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Abstract
This practice update presents the experience of 
launching a large-scale crowdsourcing feature using 
categorized user reports through an established weather 
app in Germany. Starting from the motivation for using 
crowdsourcing, this paper covers all development 
stages of the campaign from design through to legal 
considerations to the final rollout of the feature and first 
data analysis. Of particular focus is parameter choice 
and the possibility for automatic plausibility checks. We 
found that the newly-designed crowdsourcing feature 
was widely embraced by app users, which led to a very 
high number of reports. Analysing a sample dataset 
of approximately 660,000 observations from July to 
November 2020, we provide insight on data composition 
and quality of the reports as well as examples of the 
data integration into operational procedures. We offer 
some recommendations for potential new crowdsourcing 
campaigns based on our preliminary experience. Finally, 
we discuss possible future extensions as well as options 
to introduce standards and achieve an international data 
exchange.
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Crowdsourcing offers the chance to gather previously 
unavailable data on meteorological phenomena and 
thus greatly add to existing observation capabilities 
of meteorological services. Crowdsourcing as a form 
of citizen science, where members of the public are 
encouraged and supported to provide data, has the 
potential to mitigate problems and insufficiencies such as 
a lack of observation capacities (e.g., hail, snow depth) 
or sparse measuring networks. Furthermore, it can 

capture the actual impact on people of meteorological 
phenomena as a new type of measurement. This data 
offers the potential to connect local meteorological 
forecasts to local impact and thus greatly increase the 
usability and value of severe weather warnings.

Data obtained via crowdsourcing has an extremely wide 
range of potential applications. It can be employed to 
benefit forecasting and warning services, be used in 
assimilation and nowcasting (forecasting on a very 
short time scale), and as potential on-the-ground data 
for verification of forecasts and warnings. Consequently, 
a rising number of meteorological services launch new 
crowdsourcing campaigns, strengthen connections to 
voluntary weather observers and storm spotters, or make 
use of existing crowdsourced datasets. An overview of 
European meteorological services activities in this field 
is presented in Krennert et al. (2018) while organizations 
such as the European Meteorological Services 
Network (EUMETNET) and the World Meteorological 
Organization (WMO) are also developing inventories 
of existing crowdsourcing approaches to increase their 
visibility. Within the scope of this paper, we will focus on 
the aspect of crowdsourcing via categorized reports by 
untrained users with a focus on high-impact weather. 

Design and Implementation

The German National Meteorological Service (DWD) 
operates an established weather app called WarnWetter, 
with approximately 10 million downloads and an active 
userbase of about one million users per month. This app 
was extended to include a new feature for crowdsourced 
weather reports by anonymous app users. While the 
basic version of the app is freely available on multiple 
app stores (e.g., https://play.google.com/store/apps/
details?id=de.dwd.warnapp), the new feature could only 
be provided to users of the paid version of WarnWetter 
due to legal restrictions.

Designing the new crowdsourcing functionality required 
the consolidation of a wide array of requirements. Initially, 
stakeholder mapping was performed to identify the 
useful parameters to be obtained. These parameters 
of interest were investigated in regard to existing 
experience of other crowdsourcing actors (mostly other 
meteorological services) and possible existing standards 
for reporting (e.g., typical categories and thresholds). 
Ultimately, a selection of categories and values was 
made in a compromise between the demands of different 
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stakeholders (e.g., forecasters, model developers, 
special users) and a range of existing crowdsourcing 
approaches, in order to ensure the compatibility of 
potential future data exchanges.

Other important concerns were user friendliness and 
simplicity of the implementation. The overwhelming 
majority of users will most likely not be able to accurately 
report phenomena on a fine-grained meteorological 
scale. The final parameter set was partially composed of 
meteorological and impact-based parameters (see Table 
1). User reports feature observations in standardized 
categories with corresponding values and special 
attributes. In addition, they can optionally report text 
comments and pictures of meteorological phenomena 
or impact.

