
Glassfish, JAVA EE, Servlets, JSP, EJB

• A Java platform comprises the JVM together with supporting

class libraries.

Java 2 Standard Edition (J2SE)

• (1999) provides core libraries for data structures, xml

parsing, security, internationalization, db connectivity, RMI

Java 2 Platform, Enterprise Edition (J2EE)

• provides more class libraries for servlets, JSPs, Enterprise

Java Beans, advanced XML

Java Platform, Enterprise Edition (Java EE)
• When Java Platform 5.0 was released (2004) the ‘2’ was

dropped from these titles.

Java platform

• A Java platform comprises the JVM together with

supporting class libraries.

Java Micro Edition (Java ME)

• comprises the necessary core libraries and tools for

writing Java for embedded systems and other small

footprint platforms, along with some specialised

libraries for specific types of device such as mobile

phones.

Java platform

A Java web application generates interactive web

pages containing various types of markup language

(HTML, XML, and so on) and dynamic content.

It is typically comprised of web components such as:

• JavaServer Pages (JSP)

• Servlets

• JavaBeans

to modify and temporarily store data, interact with

databases and web services, and render content in

response to client requests.

Java Web Application

https://grizzly.dev.java.net/

Java EE (Enterprise Edition) is a widely used

platform containing a set of coordinated

technologies that significantly reduce the cost and

complexity of:

• developing

• deploying and

• managing

multitier, server-centric applications.

Java EE builds upon the Java SE platform and

provides a set of APIs (application programming

interfaces) for developing and running portable, robust,

scalable, reliable and secure server-side applications.

Java EE (Enterprise Edition)

http://netbeans.org/kb/trails/java-ee.html

Java EE 6 is supported
only by the GlassFish
server v3.x.

• The Java EE platform uses a simplified
programming model. XML deployment
descriptors are optional. Instead, a developer
can simply enter the information as
an annotation directly into a Java source file,
and the Java EE server will configure the
component at deployment and runtime

• With annotations, you put the specification
information in your code next to the program
element affected.

Java EE 6 Platform

http://download.oracle.com/javaee/6/tutorial/doc/bnaaw.html

http://download.oracle.com/javaee/6/tutorial/doc/bnaaw.html

• an architecture for implementing services as
multitier applications that deliver the scalability,
accessibility, and manageability needed by
enterprise-level applications.

• With this structure you can more easily change one
of the tiers without compromising your entire
application.

• Business and presentation logic - to be implemented
by the developer

• Standard system services – to be provided by the
Java EE platform

Java EE application model

http://download.oracle.com/javaee/6/tutorial/doc/bnaaw.html

http://download.oracle.com/javaee/6/tutorial/doc/bnaaw.html

• Servlets are Java classes that dynamically
process requests and construct responses.

• Server side replacement for CGI

• Extensions to Java enabled web-servers

• Inherently multi-threaded.

• One thread per request.

• Very efficient.

• Platform independent.

Java Servlets

• Servlets run inside a Web Container - the
component of the web server that runs and
interacts with Servlets

• Servlet is running on the server listening for
requests

• When a request comes in, a new thread is
generated by the web container.

How do Servlets work?

Java EE containers

• are the interface between a Java component

and the low-level platform-specific functionality

(i.e. transaction and state management,

multithreading, resource pooling, etc.) that

supports the component.

• provide for the separation of business logic from

resource and lifecycle management.

• this allows developers to focus on writing business logic

rather than writing enterprise infrastructure.

Java EE Containers

http://www.oracle.com/technetwork/java/javaee/javaee-faq-jsp-135209.html#diff

The Java EE platform uses "containers" to simplify development.

http://download.oracle.com/javaee/6/tutorial/doc/bnabo.html

http://download.oracle.com/javaee/6/tutorial/doc/bnabo.html

Java EE Containers

When a request comes in:

• a Servlet needs to be instantiated and create a new thread to

handle the request.

• call the Servlet’s doPost()or doGet() method and pass the

HTTP request and HTTP response objects

• get the request and the response to the Servlet

• manage the life, death and resources of the Servlet

* All of the above are the tasks of the web container.

Java EE SERVER

Java EE Containers

From Bodoff et. al. 2005

Client

Web
server

HTML

Server

MySQL

Operating System

PHP
interpreter

Internet

My codes

HTTP

TCP/IP

• Webserver supports HTTP.

Recall: (PHP-MySQL) Server: response

Web

browser

Operating
System

Client

Web

browser

Operating
System

Web server

Servlet
(Java code)

Server

Operating System

Internet

Web

Container

Application
(Java code)HTTP

TCP/IP

• Webserver supports HTTP.

