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groups of synchronous oscillators and asynchronous oscillators. We consider a network

formed from N equal-sized populations, at equally-spaced points around a ring. We use

the Ott/Antonsen ansatz to derive coupled ODEs governing the level of synchrony within

each population, and describe chimeras using a self-consistency argument. For N = 2 and

3, our results are compared with previously known ones. We obtain new results for the

cases of 4,5, . . . ,12 populations, and a numerically based conjecture resulting from the

behaviour of larger numbers of populations. We find macroscopic chaos when more than

five populations are considered, but conjecture that this behaviour vanishes as the number

of populations is increased.
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Chimeras on a ring of oscillator populations

Chimeras are spatiotemporal patterns of varying synchrony which occur in networks of cou-

pled oscillators. We consider a network formed from N populations of oscillators, with non-

local coupling between the populations, whose strength depends on the distance between

them. The cases of N = 2,3 and N = ∞ have been studied previously, and we bridge the gap

between these two extremes. We investigate the effects of varying both N and the level of fre-

quency heterogeneity within the populations. We find chaotic behaviour for sufficiently large

N, but this behaviour vanishes as N → ∞. Also, for finite N and sufficiently small frequency

heterogeneity, stationary chimeras are found to be unstable.

I. INTRODUCTION

Chimeras occur in networks of coupled oscillators and are characterised by coexisting groups

(or domains) of synchronous oscillators and asynchronous oscillators21,25. One of the earliest

systems in which such a state was observed is a ring of nonlocally coupled phase oscillators2,3,13.

Here, oscillators on part of the ring are synchronous while those on the remainder of the ring are

not. To analyse this behaviour, Abrams et al.1 coarse-grained the domain into two equally-sized

populations of oscillators, with strong coupling within a population and weaker coupling between

populations. Here, in the limit of an infinite number of oscillators in each population, a chimera

appears as a state in which one population is perfectly synchronised while the other is partially

synchronous. These authors used the Ott/Antonsen ansatz23,24 to derive differential equations

governing the complex-valued order parameters describing the levels of synchrony within the two

populations. The only work which addresses the intermediate case of coarse-graining a ring to

more than two populations seems to be that of Martens19, who considered three populations. He

found two types of chimeras, with either one or two populations being synchronous while the

other two (one) were partially synchronous. Martens also used the Ott/Antonsen ansatz to study

these chimeras, as many have done subsequently in different settings15,16,18,21,31,35. No coarse-

graining into more than three populations seems to have been done, and Martens raised a number

of questions about what would happen if this was undertaken. For example, would the number

of possible chimera states increase as the number of populations is increased, with every possible

combination of synchronous and asynchronous populations allowed?

Another result of interest is that of34, who showed that while for an infinite number of identical
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phase oscillators on a ring a chimera is a neutrally stable stationary pattern, numerical simulations

of finite networks show that chimeras move in an irregular way about the domain and eventually

collapse, with an average lifetime which increases exponentially with network size. The irregu-

lar motion was shown to be chaotic, and the collapse was to the completely synchronous state.

However, for networks formed of two populations each consisting of between two and an infinite

number of oscillators, Panaggio et al.26 showed that chimeras are stable and not chaotic. This

raises the question of the origin of the chaotic behaviour observed in34, since it does not occur

for networks of either two populations, or an infinite number of them (each consisting of one

oscillator), but for a finite number of populations (each consisting of one oscillator).

In this paper we address some of the questions raised above by considering a ring of sinu-

soidally coupled phase oscillator populations, with each population being at one of a number of

equally-spaced points around the ring. We let the number of oscillators in each population be

infinite. The oscillators are chosen to be heterogeneous, so that the Ott/Antonsen manifold is at-

tracting rather than neutrally stable, and the level of heterogeneity is a key parameter which is

varied. For the cases of two or three populations, our results can be compared with previously

known ones. We obtain new results for the cases of 4,5, . . . ,12 populations, and a numerically

based conjecture resulting from the behaviour of larger numbers of populations. We find macro-

scopic chaos when more than five populations are considered, but conjecture that this behaviour

vanishes as the number of populations is increased. The model is presented in Sec. II and we also

characterise the possible solutions of interest there. Results are given in Sec. III and we conclude

in Sec. IV.