Functionality and user interface design was implemented 
to allow for seamless integration into the existing app 
framework. The whole reporting process was required to 
be straightforward and fast in order to make it accessible 
for a wide range of potential users. Another major effort 
was the preparation of the legal framework around 
the crowdsourcing feature both in regard to collecting, 
storing, and processing potentially personal data and in 
regard to displaying raw user input, especially including 
user pictures, within a governmental app. Consequently, 
a strict opt-in is required to use the crowdsourcing 
feature. The according terms and conditions have to be 
accepted during registration or at a later point. Users can 
opt-out of the feature at any time.

To address potential privacy concerns, reporting was 
implemented quasi-anonymously.  In order to prevent 
sabotage and harmful reports, a random device ID is 
associated with each report. Since this token is fully 
randomized and independent of personal data (such as 
other accounts or device hardware), it is not considered 
to be personalized information according to German 
law. It is also not possible to de-anonymize any users 
and observations are stored with only 250 metre spatial 
accuracy to avoid potential identification or tracking of 
users. Thus, overall the stored data does not qualify as 
“personal data“, which drastically simplifies the handling 
and offers full General Data Protection Regulation 
compliance.

Users can optionally add pictures to their observations, 
submitted under a CC0-like licence which offers 
maximum flexibility to use and share the data. Due to 
peculiarities in German law, the CC0-licence could not 
be used directly and copyrights remain with the users. 
However, DWD gains all rights to use the data according 
to the terms and conditions.

Especially considering the potential display of illegal or 
harmful images in the app, further measures were taken 
in order to minimize this risk. Automatic unsafe content 
detection is applied to any user images. Images with 
clearly visible persons or body parts are flagged and not 
displayed in the app. Furthermore, reporting options for 
users have been implemented to instantly prevent any 
harmful images from being displayed.

To avoid potentially misleading false observations, a 
plausibility check was implemented in the application’s 
backend. The algorithm compares user observations to 
different datasets of existing meteorological observations 
and forecasts (predominantly radar measurements 
and NWP data) and automatically flags suspicious 
observations. Messages flagged as suspicious are 
not displayed to other users but are kept for further 
processing.

Data is stored in a cloud-hosted database and a 
web endpoint has been created which provides 
reports as GeoJSON (JavaScript Object Notation) 
files. Furthermore, an on-site data archive has been 
implemented at DWD. A schematic of the data processing 
is provided in Figure 1. At the end of the concept and 
development phase, extended testing of the new 
crowdsourcing feature was performed through pre-
existing development channels.

Table 1 
Overview of Parameter Categories as Presented in the App and 
Associated Plausibility Checks

Category Value scale Plausibility check

Lightning 4 levels, meteorological Lightning or radar

Wind 5 levels, meteorological Wind or radar data 
from numerical weather 
prediction (NWP)

Hail 6 levels, meteorological Radar

Rain 5 levels, impact Radar and cloud area 
fraction (CAF)

Slipperiness 3 levels, meteorological NWP temperature

Snowfall 3 levels, meteorological Radar or CAF and NWP 
temperature

Snowcover 5 levels, meteorological NWP temperature

Cloudiness 4 levels, meteorological CAF

Fog 3 levels, meteorological -

Tornado 6 levels, impact Radar
Note. In most cases numerical, meteorological values are used 
as a scale (e.g., time between strikes for lightning intensity). Wind 
initially had an impact-based scale, which was abandoned in favour 
of a meteorological scale (inspired by Beaufort) in order to better 
accommodate user reporting preferences.
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Rollout and Early Observations
The crowdsourcing feature was released to users using 
a staged rollout over the course of 1 week without any 
major technical difficulties. As the functionality was 
designed for intuitive usability, only a short introduction 
was provided to users in addition to minimal explanatory 
help text within the app.

