
Submitted to Int. J. Parallel Programming, manuscript No.
(will be inserted by the editor)

Regular Lattice and Small-World Spin Model
Simulations using CUDA and GPUs

K. A. Hawick and A. Leist and D. P. Playne

Institute of Information and Mathematical Sciences,
Massey University – Albany, North Shore 102-904, Auckland, New Zealand.
Email: { k.a.hawick, a.leist, d.p.playne }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Received: November 2009 / Revised version: November 2009

Abstract Data-parallel accelerator devices such as Graphical Processing
Units (GPUs) are providing dramatic performance improvements over even
multicore CPUs for lattice-oriented applications in computational physics.
Models such as the Ising and Potts models continue to play a role in inves-
tigating phase transitions on small-world and scale-free graph structures.
These models are particularly well-suited to the performance gains possible
using GPUs and relatively high-level device programming languages such as
NVIDIA’s Compute Unified Device Architecture (CUDA). We report on al-
gorithms and CUDA data-parallel programming techniques for implement-
ing Metropolis Monte Carlo updates for the Ising using bit-packing storage,
and adjacency neighbour lists for various graph structures in addition to
regular hypercubic lattices. We report on parallel performance gains and
also memory and performance tradeoffs using GPU/CPU and algorithmic
combinations.

Keywords: Ising model; GPU; CUDA; data-parallel; bit-packing.

1 Introduction

The Ising model [1–3] of a system of physical spins is a simple but very useful
model in the study of phase transitions. In addition to its interpretation as
a model of magnetic physical systems it forms a basis for comparison with
phase transitions and critical phenomena occurring in many other systems
including social networks, physical computer networks and overlay networks
such as web page relationships on the world wide web. A phase transition
is essentially when some property of a system is seen to display a sudden
or unexpected change at a particular parameter value vicinity when that

2 K. A. Hawick and A. Leist and D. P. Playne

parameter is varied. The Ising model shows a drastic change in the magneti-
sation of a system of magnetic spins at and around a critical temperature.
Simulations of the Ising model are often posed in terms of a quench whereby
a random “hot” system is quenched to a specific temperature. If that tem-
perature is below the inherent critical temperature (“cold”), the system
orders or separates out into distinct phases. In the case of the Ising model
these are visible as clumps of like spin values. A quench that keeps the sys-
tem above its critical temperature will not show this ordering phenomena.
A quench to around the critical temperature shows ordering and typically
clusters of like-like spins on all possible length scales.

The Ising model is often studied as a square planar lattice of spins or
as a cubic lattice in three dimensions. In principle however the model can
be set up on any graph or network whereby spin nodes interact with their
nearest neighbouring nodes according to a Hamiltonian or energy functional
of the form:

H = −
∑

i,j

JijSiSj (1)

where Si = ±1, i = 1, 2, ...N sites, and Jij is |J | = 1/kBT is the ferromag-
netic coupling over neighbouring sites i,j on the network.

Ising model spins have just two values - “up” and “down” and can be
represented by a single bit. The Ising model can be extended to a system
with “spins” of more than just two values and the Q-State Potts model [4]
uses a similar Hamiltonian but with integer-valued spins up to some value
Q. The Ising and Potts model and a continuous vector field valued model
such as the Heisenberg [5] model have been well studied both analytically
as well as numerically and the location of their critical temperatures and
various other scaling properties such as critical exponents are known. The
models are therefore good bases of comparison for related systems. Recent
interest has been in systems that exhibit critical phenomena on arbitrarily
structured graphs or networks rather than regular lattices. Of particular
interest have been small-world systems which have a mix of localised nearest
neighbour node-node links as well as some long distance shortcut links that
drastically reduce the effective shortest path properties of the network as a
whole.

Irregular models such as these can only be studied numerically rather
than analytically and indeed even the regular three dimensional Ising model
has required numerical treatment. A great deal of supercomputer resources
were expended in the 1980s on the regular lattice three-dimensional Ising
model [6–9] and its numerical properties. The data-parallel programming
paradigm was found then to be very suited to executing fast simulations
of the model. In the present era, Graphical Processing Units (GPUs) have
a similar data-parallel programming structure to SIMD supercomputers of
yester-year [10].