II. MODEL

The model consists of N populations each consisting of M oscillators. The populations are

thought of as being at the vertices of a regular N-gon, which lie on a circle S with circumference

2π . The strength of coupling between two oscillators depends only on which populations they

are in, and the (positive) strength of coupling between populations decays as the distance between

them (the shortest distance on S) increases.

The equations are

dθ a
k

dt
= ω

a
k +

1
M

N

∑
b=1

M

∑
j=1

Ca,b sin(θ b
j −θ

a
k −α) (1)
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where θ a
k is the phase of the kth oscillator in population a. For all a ∈ {1,2, . . .N} and all k ∈

{1,2, . . .M}, ωa
k is chosen from a Lorentzian with centre zero and half-width-at-half maximum

δ . Such a model was presented in27, although they considered identical oscillators within each

population, and possibly different values of ωa for each population, and left the coupling between

populations to be general. Skardal and Restrepo29 considered a similar model with α = 0 and

a network for which coupling within a population was strong while that between oscillators in

different populations was uniform and weak. Smirnov et al.30 considered a model of this form for

which coupling was only between neighbouring populations. See also5.

C is an N ×N coupling matrix which is circulant, i.e. fully determined once a row is specified.

To calculate C, let g(x) = (1+Bcosx)/(2π) where B is a parameter and x is a position on S. Let

∆x = 2π/N be the arclength on S between populations, and xi = (i−1)∆x be the locations of the

populations, for i = 1,2, . . .N. The entries of C are formed by integrating g(x) over intervals of

length ∆x, centred at the xi. Specifically, entries in the first row of C are

C1,i =
∫ xi+∆x/2

xi−∆x/2
g(x) dx=

1
N
+B

sin(xi +∆x/2)− sin(xi −∆x/2)
2π

=
1
N
+B

sin(∆x/2)cos(xi)

π
(2)

and thus

Ca,b =
1
N
+

Bsin(∆x/2)
π

cos(xa − xb) (3)

Entries in C1,i for N = 2,3,4,20 and B = 0.35 are shown in Fig. 1. We see that C1,1 is always

the largest, i.e. coupling within a population is stronger than between populations. The coupling

strength between populations decreases as the distance between them (measured along the shortest

path on S connecting them) increases, reaching a minimum for populations most distant from one

another. We fix B = 0.35 for the rest of the paper.

A. M = ∞ equations

Letting the number of oscillators in a population, M, go to infinity, and using the Ott/Antonsen

ansatz we find that the dynamics of the populations are given by

dza

dt
=−δ za +(i/2)

[
e−iβ Ra + eiβ R̄az2

a

]
(4)

where β = π/2−α , overline indicates the complex conjugate, and

Ra =
N

∑
b=1

Ca,bzb (5)
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FIG. 1. Entries in the first row of the coupling matrix, C1,i for N = 2,3,4,20 ((a),(b),(c) and (d), respec-

tively). In each panel the horizontal index is i. Parameter: B = 0.35.

(A derivation of similar equations is given in4,18.) The complex-valued order parameter za is

the average over k of eiθ a
k for oscillators in population a. Its magnitude describes the level of

synchrony within population a while the negative of its argument gives the mean of the phases

within population a1,15. Specifically, if za = rae−iφa then the phase distribution for oscillators in

population a is

Fa(θ) =
1− r2

a
2π[1−2ra cos(θ −φa)+ r2

a]
, (6)

a unimodal function with its maximum at θ = φa.