Shortly after the full rollout, an overwhelming number 
of more than 26,000 messages per 24 hours was 
observed in a heavy rain event (as seen in Figure 2). 
Due to the very high number of messages and the 
maximum display period of 24 hours in the app, older 
smartphones were under serious stress when rendering 
all observations. As a quick response, the timeframe 
of messages to be displayed by default was limited to 

1 hour in a point release. Further performance tweaks 
and new functionality were quickly provided in another 
full release. After the initial surge, the number of reports 
steadily decreased down to a baseline level of about 
2,500 reports per 24 hours with expected spikes in 
severe weather situations (see Figure 2).

For a more detailed first analysis of observations, a 
subset recorded between the release of the feature on the 
7th of July and the 11th of November 2020 was selected. 
This subset comprises about 660,000 observations 
from about 125,000 unique active contributors. Analysis 
revealed that the majority of observations were provided 
by casual (rather than consistent) users, with about 41% 
of users reporting only once. If this is due to users only 
testing out the new functionality or due to reporting only 
in a severe weather event is still to be evaluated. Another 

Figure 1 
Data Flow in the App Backend

Note. A plausibility check is applied to every observation in multiple steps. Most importantly, there is a comparison to existing weather data from 
radar, lightning measurements, satellite, and NWP. Observations are stored in a SQL-database and provisioned via a web interface in GeoJSON 
format.

Note. Left side of figure: Crowdsourcing screen in the app WarnWetter as seen by users during a heavy rain event on 2nd of August 2020. Right 
side of figure: Total number of reports per day for the sample period from the official launch on 7th of July until the 11th of November.

Figure 2 
Crowdsourcing Screen in the App WarnWetter and Number of Reports During a Heavy Rain Event on 2nd August 2020.
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47% of users reported up to 10 observations and about 
7% up to 20. Of the remainder, 5% reported more than 20 
times and about 0.5% of users contributed more than 100 
reports each. A few users even actively scripted reports 
to be provided by their personal weather stations and 
webcams even though no API was provided.

About 8.5% of messages in the sample set included 
an accompanying image. The majority of images were 
reported in association with observations of cloudiness 
(about 80% overall). Nevertheless, a wide range of 
high impact situations featured in the user pictures (see 
Figure 3). User pictures were overall useful, especially 
for high impact situations such as slippery conditions. 
Only a few cases of false reports were observed (e.g., 
using images copied from the Internet) and almost no 
harmful reports (all of which were filtered by the unsafe 
content detection) even though reporting was de facto 
performed anonymously. Only 0.01% of images were 
reported by users to be problematic, and most of these 
reports were actually false positives.

Meteorologically-false reports were flagged reasonably 
well by the automatic plausibility checks, due to the fact 
that many false reports were drastically wrong (e.g., 
reports of F3 tornadoes in calm weather). Only 0.4% of 
observations were reported at least once by other users 
to be not accurate, suggesting that the automatic control 
was sufficiently restrictive.

However, any plausibility checks need to be carefully 
crafted to allow for previously unknown data to be 
accepted when comparing to pre-existing conventionally 
measured or predicted data. As the sample period was 
mainly covering late summer and autumn, the observed 
high rejection rates for typical winter parameters such 
as snowfall, snow cover, and slipperiness are to be 
expected. For some categories such as lightning, hail, 
and wind however, the high number of flagged messages 
indicates that the initial choice of plausibility checks was 
too restrictive (see Figure 4). While this is not necessarily 
harmful (no false reports are displayed), the omission of 
potentially useful reports should be minimized.

Note. Overall about 9% of messages included pictures, with a strong focus on cloudiness. Visual confirmation of the impact can be beneficial, 
especially for forecasters and users in civil defence.

