Our Wellington and Manawatū campuses are open, Auckland remains closed at AL3. More information.




123.101 Chemistry and Living Systems 15 credits
This course takes a wide range of examples from everyday life to illustrate concepts of organic and biological chemistry. The structure, properties and reactions of organic compounds, identification of organic compounds using spectroscopy, and the mechanisms of organic reactions are covered. It also introduces the concepts of chemical equilibrium, particularly as they are applied to acids and base, and chemical kinetics.
123.102 Chemistry and the Material World 15 credits
This course discusses the central role of energy dispersal in determining spontaneous physical and chemical changes. Fundamental bonding theories will be used to rationalize molecular structures. Transition metal chemistry will be used to illustrate these concepts. The importance of intermolecular forces, atomic structure and properties of elements is emphasised, and modern methods and applications are introduced.
123.103 Chemistry for Modern Sciences 15 credits
An introductory course in chemistry suitable for students with little previous experience in the subject. The basic concepts of chemistry, including atoms and molecules, the periodic table, bonding, equilibria, chemical reactions, and chemical energetics, are taught with contextual references to everyday life.
123.104 Chemistry for Biological Systems 15 credits
Building on basic chemical principles, this course provides the atomic and molecular foundations for understanding chemistry and the life sciences. Starting from the structure of the atom and an understanding of Gibbs energy, it builds a chemical model for bonding, the composition of molecules, non-covalent interactions, chemical equilibria, acids/bases, chemical reactivity, and biological macromolecules. The theory is supported by practical experiments.
123.105 Chemistry and the Physical World 15 credits
An examination of how the properties of atoms and molecules determine the properties and behaviour of matter. The transfer of energy that occurs during chemical and physical processes and the rates of these processes are discussed and rationalised using atomic and molecular properties. Techniques for characterising matter and materials are introduced.


123.171 Chemistry for Biological Systems 1 15 credits
The chemistry of biological and engineering materials under-pin all food and chemical processing industries. This course extends NCEA Level 3 chemistry to facilitate this with a particular focus on the structure, properties and reactions of organic compounds. This is a required course for all Chemical and Bioprocess Engineering major and Food Technology students, who will, through tailored extension workshops apply chemical fundamentals to problems in a suitable context.
123.172 Chemistry for Biological Systems 2 15 credits
This course introduces the Chemistry of biological and engineering materials that applies to all food and chemical processing industries. This course extends 123171 Chemistry with a particular focus on the properties and reactions of engineering and biological materials. Specifically principles of thermodynamics, properties of matter and application to electrochemical processes and biochemical transformations at a molecular level are introduced.


123.201 Chemical Energetics 15 credits
Molecular processes are inherently random and yet we can meaningfully predict the yield or the rate of a chemical reaction. In this course we discover that this apparent paradox is explained by the idea that although single molecules behave randomly, large numbers of molecules and atoms do behave in a predictable manner. We develop the principles of thermodynamics and kinetics from this idea and apply these principles to physical, chemical, biochemical and industrial processes. The lab course focuses on broadly applicable skills in measurement, analysing and presenting physical chemistry data, understanding sources of uncertainty in physical measurements and written communication skills.
123.202 Organic and Biological Chemistry 15 credits
Students will find out how to apply simple principles to understand the reactions of organic and biological molecules. This will provide the knowledge needed to predict how organic reactions work and to understand the related biological processes. Students will also be given the tools to identify a variety of different molecules. The laboratory course will cover the making and identification of organic materials, using the principles that have been learned in the lecture course.
123.203 Inorganic Chemistry and Modelling 15 credits
Topics in inorganic chemistry including transition metal complexes, organometallic chemistry, bioinorganic chemistry, and main group chemistry. An introduction to symmetry, molecular orbital theory, and computational chemistry.
123.204 Chemical and Biochemical Analysis 15 credits
A course that introduces the underlying concepts and practical methodologies used for the analysis of chemical and biochemical compounds. Both qualitative and quantitative aspects of chemical and biochemical analyses using a range of spectroscopic and laboratory techniques will be studied.