Historically (Java Web App)
Server: response

GET... GET...

It’s the Container that gives

the Servlet the HTTP request

and response, and it’s the

Container that calls the Servlet’s

methods (e.g. doPost() or doGet())

<html>

<head>

</head>

<body>

...

<body>

</html>

<html>

<head>

</head>

<body>

...

<body>

</html>

Client

Web

browser

Operating
System

Web server

Servlet
(Java code)

Server

Operating System

Internet

HTTP

TCP/IP

• Webserver supports HTTP.

Historically (Java Web App)
Server: response

GET... GET...

It’s the Container that gives

the Servlet the HTTP request

and response, and it’s the

Container that calls the Servlet’s

methods (e.g. doPost() or doGet())

<html>

<head>

</head>

<body>

...

<body>

</html>

<html>

<head>

</head>

<body>

...

<body>

</html>

Client

Web

browser

Operating
System

Web server +
Container

Servlet
(Java code)

Server

Operating System

Internet

HTTP

TCP/IP

• Webserver supports HTTP.

(Java Web App) Server: response

GET...

It’s the Container that gives

the Servlet the HTTP request

and response, and it’s the

Container that calls the Servlet’s

methods (e.g. doPost() or doGet())

<html>

<head>

</head>

<body>

...

<body>

</html>

Grizzly is now the
HTTP front end of
the application
server

Java Servlets simplify web development by providing

infrastructure for component, communication, and

session management in a web container that is

integrated with a web server.

Java Servlets

http://www.oracle.com/technetwork/java/javaee/javaee-faq-jsp-135209.html#diff

• Writing Servlets is like writing Java codes that place an

HTML page inside a Java class (this is the worst part of

Servlets!)

• (Historically!) requires a deployment descriptor (DD).

This is in the form of an XML file.

• Servlets do not have a main() method.

• Servlets are under the control of another Java

application called a Container

• manage the data flow between the following:

• JavaBeans components are not considered Java EE

components by the Java EE specification.

• JavaBeans components have properties and have get and

set methods for accessing the properties.

JavaBeans

Client/Database Server

application client or applet components running on the

Java EE server

database Server components

Enterprise JavaBeans container handles:

• distributed communication

• threading

• scaling

• transaction management, etc.

has a new packaging! (see figure)

Enterprise JavaBeans (EJB)

http://www.oracle.com/technetwork/java/deepdivejavaee6glassfishv3-jsp-138230.html

New EJB 3.1 Packaging

Older EJB Packaging

• create a simple web application using NetBeans IDE

• deploy it to a server, and

• view its presentation in a browser

• A 3rd party Java Integrated Development Environment

(IDE)

• Comes with Java EE class libraries

• bundled with GlassFish Sever Open Source Edition

• Can deploy servlets, JSPs, and web services

NetBeans

Class libraries for Servlets,
JSPs, Enterprise Java
Beans, advanced XML

A Quick Tour of the IDE (v.6.9)

JSP, Java Bean, User-defined Java Class & Package,

Get Method, User Interface

Sample Project

Index.jsp

NameHandler.java

Main interface, Html with form

Invokes response.jsp through

form action.

response.jsp

Class NameHandler

containing user data

Generates the server’s response

Defines a JavaBean to connect the class NameHandler to

the user’s input via a form text field (name).

Creating a new Web Application

New Project / Java Web

Creating a new Web Application

Specify Project Name

Creating a new Web Application

GlassFish Server

Web profile

GlassFish
is an open source application server project led

by Sun Microsystems for the Java EE platform. The

proprietary version is called Oracle GlassFish

Enterprise Server. GlassFish is free software

Java Application Server: Glassfish

It uses a derivative of Apache Tomcat as the servlet

container for serving Web content, with an added

component called Grizzly which uses Java NIO for

scalability and speed.

Before the advent of the Java New I/O API (NIO), thread
management issues made it impossible for a server to
scale to thousands of users

https://grizzly.dev.java.net/

Sun is the original creator
of Tomcat

http://java.dzone.com/articles/glassfish-and-tomcat-whats-the

GlassFish is an open source (full) application server project

led by Sun Microsystems for the Java EE platform. The

proprietary version is called Oracle GlassFish Enterprise Server.

GlassFish is free software.

Java Application Server: Glassfish

It uses a derivative of Apache Tomcat as the servlet container

for serving Web content, with an added component called Grizzly

which uses Java NIO for scalability and speed.