Figure 3 
Sample of User Pictures Provided Through the App

Figure 4 
Reports and Plausibility Check Failures per Category

Note. Left side of figure: Distribution of reports throughout the different categories. Right side of figure: Percentage of messages that failed the 
plausibility checks per category. Sample subset with 660,000 observations from July to November 2020.
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Conclusions and Recommendations
Overall, the algorithm for automatic plausibility checks 
performed reasonably well. Manual plausibility checks 
could in principle be performed (e.g., by forecasters on 
duty). It would be beneficial to implement a two-stage 
process which combines an automatic flagging with a 
manual plausibility check. Manual inspection could thus 
be limited to suspicious reports only, making it much 
more feasible. Further automated plausibility checks 
via clustering would also be an option; however, the 
data is usually only available with sufficient density in 
urban regions. Automatic plausibility checks need to be 
carefully tuned and balanced for optimal performance 
between too permissive and too restrictive. In countries 
with strong seasonal differences, parameters for the 
checks might need to be split into independent summer 
and winter sets.

We also observed an interaction between reporting 
options offered to the users and plausibility checks. 
If citizens’ willingness to report a meteorological 
phenomenon is high but there is no suitable reporting 
category provided, citizens may tend to misuse 
categories or thresholds. This is likely one reason behind 
the elevated level of wind observations flagged as 
suspicious (see Figure 4). Users were initially offered the 
option to report damaging effects of wind only, but they 
also wanted to report strong wind without damage. This 
led to a mismatch between observations and reports that 
was flagged by the plausibility check, as predicted wind 
speeds were not likely to cause any damage.

In response, the wind scale was adapted to match the 
user expectations more closely, moving away from 
an impact scale with three levels to a meteorological 
scale with five levels. A continuous monitoring of 
data quality and trends (e.g., high percentages of 
observations flagged by the automatic plausibility check) 
is strongly advised, especially in the early phases of a 
crowdsourcing campaign.

Any necessary changes in the reporting values or 
plausibility check parameters need to be carefully 
deliberated and meticulously tracked. Overall, the 
creation of a versioning system for these profiles seems 
advisable in order to keep track of all changes and 
to provide information on the exact profile used for a 
specific observation at any time. Especially for the use 
of crowdsourced observations in the context of numerical 
weather prediction and the operational production chain, 
the data and metadata quality are of extreme importance 
(Nipen et al., 2019).

When planning a new crowdsourcing effort, it is also 
necessary to reserve ample time for legal preparations 
during development, as challenges of data and privacy 
handling can be quite demanding depending on the 
local laws. Aiming for the minimal required amount of 
personal information and a privacy by design approach 
is often the key to being compliant to data protection 
laws, as illustrated throughout the current paper. Data 
minimization also has a positive effect on data handling 
and long-term storage.

When launching a new crowdsourcing campaign, it is 
important to estimate the initial number of observations 
that will be sent in, especially since this amount will also 
strongly depend on the severity of the current weather. 
A scalable implementation of all required components 
is therefore paramount to provide sufficient capacity 
reserves and a satisfactory user experience.

Further, any new feature that is to be released for the 
use of the general public should have early large-scale 
testing followed by a small-scale rollout in order to 
avoid potential problems. Early testing by a dedicated 
user group also offers the chance for an overall more 
participatory nature of user involvement, potentially even 
actively including users in development cycles in a citizen 
science approach (Sturm & Martin, 2019). This approach 
is especially useful in order to find a good match for the 
offered reporting options between user expectations 
and expert needs. Key stakeholders such as emergency 
managers can be involved at this stage in order to tailor 
the functionality and results to their needs.

Close involvement can also have an educational aspect 
by increasing the sensibility of users to high-impact 
weather situations. Citizens can act as weather/impact 
observers via active queries (“Is there fog at your 
location?”) or to verify forecast and warning accuracy 
(“Was there a thunderstorm at your location?”; “Was 
this warning accurate for you?”). Such participatory 
approaches might also offer better verification options, 
as the direct use of impact data in verification remains 
largely challenging due to a number of factors such as 
missing correct negatives (Crocker, 2018).

