
PHP - Part 2

More operators...

Arithmetic and Assignment
Operators

 e.g., using + and =

 $IntA=5; $intB=8; $intC=$intA+$intB; //intC is 13

 // Same +, -, *, / and % as C

 $intA + = $intB; //as in C

 Bitwise:

 &, |, ^, ~, << and >>

 e.g., $intA=7; $intB=9;

 $intC = $intA & $intB;

Comparison Operators

 == //true if equal

 === //true if identical (i.e., same type and value)

 !=, <> //true if not equal

 !== //true if not identical

 >, <, <=, >=

 Ternary operators:

 (expre1) ? (expre2) : (expre3); //expre2 if expre1 true

 $strA = ($intValue >0) ? “positive” : “zero or negative”;

String Operators

 Concatenate with .

 $strResult = $strOne . $strTwo;

 Convert other types to string:

$intNumber = 45;

$strAgeis = “My age is”;

$strResult = $strAgeis . “ “ . $intNumber;

echo $strResult;

String Processing
 Strings specified using single or double quotes
$str=“hello”;
$str=„hello‟;

 Single quotes are literal
$myStr=„$str one‟;

 Double quotes substitute the content of variables
$myStr=“$str world”;

 Use curly braces if variable name is joined to
more text

$myStr=“${str}world”;

Substrings
• $subStr=substr($str, int $start [, int $length]);

 Extracts portion of $str

• $count=substr_count($str, ‘text’) ;

 Counts the number of occurrences of text in the
string

• $restStr=strstr($str, ‘text’) ;

 Extract substring of $str from first occurrence
of ‘text’

• strlen($str)

 Length of a string

• $str{0}

 Access individual characters in a string

• $newStr=$Str.‘more text’

 Concatenate strings using the dot ‘.’ operator

Logical Operators

 And

 Or

 Xor

 !

 &&

 ||

Error Control Operator (@)

 Example:
$intA = 58;

$int B = 0;

@$intC = $intA / $intB; //no error message...

print "

Is it possible that " . "$intA/$intB" . "=" . "$intC" . "?
";

PHP Built in variables
$GLOBALS

$_SERVER

$_GET

$_POST

$_COOKIE

$_FILES

$_ENV

$_REQUEST

$_SESSION

But be careful: many are server-dependent

Try using print_r() on these.

print "<p>My host name is " . $_SERVER['HTTP_HOST'] . "
\n";

print "<p>I'm viewing this page from " . $_SERVER['HTTP_USER_AGENT'] . "
";

print "We can split the Browser string into a new array using split()
";

$userBits = split(" ", $_SERVER['HTTP_USER_AGENT']);

print "The browser is identified as " . $userBits[0] . " ";

print "or you can split this up too!
";

$theBrowserID = split("/", $userBits[0]);

print "The browser is advertising itself as " . $theBrowserID[0] . " ";

print $theBrowserID[1] . "
\n";

print "Of course the real browser is ";

$lastIndex = count($userBits) - 1;

$realBrowser = split("/", $userBits[$lastIndex]);

print $realBrowser[0] . " version " . $realBrowser[1] . "
\n";

print "My browser can accept " . $_SERVER['HTTP_ACCEPT'] . "
\n";

print "My proxy server (if I have one) is " . $_SERVER['HTTP_VIA'] . "
\n";

print "Document root is " . $_SERVER['DOCUMENT_ROOT'] . "
\n";

print "This page is called " . $_SERVER['PHP_SELF'] . "
\n";

PHP Built in Variables.