On 25 March 2010, soon after the

acquisition of Sun Microsystems, Oracle

issued a Roadmap for versions 3.0.1, 3.1, 3.2

and 4.0 with themes revolving around

clustering, virtualization and integration with

Coherence and other Oracle technologies.
http://en.wikipedia.org/wiki/GlassFish

Historically, if you wanted to get good HTTP performance

from Tomcat you really needed to have an Apache web

server to sit in front of Tomcat which involved more setting

up and extra administrative work.

Since GlassFish v1 (May 2006), Grizzly is the HTTP

frontend of the application server.

It's a 100% Java NIO framework that provides the same

performance as Apache, only it's written in Java and

integrated straight into the application server.

Glassfish vs. Tomcat

Sun is the original creator
of Tomcat

http://java.dzone.com/articles/glassfish-and-tomcat-whats-the

Not a full-
application

server

Other Java web application-capable
Servers

• Blazix from Desiderata Software (1.5
Megabytes, JSP, Servlets and EJBs)

• TomCat from Apache (Approx 6 Megabytes)

• WebLogic from BEA Systems (Approx 40
Megabytes, JSP, Servlets and EJBs)

• WebSphere from IBM (Approx 100 Megabytes,
JSP, Servlets and EJBs)

http://www.jsptut.com/Getfamiliar.jsp

http://www.blazix.com/blazix.html
http://tomcat.apache.org/
http://www.beasys.com/
http://www-4.ibm.com/software/webservers/
http://www.jsptut.com/Getfamiliar.jsp

Commercial Deployment

• Oracle GlassFish Server
– delivers a flexible, lightweight and extensible Java EE

6 platform. It provides a small footprint, fully featured

Java EE application server that is completely

supported for commercial deployment and is available

as a standalone offering.

• Oracle WebLogic Server
– designed to run the broader portfolio of Oracle Fusion

Middleware and large-scale enterprise applications.

– industry's most comprehensive Java platform for

developing, deploying, and integrating enterprise

applications.

Oracle provides software support only
for Oracle GlassFish Server, not for
GlassFish Server Open Source Edition

http://docs.sun.com/app/docs/doc/821-1751/gkbtb?l=en&a=view

Creating a new Web Application

JSP File

Creating a new Web Application

Sample Run

Project: HelloWeb

HelloWeb: Directories and Files

NameHandler.java

Java Package

Right-click Source Packages

http://en.wikipedia.org/wiki/GlassFish

Java Package

Add a Java Class, specify Package name

http://en.wikipedia.org/wiki/GlassFish

Java Package

• a mechanism for organizing Java classes into namespaces

• can be stored in compressed files called JAR files, allowing classes to

download faster as a group rather than one at a time.

Java Package

Add a Java Class

http://en.wikipedia.org/wiki/GlassFish

Java Package

Edit the Java Class

http://en.wikipedia.org/wiki/GlassFish

• Declare a String variable inside the

class declaration.

String name;

• Add a constructor to the class:

public NameHandler()

• Add the following line in the

NameHandler() constructor:

name = null;

Generating Getter and Setter Methods

Right-click name field in the Source editor

Selection: Name Field / Refactor / Encapsulate Fields

Generating Getter and Setter Methods

Notice that Fields' Visibility is by default set to private, and Accessors'

Visibility to public, indicating that the access modifier for class variable

declaration will be specified as private, whereas getter and setter

methods will be generated with public and private modifiers, respectively.

Generating Getter and Setter Methods

Select the Refactor button.

Notice that the variable

declaration has changed.

• set to private

Get and set functions

with implementation have

been added as well.

• access modifier: public

Results of Refactoring

Adding and Customising

a Form, input text field,

submit button

Invoke the palette: from the menu, select (Window/Palette): or press

Ctrl+Shift+8

expand HTML Forms

Inserting a Form

expand HTML Forms and drag a Form item to a point after the <h1>

tags in the Source Editor.

The Insert Form dialog box displays.

Inserting a Form

Specify the following values:

Click OK.

Specifying an action

An HTML form is automatically added to the index.jsp file.

Source Generated

Drag a Text Input item to a point just before the </form> tag, then

specify the following values:

• Name: name

• Type: text

Adding an Input Text Field

Input Text Field

Source Generated

Drag a Button item to a point just before the </form> tag. Specify the

following values:

• Label: OK

• Type: submit

Click OK. An HTML button is added between the <form> tags.

Adding a Submit Button

Type Enter your name: just before the first <input> tag, then

change the default Hello World! text between the <h1> tags

to Entry Form.

Adding some extra labels, tidying up your code

Right-click within the Source Editor and choose Format

(Alt-Shift-F) to tidy the format of your code.

index.jsp: Source Generated

We would like to
pass this to our

server

response.jsp

In the Projects window, right-click the HelloWeb project node and

choose New > JSP. The New JSP File wizard opens.

