EFFLUENT MANAGEMENT ON A DAIRY SHEEP FARM

RESEARCH AIM 1.4: ENVIRONMENTAL FOOTPRINT

Ministry of Business,

Innovation & Employment

Natalie Watkins, Bob Longhurst and Chris Smith

AgResearch

OUTLINE

- Overview of Research Aim Environmental Footprint
- Effluent characteristics
 - Effluent volumes
 - Effluent concentrations
 - Comparison with other dairying systems
- Effluent delivery systems
- Rules and Regulations

OVERVIEW OF ENVIRONMENTAL FOOTPRINT RESEARCH AIM

- **Objective 1:** Understanding the dairy sheep farm system
 - » Literature Review
 - » Case study farm nutrient flows
- **Objective 2:** Characterising dairy sheep effluent
 - » Characterise nutrient and bacteria contents
 - » Understand volumes and flows
 - » Develop best management practices
- **Objective 3:** Understand the modelling framework
 - » Information required to incorporate dairy sheep into OVERSEER® nutrient budget model
- **Objective 4:** Design a low N footprint dairy sheep farm system
 - » \$ profit per unit N leached
- Objective 5: Dairy sheep farming as a low N emitter to water
 - » Field validation research trials

OBJECTIVE 2: CHARACTERISING DAIRY SHEEP EFFLUENT

Aim:

- Characterising the nutrient contents on our case study farms
- Quantifying the volumes and flows of effluent

Outcome:

- Report on dairy sheep effluent based on case study farm data
- Factsheet on dairy sheep effluent good management practices

UNDERSTANDING DAIRY SHEEP EFFLUENT

Information collected:

- 1. Estimates of dairy shed wash down volumes
- 2. Effluent sampling for laboratory analysis of nutrient composition
- 3. Effluent measurements from delivery systems to calculate hydraulic and nutrient loadings to land

EFFLUENT VOLUMES

Effluent comprises:

- Stock excreta at dairy shed
- Dairy shed and holding yard wash down
- Milk vat cleaning (not necessarily daily)
- Once vs twice a day milking

Rainfall:

- Holding yard

EFFLUENT VOLUMES

Effluent generated from dairy sheds
 = 5-10 L/ewe/day
 (50-70 L/cow/day)

If sheep are housed in barns

 effluent volumes increase
 considerably
 = 15-20 L/ewe/day

DAIRY SHEEP SUMP EFFLUENT COMPOSITION

Nutrient	Mean	Median	Range
Solids (% DM)	0.36	0.24	0.11 – 1.42
Nitrogen (kg/m³)	0.170	0.144	0.045 – 0.465
Phosphorus (kg/m³)	0.031	0.030	0.010 - 0.056
Potassium (kg/m³)	0.145	0.135	0.065 – 0.270
Sulphur (kg/m³)	0.019	0.017	0.007 – 0.057

COMPARISON OF DAIRY EFFLUENTS

Nutrient	Sheep	Goat	Cow
Solids (% DM)	0.4	1.4	0.9
Nitrogen (kg/m³)	0.17	0.21	0.45
Phosphorus (kg/m³)	0.03	0.06	0.07
Potassium (kg/m³)	0.15	0.15	0.37
Sulphur (kg/m³)	0.02	0.14	0.06
Nutrient value (\$/m³)	5.00	7.00	12.60

RELATIONSHIP BETWEEN NITROGEN AND SOLIDS CONTENT OF EFFLUENTS

EFFLUENT MANAGEMENT SYSTEMS

EFFLUENT DELIVERY SYSTEMS

EFFLUENT SPREADING DISTRIBUTION

Average application depth

Monaghan et al, 2009

NUTRIENT LOADING – TRAVELLING IRRIGATORS example from dairy cow industry

Speed Setting	Speed (m/hr)	Depth (mm)	N (kg/ha)	K (kg/ha)
Fast	60	12	36	42
Medium	36	18	63	69
Slow	24	24	124	86

RULES AND REGULATIONS

- 12 Regional Councils & 3 Unitary Regions (Tasman, Marlborough & Gisborne) control effluent land application
- Applications come under resource consent or covered by permitted activity rules
- However, district councils (67) may also have additional rules
- Nutrient loading (kg N/ha/yr): 150 pasture; 200 crop
- Hydraulic loading application depth < 25 mm
- Not allow effluent to enter a waterway i.e. good management practice around effluent placement & timing

TAKE HOME MESSAGES ON MANAGING DAIRY SHEEP EFFLUENT

- Understand local rules and regulations
- Understand your soil types
- Install appropriate effluent delivery systems
- Monitor spreading distribution to understand depth of application
- Sufficient storage
- Solids management
- Ensure system handles wool fibres

ACKNOWLEDGEMENTS

MBIE
Waituhi Kuratau Trust
Kingsmeade Artisan Cheese
Spring Sheep Dairy
Maui Milk
Antara Ag

AgResearch colleagues:
Linda Samuelsson, Ross Monaghan
and David Houlbrooke