Note that if we considered identical oscillators (i.e. δ = 0) each population would be described

by a complex-valued equation similar to (4) and another real-valued differential equation, and a

number of constants would have to be specified for each population27; this is the case for either

finite or infinite M — see the Watanabe/Strogatz ansatz28,32. Note also that as N → ∞, Ca,b →
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(1+Bcos(xa − xb))/N = g(xa − xb)∆x, so in this limit we have

R(x, t) =
∫ 2π

0
g(x− y)z(y, t) dy (7)

and the dynamics are given by

∂ z(x, t)
∂ t

=−δ z(x, t)+(i/2)
[
e−iβ R(x, t)+ eiβ R̄(x, t)z2(x, t)

]
(8)

a system studied in2,3,15,22.

Note that (4) is invariant under the rotation za → zaeiγ for all a and any constant γ , so to remove

this degeneracy we first write za = raeiφa and thus have the dynamics

ṙa =−δ ra +
r2

a −1
2

N

∑
b=1

Ca,brb sin(φb −φa −β ) (9)

and

φ̇a =
1+ r2

a
2ra

N

∑
b=1

Ca,brb cos(φb −φa −β ) (10)

The degeneracy means that only phase differences appear in these equations (as in (1)), and thus to

remove it we define phase difference variables relative to φN : ψa ≡ φa −φN for a = 1,2 . . .N −1.

Thus we have the 2N −1 equations

ṙa =−δ ra +
r2

a −1
2

N

∑
j=1

Ca,brb sin(ψb −ψa −β ) (11)

for a = 1,2 . . .N and

ψ̇a =
1+ r2

a
2ra

N

∑
b=1

Ca,brb cos(ψb −ψa −β )−
1+ r2

N
2rN

N

∑
b=1

CN,brb cos(ψb −β ) (12)

for a = 1,2 . . .N −1, where ψN is set to zero.

B. Steady states via self-consistency

The steady states we are interested in are stationary solutions of (4) in a rotating coordinate

frame21, i.e. they satisfy

0 = (iω −δ )za +(i/2)
[
e−iβ Ra + eiβ R̄az2

a

]
(13)

for a = 1,2, . . .N where ω is the rate at which the coordinate frame is rotating. Solving this for za

we obtain

za = f (Ra)≡
δ − iω −

√
(iω −δ )2 + |Ra|2
ieiβ R̄a

(14)
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where we take the negative square root to ensure |za| ≤ 1 and we can insert this into (5) to obtain

a set of equations that the Ra must satisfy:

Ra =
N

∑
b=1

Ca,b

(
δ − iω −

√
(iω −δ )2 + |Rb|2
ieiβ R̄b

)
(15)

Using the form of Ca,b we have

Ra =
1
N

N

∑
b=1

f (Rb)+
Bsin(∆x/2)

π

[
cos(xa)

N

∑
b=1

cos(xb) f (Rb)+ sin(xa)
N

∑
b=1

sin(xb) f (Rb)

]
(16)

i.e. each Ra has the form

Ra = D+E cos(xa)+F sin(xa) (17)

for some constants D,E and F . (These are independent of index a.) We can use the invariance

under rotation to assume that D is real and positive, but E and F are generically complex.

The network has the symmetry of a regular N-gon, so given a steady state, we can obtain another

one by rotating it through a multiple of 2π/N around the circle S, i.e. increasing (or decreasing)

all population indices by the same amount. For odd N the only steady states found below were

invariant under reflection in a line passing through one population and the centre of S. These can

be described by (17) with F = 0. Thus summing (17) over a and using (15) we obtain

D =
1
N

N

∑
a=1

N

∑
b=1

Ca,b

(
δ − iω −

√
(iω −δ )2 + |D+E cos(xb)|2

ieiβ (D+ Ē cos(xb))

)
. (18)

Multiplying (17) by cos(xa) and then summing over a we obtain

E =
2
N

N

∑
a=1

N

∑
b=1

Ca,b

(
δ − iω −

√
(iω −δ )2 + |D+E cos(xb)|2

ieiβ (D+ Ē cos(xb))

)
cos(xa). (19)

Taking real and imaginary parts of (18)-(19) gives four real equations for the four unknowns:

D,ω,Re(E), Im(E).