Some work has already been done on the behaviour of the Ising and
related models on small-world systems, albeit mostly on 1-dimensional lat-

Fast Ising CUDA Simulations 3

tices [11–16]. The major work to date on higher dimensional small-world
rewired Ising systems is [17]. An obstacle to studying small-world effects is
that the phenomena shows inherent scale free behaviour. This means that
the controlling parameter - in this case the rewiring probability P - must be
studied over many length scales to obtain sound quantitative conclusions.
In [18] it was found necessary to scan in P logarithmically over several
decades of scale.

In this present paper we report on how we have used GPUs to dramati-
cally speed up simulations of the Ising model on both regular and irregular
networks. We describe some of the memory management and optimal pro-
gramming techniques to make best use of the very many cores on modern
GPUs. We have improved upon performance reported in recent work for the
regular lattice Ising model [10]. We have also obtained encouraging GPU
performance results for Ising model simulations on arbitrary network struc-
tures.

Studying large and arbitrary network structures such as small-world
rewired lattice, or damaged lattice systems with missing links, requires con-
siderable computational power. Phase transitions are by their intrinsic na-
ture sensitive to the control parameters and to locate a phase transition
accurately - so as to make a comparison with other models - requires many
independent statistically ample runs to be carried out and usually also a
carefully managed scan in parameter space. GPUs therefore open up pos-
sibilities for study of realistically sized systems in applied problems areas
that hitherto would have been infeasible.

In Section 2 we summarise the Metropolis Monte Carlo approach to sim-
ulating problems like the Ising model. We summarise key ideas for program-
ming modern GPUs in Section 3 before describing our implementations for
regular Ising systems in Section 4 and for irregular rewired network struc-
tures in Section 5. We give specific algorithmic and some GPU programming
details in those sections. We discuss the performance of our implementations
in Section 6 and offer some conclusions for use of these techniques in gen-
eral numerical studies of complex systems and some areas for future work
in Section 7.

2 Monte Carlo Cluster Updates

Considering a system of N spins each carrying a spin variable Si and in-
teracting according to 1 we initialise the system randomly - whereby it is
effectively at an initially infinite hot temperature. We then quench the sys-
tem by applying Monte Carlo updates to the individual spins so that they
are conditionally flipped according to a probability which is derived from
the quench temperature T using a Boltzmann weighting factor.

The Ising model has no intrinsic temporal dynamics of its own so the
Monte Carlo update time is an artificial one. Empirically however, although
it is purely an algorithmic artifice to progress the system through its internal

4 K. A. Hawick and A. Leist and D. P. Playne

microstates, this artificial Monte Carlo time makes the system exhibit quan-
tifiably similar equilibration behaviour as appears to occur in real physical
systems [19, 20].

In summary the Metropolis algorithm is: 1) Pick a spin to “hit”; 2)
Count how many like-like bonds the spin has with its nearest neighbours
and hence the change in energy ∆E that would result if the hit spin were
flipped. 3) If the hit would result in a lowering of energy then do the flip;
otherwise only do the flip with probability given by the Boltzmann weight
factor exp(−∆E/kBT). 4) Repeat from 1 above.

Generally we express the Ising model coupling J in units of kBT (where
kB is Boltzmann’s constant). The coupling is essentially just the inverse of
temperature T and not an independent parameter. The probabilistic com-
parison is performed by using a numerical random number generator to
“throw a probabilistic dice” to compare with the Boltzmann factor. There
are various ways to choose spins to hit and these are discussed in the sections
below since they can considerably affect the computational efficiency of a
parallel algorithm. A simple completely ordered sweep through the spins is
likely to introduce correlation artifacts; a completely random order is overly
cautious and adds to the overhead of the computation; but various partially
random sweeps through interleaved lattices has been found to be adequate
and can aid considerably in parallelisation.