Name the file response, and click Finish.

Notice that a response.jsp file node displays in the Projects window

beneath index.jsp, and the new file opens in the Source Editor.

Adding a JSP File

JSP Source File Generated: response.jsp

In the Palette to the right of the Source Editor, expand JSP and drag a

Use Bean item to a point just below the <body> tag in the Source

Editor.

The Insert Use Bean dialog opens.

Specify the values shown in the following figure.

Adding a Use Bean item

The class NameHandler
belongs to the package

we have set earlier

JSP Source File Generated: response.jsp

Notice that the <jsp:useBean> tag is added beneath the <body> tag.

Drag a Set Bean Property item from the Palette to a point just before

the <h1> tag and click OK.

In the <jsp:setProperty> tag that appears, delete the empty value

attribute and edit as follows. Delete the value = "" attribute if the IDE

created it! Otherwise, it overwrites the value for name that you pass in

index.jsp.

Adding a Set Bean property item

Drag a Set Bean Property item from the Palette to a point just before

the <h1> tag and click OK.

In the <jsp:setProperty> tag that appears, delete the empty value

attribute and edit as follows. Delete the value = "" attribute if the IDE

created it! Otherwise, it overwrites the value for name that you pass in

index.jsp.

Adding a Set Bean property item

Drag a Get Bean Property item from the Palette and drop it after the

comma between the <h1> tags.

Specify the following values in the Insert Get Bean Property dialog:

• Bean Name: mybean

• Property Name: name

Adding a Get Bean property item

Insert a Get Bean Property
item here!

the user input coming from index.jsp becomes a name/value pair that

is passed to the request object.

When you set a property using the <jsp:setProperty> tag, you can

specify the value according to the name of a property contained in the

request object.

JSP Source Code Generated

Therefore, by setting property to name, you can retrieve the value

specified by user input.

Sample Run

User input

Response from
the JSP file

Sample Run

User input Response from
the JSP file

Index.jsp

NameHandler.java

Main interface, Html with form

Invokes response.jsp through

form action.

response.jsp

Class NameHandler

containing user data, get and

set methods

Generates the server’s response

Defines a JavaBean to connect the class NameHandler to

the user’s input via a form text field (name).

Project

Index.jsp

NameHandler.java

Main interface, Html with form

Invokes response.jsp through

form action.

response.jsp

Class NameHandler

containing user data,

get and set methods

Generates the server’s response

Defines a JavaBean to connect the class NameHandler to

the user’s input via a form text field (name).

http://java.sun.com/blueprints/code/projectconventions.html

http://java.sun.com/blueprints/code/projectconventions.html

The Java EE specification defines how the web

application can be archived into a web application

archive (WAR)

• WAR files are

– Java archives with a .war extension

– Packaged using the same specification as zip files

– Understood by all Java EE compliant application

servers

• WAR files can be directly deployed in servlet

containers such as Tomcat

Packaging Web Applications

• To make a WAR for your NetBeans project, right click on

the project node and select Build Project.

• The WAR file will be placed in the “dist” sub-directory

of your project folder

NetBeans WAR files

http://netbeans.org/kb/docs/web/quickstart-webapps.html

http://www.oracle.com/technetwork/java/javaee/documentation/index.html

http://netbeans.org/kb/docs/javaee/ecommerce/design.html

E-Commerce Example

http://netbeans.org/kb/docs/javaee/ecommerce/data-model.html#createERDiagram

http://netbeans.org/kb/docs/web/mysql-webapp.html

Simple Database Example

Project

http://download.oracle.com/javaee/6/tutorial/doc/

Java EE 6

NetBeans

http://java.sun.com/blueprints/code/projectconventions.html

Recommended Directory Structure for Projects

http://netbeans.org/kb/docs/javaee/ecommerce/design.html
http://netbeans.org/kb/docs/javaee/ecommerce/data-model.html
http://netbeans.org/kb/docs/javaee/ecommerce/data-model.html
http://netbeans.org/kb/docs/javaee/ecommerce/data-model.html
http://netbeans.org/kb/docs/web/mysql-webapp.html
http://netbeans.org/kb/docs/web/mysql-webapp.html
http://netbeans.org/kb/docs/web/mysql-webapp.html
http://download.oracle.com/javaee/6/tutorial/doc/
http://java.sun.com/blueprints/code/projectconventions.html

http://dot.netbeans.org:8080/AffableBean/

http://dot.netbeans.org:8080/AffableBean/

Model-View-Controller Paradigm