For even N we saw two types of steady states: those invariant under reflection in a line passing

through one population and the centre of S (and thus the population on the opposite side), and

those invariant under reflection in a line through the centre of S which evenly divides the network

into two groups of N/2 populations. The former type can be found as above. The latter have the

form Ra = D+E cos(xa +∆x/2). Summing this expression over a we obtain

D =
1
N

N

∑
a=1

N

∑
b=1

Ca,b

(
δ − iω −

√
(iω −δ )2 + |D+E cos(xb +∆x/2)|2

ieiβ (D+ Ē cos(xb +∆x/2))

)
(20)
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and by using similar reasoning to that above we obtain

E =
2
N

N

∑
a=1

N

∑
b=1

Ca,b

(
δ − iω −

√
(iω −δ )2 + |D+E cos(xb +∆x/2)|2

ieiβ (D+ Ē cos(xb +∆x/2))

)
cos(xa +∆x/2). (21)

Taking real and imaginary parts of (20)-(21) enables us to find D,ω,Re(E), Im(E) for these types

of solution. Similar self-consistency equations have been derived previously3,14.

In summary, all of the steady states of interest can be found by solving four simultaneous

nonlinear equations for D,ω,Re(E), Im(E), substituting these into the appropriate expression for

Ra, which then gives the za from (14). These can then be uniformly rotated if necessary to make zN

real, and thus we have values of the variables needed for (11)-(12). We see that there are spatially

uniform states with E = 0, and states with E ̸= 0 for which both the real and imaginary parts of the

vector R (with components Ra) vary sinusoidally as we move around the circle S. Thus for the type

of coupling used here, one cannot obtain stationary chimeras with arbitrary levels of synchrony in

different populations, only those described here.

III. RESULTS

We now show the results of numerically analysing (11)-(12) for 2 ≤ N ≤ 12 and for fixed

parameter values B = 0.35 and β = 0.03.

A. Dynamics for small N

1. N = 2

This case has been studied by a number of authors20. The entries of the first row of the coupling

matrix are

C1,1 = 1/2+0.35/π and C1,2 = 1/2−0.35/π (22)

A parameter A is used in1,12,14,16,26 to quantify the difference between coupling within a popu-

lation and coupling between populations, and we see that the values above correspond to A =

C1,1 −C1,2 = 0.7/π ≈ 0.2228. The ref.1,26 considered the case of δ = 0, i.e. identical oscillators,

while12,14,16 considered δ > 0 and performed some bifurcation analysis as δ was varied. The pa-

pers1,26 show that for (A,β ) = (0.2228,0.03) and δ = 0 the system supports a stable stationary

chimera, i.e. a solution for which |z1|= 1 and |z2|< 1 (or vice versa). For other values of A and β ,
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FIG. 2. N = 2. Blue: stable steady state; red: unstable steady state. The stable chimeras which exists at

δ = 0 are destroyed in a pitchfork bifurcation as δ is increased. The equally-synchronous state for which

|z1|= |z2| is stable for 0 ≤ δ < 0.000123 (barely visible) and for 0.005155 < δ .

refs.12,14,16 show that increasing δ causes the values of |z1| and |z2| to approach one another until

they meet in a pitchfork bifurcation, destroying the chimeras, beyond which only solutions with

|z1|= |z2| are stable. The results of calculations for (B,β ) = (0.35,0.03) are shown in Fig. 2 and

we see that the same scenario occurs here. |z| at steady states is shown for both populations and

we see the stable chimera destroyed in a pitchfork bifurcation as δ is increased. The completely

synchronous state for which |z1 = |z2| = 1 is stable for δ = 0 and persists as δ is increased, (and

the |za| decrease) but loses stability at δ ≈ 0.000123 before regaining stability at δ ≈ 0.005155.