3 GPU Programming Model Summary

Graphics Processing Units or GPUs are highly parallel architectures con-
taining a scalable array of multiprocessors, which provide a number of scalar
processing units each. These processors can be programmed using CUDA
kernels, which are executed by many threads in parallel. CUDA or Compute
Unified Device Architecture has been developed by NVIDIA to allow kernels
to be written in a C-style language and executed on NVIDIA GPUs [21].
Under this model, many threads are created which execute the same pro-
gram or kernel on the multiprocessors of the GPU.

Thread execution management is performed by the hardware of the GPU
and presents little overhead. The best performance is achieved when the
problem is decomposed into many threads, thousands or even millions of
threads are not uncommon. These threads are managed as blocks, which
can be scheduled to execute on the multiprocessors. Every thread block is
further subdivided into warps. A warp in CUDA’s SIMT (single instruction,
multiple thread) terminology is a group of 32 threads that are created,
managed, scheduled and executed together by the multiprocessor’s SIMT
unit.

In most applications, memory access rather than computation is the
limiting performance factor. To improve performance, GPUs contain several
optimised memory types that can be used explicitly by the developer. For
most applications, the memory types of interest are global, shared, texture
and constant:

Fast Ising CUDA Simulations 5

Global memory is the largest and slowest type of memory. This is the
only type of memory that can be accessed by the host and is typically used
for output from the GPU. Sequential memory transactions from a half-warp
that read/write to global memory can be combined into a single coalesced
transaction (see [21, 22] for the details of memory coalescing).

Shared memory allows threads within the same block to share informa-
tion. This can be used effectively to reduce the number of global memory
transactions required when threads within the same block must access the
same information.

Texture memory is a cached method for reading from global memory. The
cache automatically loads values spatially (in 1D, 2D or 3D) surrounding
an accessed value. This is useful when the threads of a block all access
addresses in the same spatial locality.

Constant memory is another read-only, cached method of accessing global
memory. This cache is designed for when all the threads in a block access
the same value from memory.

The platform used to do the performance measurements that we report,
runs the linux distribution Kubuntu 9.04 64-bit. It uses an Intel R© CoreTM2
Quad CPU running at 2.66GHz with 8GB of DDR2-800 system memory
and an NVIDIA R© GeForce R© GTX 295 graphics card, which has 2 GPUs
with 896MB of global memory each on board. Only one of the GPUs present
was used for the measurements as each GPU must be controlled by sepa-
rate host threads which would then incur explicit data communication and
synchronisation overheads within the host program.

4 Regular Lattice Simulation

The data for a regular lattice Ising simulation is generally stored as an
array of boolean values where each boolean value represents a single spin.
The address of a cell’s neighbours can be calculated from its (x,y) location
and applying a suitable boundary condition method (in this paper we use
periodic boundaries). This storage method is simple, memory efficient and
with additional data can be suitable for simulations with decayed or rewired
meshes.

Bit packing can be used to improve performance when simulating the
Ising model on GPUs. Rather than an array of boolean values, the mesh
is stored as an array of unsigned integers where each bit in the integer
represents a spin. The advantage of using this memory storage method is
that when the GPU threads load an element from memory, instead of one
spin they load 32 spins. This equates to less costly memory transactions.

4.1 CUDA Checkerboard Implementation

This implementation is designed to be a highly optimised GPU simulation
of the Ising model for a simple non-rewired, non-decayed lattice. These

6 K. A. Hawick and A. Leist and D. P. Playne

optimisations are valid for the simple lattice case as the number and address
of each spin’s neighbours can be calculated explicitly.

This implementation stores spins as bit packed unsigned integers to min-
imise memory transactions on the GPU. As this implementation uses the
checkerboard update method, alternating bits in these integers will have
to be updated separately as they belong to different groups. To overcome
this issue we use a method known as crinkling to re-order the bits in the
mesh. Crinkling was pioneered for distributed array processors like the DAP
by [23] and the same process is described for GPU architectures in [24].