123.206 Environmental and Analytical Chemistry 15 credits
An introductory course in geochemistry and chemistry of the atmosphere. Furthermore it introduces the underlying concepts and practical methodologies used for the qualitative and quantitative analysis of chemical and biochemical compounds. The lectures are complemented by a practical project and a laboratory course, requiring the application of the introduced concepts.
123.207 Molecular Chemistry 15 credits
The world is built up from molecules. Viewing systems - from the human body to the newest satellite - as composites of molecules is a powerful approach to understanding the world. In this course we will deconstruct seemingly complex systems into their simpler molecular components. We will understand their structures and develop ways they can be synthesized from the ground up. This is a lab course focussed on making molecules which will build synthetic skills.
123.208 Chemical Analysis 15 credits
Determining the structure of matter and how much of it is present is the focus of analytical chemistry. In this course we introduce the chemical and physical principles that underpin modern analytical chemistry methods and illustrate how analytical chemistry plays a key role in fields such as forensic and environmental science. You will obtain hands-on experience with modern analytical instrumentation in the laboratory and use skills in handling chemicals and data analysis to solve problems in analytical chemistry. We develop skills in error analysis and scientific writing.
123.210 Organic Chemistry Perspectives 15 credits
Aspects of organic chemistry relevant to biologically, pharmaceutically, environmentally and nutritionally important molecules including organic reactions, reaction mechanisms, computational organic chemistry and reaction outcomes. Determination of structure using analytical techniques. A course of practical work to complement the lecture material.
123.271 Molecules to Materials 15 credits
The chemistry of materials under-pins all chemical processing industries. This course facilitates a fundamental understanding of aqueous solutions, organic, inorganic and polymer chemistry relevant to material science, including soft materials such as gels and colloids. The laboratory training develops skills in a range of synthesis, separation and analysis techniques relevant to materials chemistry.
123.305 Contemporary Topics in Chemistry 15 credits
We will discuss and analyse the grand challenges and breakthroughs of modern chemistry. This discussion will lead to an understanding of how and why chemistry is central to the most pressing global challenges. Topical questions will vary from year to year. You will learn how to critically evaluate sources of scientific information and present scientific and chemical concepts using different media and to a variety of audiences.
123.306 Molecular Structure and Dynamics 15 credits
This course applies physical concepts and models to chemical and biological systems, over a range of scales, focusing on the relationship between structure and dynamics and change. The laboratory training develops expertise in a range of physical techniques.
123.307 Advanced Inorganic Chemistry 15 credits
This course focuses on the structure, properties and reactivity of inorganic compounds with a particular focus on transition metal complexes. The laboratory training develops expertise in a broad range of experimental techniques that relate to inorganic chemistry.
123.308 Advanced Organic Chemistry 15 credits
This course focuses on recent trends and developments in the design and reactivity of organic compounds. It will introduce how a knowledge of organic reactions and mechanisms can be used to synthesise biologically relevant molecules, and will include organic and metal-based catalysis as well as heterocyclic chemistry. The laboratory training develops expertise in a range of organic chemistry experimental techniques.
123.310 Advanced Concepts in Organic Chemistry 15 credits
Computational aspects related to organic chemistry. Structure, reactivity, synthesis, retrosynthesis, structure determination by analytical methods. Mechanism of organic reactions and chemistry of heterocyclic and main group elements. An emphasis on the application of organic reactions to engineer molecules of interest in the chemical, biochemical and pharmaceutical fields. Lectures are complemented by an intensive laboratory experience.
123.311 Advanced Physical and Analytical Chemistry 15 credits
Principles and applications of advanced chromatography and radiative methods and techniques, as applied to analytical chemistry. Intermolecular interactions and applications to physical and chemical properties of fluids (gases, liquids and supercritical fluids), non-electrolyte solutions and solutions of electrolytes. Principles of heterogeneously catalysed reactions and their applications to industrial processes. A course of practical work to complement the lectures.
