Notation:

- X^2: calculated value of the test statistic,
- ν: degrees of freedom,
- α: significance level of hypothesis test hence
 $\chi^2_{\nu,1-\alpha}$: value of the $1-\alpha$th quantile of the χ^2 distribution on ν degrees of freedom.
- H_0: Null hypothesis, H_A: alternative hypothesis.
- N: total number of observations, O: observed count, E: expected count where, more specifically,
 - O_{ij}: observed count in cell specified by row i and column j,
 - O_i: sum of counts in row i, i.e. the marginal row total where $O_i = O_{i1} + O_{i2} + \ldots + O_{ic} = \sum_{j=1}^c O_{ij}$,
 - O_j: sum of counts in column j, i.e. the marginal column total where $O_j = O_{1j} + O_{2j} + \ldots + O_{cj} = \sum_{i=1}^r O_{ij}$.
- π_{ij}: probability of observing an individual with characteristics corresponding to row i and column j.
 π_i: marginal probability of observing an individual with characteristics corresponding to row i, π_j: marginal probability of observing an individual with characteristics corresponding to column j.
 Estimates of these values are given by $\hat{\pi}_{ij}$, $\hat{\pi}_i$, $\hat{\pi}_j$ respectively.
- $P(A_1 \cap A_2)$: probability that both event A_1 and A_2 are observed.
- $X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$: general form of the χ^2 test statistic.