The process of crinkling a mesh involves relocating the red and black
spins of the mesh into separate parts of the array or into separate arrays.
This allows them to be processed separately and is an extremely important
part of this implementation. By crinkling the mesh (bit-wise crinkle), all the
bits in each unsigned integer will belong to the same group. The application
of a crinkle operation creating two separate meshes can be seen in Figure 1.

Fig. 1 A crinkle operation applied to a mesh resulting in two separate arrays.

Once these individual meshes have been created the checkerboard method
can be implemented quite simply by updating them one at a time. To up-
date an element in one mesh, the values of the neighbouring spins must be
read from the opposite mesh, ie. to update one element in the red array (32
spins), four elements from the black array must be loaded. The calculation
of the neighbouring elements (with periodic boundary conditions) can be
seen in Algorithm 1 (Note that in this paper we use % to denote the modulo
operator).

The four neighbours of the element (x,y) are: (xm1,y), (xp1,y), (x,ym1)
and (x,yp1); however, these are the element-wise neighbours, what is needed
is the spin-wise neighbours. The (x, ym1) and (x,yp1) neighbours are correct
as the array is crinkled in the x direction. However to produce the correct
(xm1,y) and(xp1,y) neighbours a SHIFT and OR operation is necessary as
seen in Algorithm 2 (Note that << denotes a left shift operator and >>
denotes a right shift).

Fast Ising CUDA Simulations 7

Algorithm 1 Calculating the positions of the neighbours of an element
(each red/black mesh has dimensions (X, Y)).

W ← X/spins per element
ym1 ← (y = 0) ? (Y − 1) : (y − 1)
yp1 ← (y = Y − 1) ? (0) : (y + 1)
if ((black) XOR (y%2) = 0) then

xm1 ← (x = 0) ? (W − 1) : (x − 1)
xp1 ← x

else
xm1 ← x
xp1 ← (x = W − 1) ? (0) : (x + 1)

Algorithm 2 Calculating the positions of the neighbours of an element
(each red/black mesh has dimensions (X, Y)).

if ((black) XOR (y%2) = 0) then
(xm1,y) ← ((xp1,y) >> 1) OR ((xm1,y) << 31)

else
(xp1,y) ← ((xm1,y) << 1) OR ((xp1,y) >> 31)

This provides four elements containing the spinwise neighbours on the
element at (x,y). Using these values we can calculate a new value for the
element.

4.2 Bit-Packing and Associated Logic

As each element in the lattice contains 32 spins, we cannot use the Ising
calculation in its standard form. Instead we construct a series of bit logic
equations to compute the change in 32 spins simultaneously. The reason for
these somewhat complicated bit logic expressions is they can compute the
simulation significantly faster than extracting the 32 spin and computing
their change separately.

To update an element containing multiple spins we want to create a ‘flip’
mask where each bit is 1 if the corresponding spin should be flipped and 0
if it should remain the same. There are two conditions for flipping a spin -
one if there are >= 2 neighbours with different spins or if there are <= 1
neighbours with different spins and some random condition is fulfilled (the
probability is defined by the number of neighbours and the temperature of
the system).

First of all we generate a flip mask (nmask) for the first condition using
the following equations (the element in question is named (x,y) and its four
bit wise neighbours are: (xm1,y), (xp1,y), (x,ym1) and (x,yp1)).

n1 = (x, ym1) XOR (x, y) (2)

n2 = (xm1, y) XOR (x, y) (3)

n3 = (xp1, y) XOR (x, y) (4)

n4 = (x, yp1) XOR (x, y) (5)

n mask = (n1 AND n2) OR (n1 AND n3) OR (n1 AND n4) OR

(n2 AND n3) OR (n2 AND n4) OR (n3 AND n4) (6)

8 K. A. Hawick and A. Leist and D. P. Playne

4.3 Random Number Generation

The next consideration for this implementation is the generation of random
numbers. As each element in the mesh contains 32 different spin values,
32 separate random numbers are required. However, loading in 32 separate
random numbers will require an undesirable number of memory transac-
tions. In fact 32 random numbers are not required. The random number
values are used when there are 0 or 1 neighbours with different spins with
a probability dependent on the temperature.