2. N = 3

The N = 3 case was considered by Martens19 who used a coupling matrix of the form
1 1−A 1−A

1−A 1 1−A

1−A 1−A 1

 . (23)

For our system

C1,1 =
1
3
+

0.35
√

3
2π

≈ 0.4298 and C1,2 =C1,3 =
1
3
− 0.35

√
3

4π
≈ 0.2851 (24)
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Martens considered the case of identical oscillators, so to compare our system with his we can set

δ = 0 and rescale time so that C1,1 = 1. This gives a value of

A = 1−
1
3 −

0.35
√

3
4π

1
3 +

0.35
√

3
2π

≈ 0.3367. (25)

For N = 3 and identical oscillators we expect two types of stationary chimeras: either two

populations are synchronised and one is not, or one is synchronised while two are not; see

Sec. II B. Martens referred to these as SDS and DSD respectively (S for synchrony and D for

drift/desynchrony). Since we will consider chimeras in networks of more than three populations

we introduce the terminology of type 1 (T1) and type 2 (T2) solutions for which either one or two,

respectively, populations are most synchronous. Thus a DSD solution is T1 and a SDS solution

is T2. For odd N, a T1 solution will have two populations with the least amount of synchrony

(measured by the magnitude of the zk) on the opposite side of the ring from the most synchronous

population, while a T2 solution will have only one least synchronous population. For even N a T1

solution will have one population with the least amount of synchrony, and a T2 solution will have

two. See Fig. 5 for examples of these types of solution for N = 4. As N increases the distinction

between the two types of solution becomes less relevant.

Martens analysed the T1 and T2 solutions by assuming that the synchronised population(s) had

|zk| = 1 and that the populations in the same state had identical dynamics, thus reducing the dy-

namics of the whole network to those of two variables: the magnitude of z for the desynchronised

population(s) and the phase difference between a synchronous population and a desynchronous

one. This analysis showed that both a T1 and T2 solution were stable for the parameters above,

under the assumptions above. We now show the results of analysing the full equations (11)-(12),

varying δ .

Fig. 3(a) shows the results for a T1 solution. For δ = 10−3 this stationary solution is stable and

two different values of |z| are seen, but as δ is decreased the solution loses stability in a supercriti-

cal Hopf bifurcation, creating a periodic solution. The maximum and minimum over one period of

|z| for one of the desynchronised populations is shown with crosses in Fig. 3(a). (|z| for the nearly-

synchronous population also varies periodically, but this is not shown, for clarity). On this periodic

solution the levels of synchrony in the two desynchronised populations alternate, being half a pe-

riod out of phase with one another. Decreasing δ even further, the periodic solution undergoes

a Neimark–Sacker bifurcation, creating a stable quasiperiodic solution (not shown in Fig. 3(a)).

Thus for infinite populations with weak (or zero) heterogeneity, the stationary T1 solution is not
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FIG. 3. N = 3. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses show the

maximum and minimum over one period of a periodic orbit, for one population. (a): T1 solution. (b): T2

solution. See text for further explanation.

actually stable. Martens19 did report the existence of a T1 chimera in the original model (1) us-

ing identical oscillators for parameter values close to those used here, using populations of size

M = 40.

We now consider the T2 solution, whose behaviour is shown in Fig. 3(b), where we plot |z|

for the two most synchronous solutions. The T2 solution is stable only for small δ , where it

coexists with two unstable chimeras for which the levels of synchrony in the two most synchronous

solutions are slightly different. The symmetric T2 solution loses stability in a subcritical pitchfork

bifurcation as δ is increased.

