Notations

X = quality characteristic

μ = true process mean level

$\hat{\mu}$ = process mean estimate

μ' = standard value for the process mean

σ = true common cause sigma

$\hat{\sigma}$ = common cause sigma estimate

σ' = standard value for common cause sigma

k = number of subgroups

n_i = ith subgroup size

X_{ij} = jth observation of the ith subgroup

\bar{X}_i = ith subgroup arithmetic mean

\bar{X} = overall mean

S_i = ith subgroup standard deviation ($n-1$ in the divisor)

\bar{S} = average standard deviation

R_i = ith subgroup range

\bar{R} = average range

c_3 = unbiasing constant for S_i and \bar{S}

d_2 = unbiasing constant for R_i and \bar{R}

A_2 = control limit factor for the \bar{X} chart with \bar{R} estimate

A_3 = control limit factor for the \bar{X} chart with \bar{S} estimate

B_3 = lower control limit factor for the S-chart

B_4 = upper control limit factor for the S-chart

D_3 = lower control limit factor for the R-chart

D_4 = upper control limit factor for the R-chart

p = true proportion nonconforming of the process or lot

\hat{p} = estimated proportion nonconforming of the process or lot

d_i = the number of nonconformities or number of nonconforming units in the ith subgroup

\hat{p}_i = estimated proportion nonconforming for the ith subgroup

\bar{p} = overall estimate of the process proportion nonconforming

λ = process nonconformity rate

$\hat{\lambda}$ = estimated process nonconformity rate

\bar{c} = overall average number of nonconformities

n = the sample size of a single sampling attribute plan

Ac = the acceptance number of a single sampling attribute plan

Re = the rejection number of a single sampling attribute plan
\(n_i \) = ith stage sample size
\(Ac_i \) = ith stage acceptance number
\(Re_i \) = ith stage rejection number