As the temperature does not change (at least not within a time-step)
this comparison can be performed during the random number generation
process. Instead of generating random numbers and storing them in an array,
the random number generator can generate sets of 32 random numbers,
perform the comparison with the probability values and store the results in
two unsigned integers (one each for the probability values of 0 or 1 unlike
neighbours).

Each bit of the integers is 1 if the random value was less than the prob-
ability value and 0 if it was not. Thus the spin should be flipped if it has
0 or 1 neighbours and the bit in the appropriate random number int is 1.
To use these random number integers we must create a mask for the two
conditions of 0 dislike neighbours and 1 dislike neighbour. These masks can
be computed as follows:

n0 mask = (NOT n1) AND (NOT n2) AND (7)

(NOT n3) AND (NOT n4)

n1 mask = ((n1 AND n2 AND n3) OR (8)

(n1 AND n2 AND n4) OR

(n1 AND n3 AND n4) OR

(n2 AND n3 AND n4)) AND

(NOT n0 mask)

With these masks n mask, n0 mask and n1 mask and the random num-
ber elements rnd0 and rnd1 we can formulate a final flip mask:

flip mask = n mask OR

(n0 mask AND rng0) OR

(n1 mask AND rng1) (9)

With this flip mask we can calculate the new value for the element syx.

syx = syx XOR flip mask (10)

Fast Ising CUDA Simulations 9

This bit logic is applied to each element in the mesh (alternating meshes)
such that each mesh is updated once per time-step. This process can be
repeated as for the necessary number of time-steps after which the meshes
must be uncrinkled (the reverse of the crinkling process) to provide the final
state of the system.

4.4 CUDA Implementation Of The Regular Lattice Ising Model

This implementation of the Ising model is specifically designed for CUDA.
The implementation can either take an existing Ising system or randomly
initialise one. The Crinkle and Uncrinkle operators are performed on the
GPU and described in [24]. One thread is created for each element in the
crinkled arrays, these threads will perform the algorithm described above
for a single element from one array and write the results to the same ar-
ray. This process is performed twice per time-step (once for each crinkled
array red/black). The high level description of this algorithm is shown in
Algorithm 3.

Algorithm 3 Calculating the positions of the neighbours of an element
(each red/black mesh has dimensions (X, Y)).

COMPUTE x, y
LOAD rnd0, rnd1 from global rnd arrays
LOAD (x, y) from update array
COMPUTE ym1, xm1, xp1, yp1
LOAD (x, ym1), (x, yp1), (xm1, y), (xp1, y) from alternate array
COMPUTE spinwise elements (xm1, y), (xp1, y)
COMPUTE n mask, n0 mask, n1 mask
COMPUTE flip mask
COMPUTE updated (x, y) value
WRITE (x, y) to update array

This algorithm can compute an Ising simulation time-step very quickly
and this Ising kernel is not the limiting performance factor of the simu-
lation. The cost of computing random numbers quickly becomes more ex-
pensive. The quality of random numbers is very important to the accuracy
of the results that the Ising simulation produces. For our implementation
(the implementation used to produce the performance results presented in
this paper) we have used the Lagged-Fibonacci Generator implemented in
CUDA described in [25]. Computing random numbers is inextricably linked
to the Ising simulation yet should be considered a separate challenge. Thus
in all our performance data we present both the time taken for the Ising
simulation and the time taken to generate the random numbers.

4.5 Regular Lattice Performance Results

The GPU implementation has been compared to a standard CPU checker-
board implementation to give an idea of the speed up it provides. The CPU

10 K. A. Hawick and A. Leist and D. P. Playne

implementation performs the checkerboard update on a boolean mesh and
does not use the bit-packing method. In both two- and three-dimensions
the GPU provides significant performance improvements, the speedup fac-
tor for both implementations is just over 125 times faster than the CPU
implementations. The performance results for the total time, as well as the
individual RNG and Ising kernel times are shown in Figure 2.