3. N = 4

The results for N = 4 are shown in Fig. 4, with panel (a) showing the T1 solution and panel (b)

the T2. Fig. 5 shows the phase distributions for both types of solution at δ = 10−3, for which both

are stable stationary solutions. As δ is decreased the T1 solution undergoes a supercritical Hopf

bifurcation, and the stable periodic orbit created in this bifurcation then loses stability through a

Neimark–Sacker bifurcation as δ is decreased further. This is the same scenario as for the T1
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FIG. 4. N = 4. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses show the

maximum and minimum over one period of a periodic orbit for one population. (a): T1 solution. (b): T2

solution. See text for further explanation.

chimera with N = 3. To show the periodic orbit the maximum and minimum over one period of |z|

for only one of the moderately synchronous populations is shown. The T2 solution also undergoes

a supercritical Hopf bifurcation as δ is decreased, and the periodic orbit created is stable down

to δ = 0. The maximum and minimum over one period of |z| for one of the desynchronised

populations is shown in Fig. 4(b).

Fig. 6 shows time series of the |za| for both of the solutions shown in Fig. 4 for (different)

values of δ for which a periodic chimera is stable. For the T1 solution, we see from Fig. 6A that

the levels of synchrony within the two moderately synchronous populations ((a) and (c)) alternate,

while those in the other two populations oscillate at twice this frequency. Such a solution has

a spatio-temporal symmetry and is mapped to itself under a time shift of half a period followed

by the interchange of populations (a) and (c). For the T2 solution, we see from Fig. 6B that the

levels of synchrony within the two moderately synchronous populations ((g) and (h)) alternate, as

do those in the two almost synchronous populations (although to a much lesser extent). Such a

solution has a spatio-temporal symmetry and is mapped to itself under a time shift of half a period

followed by exchanging populations (e) and (h) with (f) and (g), respectively.

Thus for N = 4, for the parameter values chosen, there are no stable stationary chimeras for
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FIG. 5. Snapshots of phase densities calculated from (6) for the two types of stationary chimeras shown in

Fig. 4 for δ = 10−3. Each panel has θ on the horizontal axis and Fa(θ) on the vertical. Panels (a),(b),(c)

and (d) are for the T1 solution, and the order around the ring of populations is (a),(b),(c),(d). Population (b)

is most synchronous while population (d) is least. Panels (e),(f),(g) and (h) are for the T2 solution, and the

order around the ring of populations is (e),(f),(g),(h). Populations (e) and (f) are equally-synchronous, as

are populations (g) and (h). The colours distinguish the two types of solution.

small levels of heterogeneity.
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FIG. 6. N = 4. Time series of the |za| (giving the instantaneous level of synchrony within a population)

for a T1 solution at δ = 0.4× 10−3 (panel (A)) and for a T2 solution at δ = 0.1× 10−3 (panel (B)). The

labelling of the populations corresponds to those in Fig. 5.

4. N = 5

The T1 solution is stable for δ = 3×10−3 but loses stability at δ ≈ 2.7×10−3 in what seems

to be a subcritical pitchfork bifurcation. We concentrate on solutions which are stable for 0 ≤ δ ≤

10−3, so do not consider this solution further. The behaviour of the T2 solution is shown in Fig. 7.

This solution also becomes unstable through a supercritical Hopf bifurcation as δ is decreased,

creating a periodic orbit which then loses stability through a Neimark-Sacker bifurcation.

5. N = 6

A T1 solution was found using the self-consistency approach in Sec. II B but this solution was

found to be unstable for all values of δ for which it existed. The dynamics of the T2 solution are

shown in Fig. 8. As above, the solution goes unstable in a supercritical Hopf bifurcation. However,

the stable periodic orbit created there now becomes unstable in a period-doubling bifurcation as δ

is decreased. The maximum and minimum over one period of |z| for one of the least synchronised

populations is shown in Fig. 8.
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FIG. 7. N = 5. T2 solution. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses

show the maximum and minimum over one period of a periodic orbit for one population. See text for further

explanation.

