic field, New Zealand: Geophysical evidence for structural and spatiotemporal relationships. Journal of Volcanology and Geothermal Research 195:127-137.
- Cassata WS, Singer BS, Cassidy J (2008) Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand. Earth and Planetary Science Letters 268, 76-88.
- Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In (Connor CB, Chapman NA, Connor LJ, eds) Volcanic and Tectonic Hazard Assessment for Nuclear Facilties, Cambridge University Press, pp. 346-368
- Guillou H, Singer BS, Laj C, Kissel C, Scaillet S, Jicha BR (2004) On the age of the Laschamp geomagnetic excursion, Earth and Planetary Science Letters 227:331-343.
- Lindsay J, Leonard G (2009) Age of the Auckland Volcanic Field. IESE Report 1-2009.02
- Molloy C, Shane P, Augustinus P (2009). Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: Implications for hazards in the Auckland volcanic field. GSA Bulletin 121: 1666-1677.
- Sandiford A, Horrocks M, Newnham R, Ogden J, Alloway B (2002) Environmental change during the last glacial maximum (c. 25000 – c. 16500 years BP) at Mt Richmond, Auckland Isthmus, New Zealand. Journal of the Royal Society of New Zealand 32: 155-167.
- Singer BS (2007) Polarity transitions: radioisotopic dating. In (EH Bervera, D Gubbins, eds), Encyclopedia of Geomagnetism and Paleomagnetism, Springer-Verlag, pp. 834–839.