Fig. 2 Performance results comparing CPU and GPU implementations of the
Ising simulation. In two-dimensions on the left (10242 to 81922) and in three-
dimensions on the right (643 to 5123). Results are shown in ln-ln scale. Error bars
- calculated from several independent runs - are present but are smaller than the
plot symbols.

One point of interest is the optimal GPU memory type to employ. In
previous discussions of lattice-based simulations (mainly the Cahn-Hilliard
simulation [22]), texture memory has provided the best performance for
CUDA implementations. However, in our experiments we found that the
kernel completed faster when global memory was used. The global memory
access methods of the 200 series graphics cards reduces the negative impact
of misaligned global memory accesses but spatial caching functionality of
texture memory normally provides a performance benefit.

We believe that the number of neighbours that the Ising model accesses
is the reason for the performance results. The Cahn-Hilliard Equation has
a much larger memory halo (12 neighbours) than the Ising model (4 neigh-
bours) and can thus make better use of the values in the texture cache.
However, for the Ising model the increased copy time (copying data into
texture bound arrays) had a larger impact than the improved memory ac-
cess the cache provides.

5 Small-World Rewired Lattice Simulation

In this section we describe an alternative implementation for the case of a
system on an arbitrary graph network rather than a regular lattice. The

Fast Ising CUDA Simulations 11

particular system of interest is however constructed starting with a regular
lattice, and a number of edges are rewired randomly to create the shortcuts
common to small-world networks.

Either end of an edge, which connects two cells, is independently consid-
ered for rewiring with probability 1

2P , thus rewiring a fraction P of all edges.
A new neighbour is selected randomly from all cells of the same colour as
the previous neighbour, thus preserving the condition that no cells of the
same colour are connected to each other, which is the case when using the
checkerboard pattern on the regular lattice. This limitation makes it possi-
ble to update cells of the same colour in parallel without the risk of running
into race conditions. Figure 3 illustrates such a rewired lattice. In this ex-
ample, the edge connecting cells 0 and 1 was rewired and now connects cells
0 and 19, decreasing the degree of cell 1 to 3 and increasing the degree of
cell 19 to 5.

Fig. 3 A 2-dimensional lattice
where every cell is initially con-
nected to its 4 direct neighbours
using periodic boundaries, with a
small number of rewired edges. The
numbers represent the cell IDs.

Fig. 4 The ID of the thread that
processes a particular cell for thread
blocks of size 2×4. The actual imple-
mentation uses thread blocks of size
8 × 16 for 2D and 4 × 8 × 8 for 3D
simulations.

The CUDA implementation uses thread blocks of size 8 × 16 in 2D and
4 × 8 × 8 in 3D when processing either the red or black cells of a 16 × 16
and 8 × 8 × 8 block of cells respectively. Figure 4 illustrates which thread
processes a particular cell.

5.1 Rewired Irregular Data Structure

The neighbour coordinates of cells that are not affected by rewiring can be
calculated and do not need to be stored explicitly, thus conserving memory
and memory bandwidth. However, for all other cells, the neighbours can

12 K. A. Hawick and A. Leist and D. P. Playne

Fig. 5 The two vertex-arrays for red and black cells respectively. The figures
illustrate the IDs of the cells whose data is stored at the respective positions.
The actual data stored are the indices into the arc-array (Figure 6) at which the
adjacency-list information begins.

not be deferred and need to be stored and looked up. Two vertex arrays
of length 1

2N each, one for the red cells and one for the black cells, are
used to store the index into the arc-array at which the neighbour informa-
tion for the cells affected by rewiring is stored. N is the system size (i.e.
the total number of cells). As only cells of the same colour are processed
in one iteration, two different vertex-arrays are used to enable threads to
access sequential elements of the arrays. But this is not enough to achieve
coalesced memory accesses, as the threads of a half-warp must access se-
quential memory addresses which adhere to strict alignment requirements
for coalescing to work. However, the x-dimensions of the thread blocks are
8 and 4 for 2D and 3D respectively as mentioned before, which means that
the threads of a half-warp process values from 2 different rows of cells in 2D
and 4 different rows in 3D. To accommodate for this fact, the vertex-arrays
store the elements in the order of the thread IDs instead of the cell IDs.
This is illustrated in Figure 5.