Fig. 9 shows the period-doubling in more detail. Here we plot maximum and minimum values

of |z| during a time period after which transients have decayed, for one of the least synchronised

populations, as δ is varied. For δ = 3×10−4 a stationary chimera is stable, hence all of the values

shown are the same. The Hopf bifurcation shown in Fig. 8 is seen at δ ≈ 2.7×10−4 and period-

doubling at δ ≈ 2.4× 10−4. There seems to be a bifurcation to a quasiperiodic solution which

finally becomes chaotic at δ ≈ 1.8×10−4.

The chaotic nature is shown by the largest Lyapunov exponent being positive: see Fig. 10(a). A

typical chaotic solution is shown in Fig. 10(b), where the |zk| are plotted in colour. A value close

to 1 indicates a synchronous population while a value significantly less than 1 indicates a partially

synchronous population. The position of the synchronous population(s) moves in a seemingly

random fashion, and such a solution was observed to persist for 106 time units, not collapsing

to the equally-synchronous state even though is stable for this value of δ . This behaviour is in

contrast to chimeras observed in34, which had a finite lifetime scaling as eκN for some constant κ .
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FIG. 8. N = 6. T2 solution. Blue: stable; red: unstable. Solid and dashed lines are for a fixed point, crosses

show the maximum and minimum over one period of a periodic orbit for one of the least synchronised

populations. See text for further explanation.

However, the two cases cannot be compared directly, since here we consider infinite populations

of heterogeneous oscillators while34 effectively considered the case of populations consisting of

one identical oscillator.

6. N = 7 to 12

A summary of the dynamics for N = 7 to 12 is as follows:

N = 7: A T1 solution was found using the self-consistency approach in Sec. II B but this solution

was found to be unstable for all values of δ for which it existed. The T2 solution under-

goes the same bifurcations as that for N = 6 (see Fig. 8) and also becomes chaotic as δ is

decreased.

N = 8 : as with N = 6, a T1 solution was found using the self-consistency approach but it was

always unstable. The T2 solution undergoes the same bifurcations as that for N = 6 (see
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FIG. 9. N = 6. T2 solution. Points show the maximum and minimum of |z| for one of the least synchronised

populations. Compare with Fig. 8.

Fig. 8) and also becomes chaotic as δ is decreased.

N = 9 : a T1 solution is stable only for 0.00031 < δ < 0.00097. The T2 solution undergoes the

same bifurcations as that for N = 6 (see Fig. 8) and also becomes chaotic as δ is decreased.

N = 10 : The T2 solution is not stable for δ < 10−3. The T1 solution undergoes the same bifurca-

tions as that for T2 solution for N = 6 (see Fig. 8) and becomes chaotic as δ is decreased.

N = 11 : same as for N = 10.

N = 12 : same as for N = 10.

In all cases apart from N = 9, only one solution is stable for δ < 10−3 and a stable fixed point loses

stability through a supercritical Hopf bifurcation as δ is decreased, and the resulting periodic orbit

then becomes chaotic after period-doubling. The N = 9 case seems to be the transition between

the T2 solution being stable for δ = 10−3 and then destabilising as δ is decreased (N < 9), and
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FIG. 10. N = 6. (a): largest Lyapunov exponent (LLE) as a function of δ . (b): a typical solution for

δ = 10−4. |z| is plotted in colour.

the T1 solution undergoing these transitions (N > 9). The reason for this transition at N = 9 is

unknown.

While we cannot explore all of phase space, we found that for 5 ≤ N ≤ 8, for which a T1

solution was unstable for 0 < δ ≤ 10−3, an initial condition near such a state was attracted to a

T2 solution. Similarly, for 10 ≤ N ≤ 12, for which a T2 solution was unstable, an initial condition

near such a state was attracted to a T1 solution.

The results above for N = 2,3 . . . ,12 were verified in finite populations with M = 50. For N > 5

the chaotic wandering of the chimera around the domain was observed for sufficiently small δ .
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FIG. 11. Value of δ at which a stationary chimera loses stability through a Hopf bifurcation. (For N = 4

the T1 solution was followed.) The chimera is stable above the curve. The dashed line indicates the scaling

δ ∼ N−1.