Sample Output

My host name is localhost:8080

I'm viewing this page from Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US)
AppleWebKit/533.4 (KHTML, like Gecko) Chrome/5.0.375.125 Safari/533.4
We can split the Browser string into a new array using split()
The browser is identified as Mozilla/5.0 or you can split this up too!
The browser is advertising itself as Mozilla 5.0
Of course the real browser is Safari version 533.4
My browser can accept
application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*
;q=0.5
My proxy server (if I have one) is
Document root is
This page is called webpages/phptest/php-built-in-variables.php

PHP Processing Form Variables

•Recall how CGI used POST and GET methods

•In PHP:

Extract submitted form variables from:
$_GET
$_POST
$_REQUEST (also contains variables but may violate

security by using the wrong method compared to the application
design)

Submitted files can be extracted from:
$_FILES (...more details later)

Example using POST - HTML

<form action="action_part2_example1.php" method="post">

<div><label>Number 1: <input name="m"
size="5"></label></div>

<div><label>Number 2: <input name="n"
size="5"></label></div>

<div><input type="submit" value="Multiply"></div>

</form>

Action using POST - PHP

<h2>Multiply Using PHP with POST</h2>

<?php print "Apache receives the following array: ";

print_r($_POST)

$intResult = $_POST['m'] * $_POST['n'];

print "The result of " . (int)$_POST['m'] . "*" . $_POST['n'] . "=" . $intResult;

?>

Exercise6

 Copy the previous code and change the method
to GET and REQUEST.

 Try to combine the array examples with forms.

Combining PHP with forms

 Recall the code for a self-generating CGI script

 Combining HTML with PHP

HTML / PHP

User request

Data
processing

HTML/PHP

<form action='<?php echo $_SERVER["PHP_SELF"];?>' method="post">

<div><label>Number 1: <input name="m" size="5"></label></div>

<div><label>Number 2: <input name="n" size="5"></label></div>

<div><input type="submit" name="submit" value="Multiply"></div></form>

<h2>Self generating Multiply Using single PHP file with POST</h2>

<?php print "Apache receives the following array: ";print_r($_POST) ?>

<?php

if (isset($_POST['submit'])) {

$intResult = $_POST['m'] * $_POST['n'];

print "The result of " . (int)$_POST['m'] . " * " . $_POST['n'] . " = " . $intResult;

} else { echo "This is the first time the page is loaded
";}

?>

File Processing

 The normal technique for storing permanent
information on the server side is using a database

 Sometimes storage in flat files is useful

 When database storage is overkill

 During development and testing of code

 Rapid prototyping

 When saving specific formats

Basic File Processing

 Open a file for writing

 Write to the file

 Close the file

 Open a file for reading

 Read from the file

 Close the file

Opening Files

• $fp = fopen("file.txt", "r");

 Open a file for reading

• $fp = fopen("file.txt", "w");

 Open a file for writing

 Note depending on operating system (i.e., Windows) file paths
might need to be escaped

 "\\pathtofile\\filename.txt"

Reading a File

• $contents = fread($fp, filesize($filename));

 Reads whole of file into one string

 Poor performance for large files

• $contents = fgets($fp, 4096);

 Reads one line or the number of bytes specfied

 Whichever is less

• $contents =file_get_contents($filename)

 Efficient way to read whole file into string

Writing to a File

• fwrite($fp, $outputstring);

 Write string out to given file pointer

• fwrite($fp, $outputstring, 80);

 Write first 80 characters to output string

Closing Files

• fclose($fp);

 Close given file pointer

 Normally won‟t be an error.

Superglobals

From version 4.1.0 onward, PHP provides an additional set of
predefined arrays containing variables from the web server (if
applicable), the environment, and user input.

• automatically global--i.e., automatically available in every
scope.

• For this reason, they are often known as "superglobals".

• There is no mechanism in PHP for user-defined superglobals.

• You'll notice how the older predefined variables
($HTTP_*_VARS) still exist.

• As of PHP 5.0.0, the long PHP predefined variable arrays may
be disabled with the register_long_arrays directive.

Demo

• welcome_html.htm, welcome.php

• php_superglobals.php

• part2_example1.php

• part2_example2.php

• part2_example3.php

Inspect using web browser, try modifying the URL‟ to indicate new parameters

Look for QUERY_STRING, $_GET

EasyPHP

Apache: (httpd.conf)

cgi.force_redirect = 0

Listen 127.0.0.1:5080

PHP.ini

variables_order = "EGPCS"

request_order = ""

register_long_arrays = Off

register_globals = Off