123.312 Advanced Organic Chemistry 15 credits
Structure, reactivity and synthesis of organic molecules, retrosynthetic analysis, reactive intermediates, stereoelectronic effects, heterocyclic chemistry and nuclear magnetic resonance spectroscopy (NMR) including 2D and multinuclear experiments. The emphasis is on understanding organic reactions, utilizing them to make molecules of interest, and structural characterization by NMR. Lectures are complemented by problem solving sessions and a laboratory course which includes a small project.
123.313 Advanced Inorganic Chemistry 15 credits
The applications of group theory methods for molecular orbital theory and spectroscopy for inorganic systems including vibrational, electronic and spin spectroscopy. The chemistry of coordination and organometallic compounds including reaction mechanisms of d-block elements, homogeneous and heterogeneous catalysis, metal-metal bonded systems and f-block elements. A course of practical work to complement the lectures.
123.315 Chemistry and Nanoscience Research Project 15 credits
Students will carry out a research project in an area of chemistry (or nanoscience) under the supervision of an academic staff member. Projects may range from theoretical investigations, to synthetic preparations, to characterisation and analysis of biological, nanoscale, or soft materials, or some combination thereof. Interdisciplinary topics will be encouraged.
123.326 Advanced Chemical Biology 15 credits
The fundamental molecules of life with an examination of the chemical basis for their biological functions. The fundamentals of chemical and biological catalysis will be explored, and the actions of drug molecules as mimics or inhibitors of bioprocesses will be discussed. Physical aspects and energetics will be addressed. A laboratory programme and written and oral assignments will complement the lecture material.
123.331 Advanced Physical and Computational Chemistry 15 credits
This course applies quantum theory to molecular and atomic structure and spectroscopy. The use of symmetry in chemistry is explicitly treated. Statistical and dynamical theories are used to describe molecular behaviour and reactivity. Computational chemistry methodology is systematically applied to chemical systems. A course of practical work and a spectroscopy project complements the lectures.
123.332 Advanced Topics in Chemistry 30 credits
A project in an area of chemistry aimed at preparation for postgraduate research in chemistry. A selection of modules (4 maximum) covering areas of Inorganic, Physical, Environmental, Analytical and Organic chemistry.
123.711 Research Methods in Chemistry and Nanoscience 30 credits
Four compulsory modules covering research project development and computational methods in science; two modules selected from: statistical methods for data acquisition/handling, BioNMR, single molecule techniques and polymer physics and/or a relevant topic to be negotiated.
123.712 Advanced Nanoscience and Physical Chemistry 30 credits
A selection of modules covering topics in structural diffraction methods, structural methods in biochemistry, supramolecular chemistry and self-assembly, anion receptor chemistry, sustainable chemistry, statistical mechanics, surface analysis, spin transition/activation of small molecules in chemistry and biochemistry, and or a topic to be negotiated with the lecturer.
123.713 Advanced Chemical Synthesis 30 credits
A selection of modules (6 maximum) covering topics in advanced synthetic chemistry, peptides for biological applications, drug design and delivery, modified nucleic acids as probes in life sciences, activation of small molecules in chemistry and biological chemistry AND/OR a topic to be negotiated with the lecturer.
123.798 Research Report 30 credits
123.870 Research Report 60 credits
123.871 Thesis 90 Credit Part 1 45 credits
A supervised and guided independent study resulting in a published work.
123.872 Thesis 90 Credit Part 2 45 credits
A supervised and guided independent study resulting in a published work.
123.875 Thesis 90 credits
A supervised and guided independent study resulting in a published work.
123.897 Thesis 120 Credit Part 1 60 credits
A supervised and guided independent study resulting in a published work.
123.898 Thesis 120 Credit Part 2 60 credits
A supervised and guided independent study resulting in a published work
123.899 Thesis 120 credits
A supervised and guided independent study resulting in a published work.
123.900 PhD Chemistry 120 credits