Fig. 6 While the vertex-arrays have an element for every cell, the arc-array only
stores the adjacency-lists of cells that were affected by rewiring. The neighbours
of all other cells can be deferred from their own coordindates, thus reducing the
memory storage and bandwidth requirements. The arrows between the vertex and
arc-arrays represent the index into the arc-array stored in the vertex-arrays. The
contents of vertex-array elements that were not affected by rewiring are irrelevant.
The first element of an adjacency-list is its length.

The arc-array, illustrated in Figure 6, contains all explicitly stored adjacency-
lists. The first element of every such list is its length, followed by the IDs
of the cells that are adjacent to the respective source cell.

The spin states are stored as 2D or 3D arrays in global memory using
unsigned char values. Only the least significant bit (LSB) is used to record
the spin state in the Ising model. Additional bits can be used to store more

Fast Ising CUDA Simulations 13

spin states, which makes it easy to extend the algorithm to the Potts model.
Bit 6 is used to mark cells that are affected by rewiring and therefore need
to explicitly look their neighbour information up using the vertex and arc-
arrays.

5.2 CUDA Implementation Of The Rewired Ising Model

The small-world, rewired lattice Ising simulation running on the GPU up-
dates either the red or the black cells of the checkerboard pattern in parallel.
This allows it to avoid race conditions, as all the neighbours of a red cell
are black and vice-versa. This means that it takes two kernel iterations to
perform a full simulation step. Algorithm 4 describes the host code that
prepares and manages the CUDA kernel execution. The spin-, vertex- and
arc-arrays have been described before. The random number array is used to
temporarily store the random numbers required by the Ising kernel and is
filled by a dedicated random number kernel.

Algorithm 4 Evolve the model by STEPS simulation steps. This is the
host code that manages the graphics processing unit. N is the system size.

allocate device memory for the spin-array S, vertex-array V , arc-array A, random number
array R and the arrays needed for the random number generators
copy metropolis table T to constant device memory
set the marker bit mask modified on the spin value of cells affected by rewiring
copy initial spin values to the device
copy RNG seeds to the device
do in parallel on the device using 32768 threads: initialise the RNGs
for i ← 1 to STEPS do

do in parallel on the device using 32768 threads:
generate N/2 random numbers and store them in R

do in parallel on the device using N/2 threads: process all red cells
do in parallel on the device using 32768 threads:

generate N/2 random numbers and store them in R
do in parallel on the device using N/2 threads: process all black cells

copy final spins back to the host
remove all marker bits from the spin values

The random number kernel implements Marsaglia’s lagged-Fibonacci
random number generator (RNG) [26] as described in [27]. Every CUDA
thread executing this kernel uses its own lag-table to produce an indepen-
dent stream of random numbers. With a table length of 97, every RNG
requires 400-bytes of device memory in total to store the lag-table as well
as auxiliary data. Because every thread generates an independent stream
of random numbers, there are no issues with read-write race conditions.
However, for the implementation to perform well, it is necessary that all
threads in a half-warp collectively generate new random deviates, even if
some of them do not actually need a new random number. This enables
global memory reads and writes to be coalesced.

The Ising kernel uses one CUDA thread per cell and updates 1
2N cells

per iteration. If the RNG function was called directly by this kernel, then it

14 K. A. Hawick and A. Leist and D. P. Playne

would require 3200MB of global memory just for the RNGs when simulating
a system with 2563 cells. Therefore, a separate kernel which is executed by
32768 CUDA threads is used. Every thread generates x random numbers
per kernel call, where x is the next multiple of 32768 that is equal to or
greater than 1

2N .