Another option for strengthening the involvement of users 
is aligned education programmes or gamification efforts. 
This can help to further increase the understanding 
of meteorological phenomena and severe weather 
risks and motivate users to maintain their reporting. 
Approaching special user groups such as trusted 
spotters, storm chasers, or citizens in civil defence can 
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offer potentially better observations as well as create a 
group of dedicated, trustworthy observers.

Data integration into existing systems and availability as 
datasets in common formats should be a high priority in 
order to make the best use of the data. Integration into 
operational systems also has the potential to provide an 
easy mechanism for manual quality control insofar as 
the systems can be extended 
to include according editing 
tools. Of central importance 
is the early integration into 
forecaster workstations, so 
that the data can be actively 
used to improve forecasts 
and warnings in high-impact 
situations. An example of 
this integration can be seen 
in Figure 5 for a high-impact 
freezing rain event. Both 
the general public and the 
forecasters benefited from 
the highly localized impact 
information gathered through 
crowdsourcing.

Crowdsourcing data was also directly provided to 
situation rooms and special users in civil defence via 
the fire brigades weather information (FeWIS) system, 
thus raising situational awareness and enabling a swifter 
and more precise response to the high impact event 
(see Figure 6). Especially for users in civil defence and 
emergency management, real-time impact information 

Figure 5 
Use of Crowdsourcing Data in Forecasting

Note. Left panel: Situation during a freezing rain event in February 2021 as seen in the app. Middle panel: The NinJo forecaster workstation as a 
filtered dataset in conjunction with data on the precipitation phase. Right panel: Sample of user-provided impact images during the event.

Note. Localized impact information can provide valuable insight into the current situation and the 
expected development during a high impact event (in this example, freezing rain and snowdrift).

Figure 6 
Integration of Crowdsourcing Data Directly Within the FeWIS System for Special Users in Civil Defence
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is a key requirement, which in many cases cannot be 
provided by conventional meteorological measurements.

When displaying impact data from crowdsourcing, the 
choice of the right colour scale for visualization is of great 
importance. In our campaign, report categories were 
mapped to DWD´s warning thresholds and thus made 
use of the official four-colour scheme used in warnings. 
Preliminary analysis suggests that untrained users 
will have a tendency to report systematically stronger 
impacts than expected. Wind reports were a prime 
example of this tendency with users reporting hurricane 
force winds even in normal storms, potentially due to a 
subjectively felt higher impact or due to the rarity of the 
event. Consequently, it might be advisable to update the 
mapping of parameter colours if this mismatch becomes 
too strong, or to choose an independent colour scheme.

Full documentation including versioning metadata and 
in an accessible format such as GeoJSON facilitates the 
use of crowdsourced data by other actors and especially 
in research and development. Potential first steps include 
comparisons to other conventional observation sources 
to create trust in the new data source. This also makes 
it possible to draw on existing experience, for example 
in the comparison of data to radar observations (Barras 
et al., 2019). Especially in urban regions, the density 
of crowd observations will be very high (Meier et al., 
2017) and accordingly the data can be of great use in 
climatological modelling of urban heat islands and city 
planning (Venter et al., 2020). Extensive experience 
exists for automated crowdsourcing (e.g., through private 
weather stations) – associated cross references can in 
part also be helpful for quality control in non-automated 
crowdsourcing (Fenner et al., 2017). If user images 
are part of the crowdsourcing effort, sophisticated 
data analysis tools such as machine learning can be 
employed for automatic classification and to build up 
impact databases. Through aligned datasets, the impact 
classification can be improved even further, especially 
for stakeholders in emergency management.

Involvement in international efforts to create standards 
is advisable, as the same platforms can also offer 
information on common best practice in crowdsourcing. 
Aligned efforts include the WMO High-Impact Weather 
(HIWeather) Citizen Science program and the EUMET 
crowdsourcing working group. Cooperation will also 
foster the potential for standardization, joint quality 
control techniques, and international data exchange.
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