B. Varying N and δ

For selected values of N in the interval [3,450] we integrated (11)-(12) to a steady state at

δ = 10−3 and then followed this state using pseudo-arclength continuation as δ was decreased11,17.

We recorded the value of δ at which the state became unstable through a Hopf bifurcation and

these values are shown on a log-log scale in Fig. 11. While there are some fluctuations for small

N, it seems that for larger N this value of δ scales as N−1 (dashed line in Fig. 11), implying that

instability is a finite-population effect which does not occur for the continuum case (7)-(8).

We also calculated the largest Lyapunov exponent, quasistatically decreasing δ , for values of N

ranging from 3 to 30 inclusive. The results are shown in Fig. 12. We see that N = 6 is the smallest

network for which chaotic behaviour occurs, and the value of δ below which the system is chaotic

decreases with N for large N. The results in Fig. 11 imply that this chaotic behaviour is also a

finite-population effect.
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FIG. 12. Largest Lyapunov exponent (colour) as both N and δ are varied.

C. Stability of the equally-synchronous state

One characteristic of chimeras is that they are often stable for parameter values for which

the fully synchronous state is also stable, although this is not always the case, particularly for

heterogeneous networks12,14. The equally-synchronous state is a fixed point of (11)-(12) for which

rk = ρ for k = 1,2, . . .N and all ψk = 0. ρ = 0 is always a fixed point, corresponding to complete

incoherence, but there is a non-zero solution of this form for which

ρ =

√
1− 2δ

sinβ
(26)

for 0 ≤ δ < sin(β )/2 ≈ 0.014998 for β = 0.03. Following this state for various N we find it

is stable for δ = 0 (corresponding to perfect synchrony) but becomes unstable as δ is increased,

before stabilising again at δ ≈ 4×10−3; see Fig. 13. Thus there are regions of parameter space for

which it seems that a chimera is the only attractor. This is consistent with our observations above

that when starting near an unstable T1 (T2) chimera, the system was attracted to a stable T2 (T1)

chimera, rather than to the synchronous state.
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FIG. 13. The equally-synchronous state is unstable in the coloured region.

IV. DISCUSSION

We studied a network formed from N infinite populations of oscillators equally spaced around

a ring, with nonlocal coupling between populations. We obtained the same results as previous

authors for N = 2, and for N = 3 showed that one of the types of chimera observed by Martens19

is not actually stable, at least for infinite populations. For each N ∈{4, . . .12} we found that at most

two types of stable chimeras exist for small levels of frequency heterogeneity, and they all have the

form of a coarse-grained version of that which occurs in the spatially continuous system2,3,15,22.

All of the stable solutions of this form become unstable through a supercritical Hopf bifurcation

as δ is decreased, and the resulting periodic solution then becomes unstable through either a

Neimark-Sacker bifurcation (N = 4,5) or period-doubling leading to chaotic behaviour (6 ≤ N ≤

12). This phenomenon of chaotic behaviour requiring sufficiently many populations was observed

in10, who studied Kuramoto oscillators with inertia. Chaotic behaviour was also observed by Bick
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et al.6 in a network of two populations, but with different phase lag parameters (our α) for coupling

within a population and between populations. “Turbulence” was also observed in the continuum

limit (N → ∞) equations for some values of the phase lag7–9,33.

We found that the value of δ at which a stable stationary chimera loses stability in a Hopf

bifurcation decreases as ∼ N−1 as N increases, suggesting that the observed oscillatory behaviour

for finite N vanishes as N → ∞, along with the observed chaotic behaviour. Our results help

bridge the gap between the well-studied N = 2 case1,12,14,16,26 and the N = ∞ case 2,3,15,22. We

observed similar results holding B = 0.35 and choosing β = 0.05 (rather than β = 0.03), and also

for B = 0.25 and β = 0.03, suggesting that our results are generic, at least for small β .
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