Algorithm 5 Calculating the coordinates (ix, iy, iz) of the cell processed
by the current thread. (bix, biy, biz) are the coordinates of the upper left
front corner of the thread block. id is the cell’s index into the vertex-array.
D is the length of all dimensions. Every simulation step consists of two
kernel calls, one to process all red cells (offset1 ← 1, offset2 ← 0) and one
to process all black cells (offset1 ← 0, offset2 ← 1).

declare bix, biy, biz, bid in shared memory
if first thread in thread block then

bix ← (blockIdx.y ∗ gridDim.x + blockIdx.x) ∗ (blockDim.x ∗ 2)
biy ← ((int)(bix/D)) ∗ blockDim.y
biz ← ((int)(biy/D)) ∗ blockDim.z
bix ← bix%D
biy ← biy%D
bid ← blockIdx.y ∗ gridDim.x + blockIdx.x
bid ← bid ∗ blockDim.z ∗ blockDim.y ∗ blockDim.x

synchronise threads in thread block
id ← bid + threadIdx.z ∗ blockDim.x ∗ blockDim.y
id ← id + threadIdx.y ∗ blockDim.x + threadIdx.x
ix ← bix + threadIdx.x ∗ 2 //process every second cell
iy ← biy + threadIdx.y
iz ← biz + threadIdx.z
ix ← ix + ((iz AND 1) XOR (iy AND 1)?offset1 : offset2) //checkerboard

Algorithm 5 describe the first part of the Ising kernel. The first thread
in every thread block calculates the cell with the lowest ID processed by
this block. Following this, all threads can use their thread indices as offsets
to calculate the coordinates of the cell that they process. The id is used to
read from the vertex and random number arrays as described in Section 5.1.

The pseudo-code for the second part of the Ising kernel is given in Al-
gorithm 6. Every thread loads the spin of its cell. The spin value carries an
additional marker bit which is used to indicate if the cell was affected by
rewiring. If this marker bit is set, then the thread needs to load the cell’s
adjacency-list from global memory. Otherwise, it calculates the coordinates
of neighbouring cells. Then the spin of the cell is compared to the spins of its
neighbours, and the like-like bond counter is incremented if flipping its own
spin value would make it equal to the spin of a neighbour and decremented
if the spins are already equal. Eventually, the spin is flipped if this either
increases the like-like bonds or with a random probability which depends
on the temperature.

The spin-array is bound to a texture reference to read the spin values.
Texture fetches are optimised for spatial locality, which is exactly what is
needed, as every cell requires the spins of its neighbours and most of its
neighbours are stored spatially close to it unless the value of P is rather

Fast Ising CUDA Simulations 15

Algorithm 6 Every CUDA thread compares the spin of a cell (x, y, z) to
the spins of its neighbours and flips it if this either increases the like-like
bonds or with a random probability which becomes smaller the more like-
like bonds would be undone by flipping the spin. S is the spin-array, V the
vertex-array, A the arc-array, D the length of all dimensions, R the random
number array and T the Metropolis table.

v ← S(ix, iy, iz) //load spin value (including marker bits)
s ← v AND mask spin //remove non-spin bits
b ← 0 //change in like-like bonds if spin gets flipped
if v AND mask modified then

//the cell was affected by rewiring, load neighbour data from arc-array
idx ← V [id] //load the index into the arc-array
c ← A[idx] //load the adjacency-list length
for all n id ∈ {A[idx + 1], A[idx + 2], . . . , A[idx + c]} do

//calculate the neighbour coordinates from the neighbour’s cell ID n id
n ix ← n id%D
n iy ← ((int)(n id/D))%D
n iz ← (int)(n id/(D ∗ D))
n s ← S(n ix, n iy, n iz) AND mask spin //load the neighbour’s spin
b ← b + (s = n s? − 1 : 1) //compare spins

else
//calculate the neighbour coordinates
n ix ← ix = 0?D − 1 : ix − 1 //cell on left
n s ← S(n ix, iy, iz) AND mask spin
b ← b + (s = n s? − 1 : 1)
do the same for all other neighbours (right, above, below, front, behind)

r ← R[id] //load the random number generated for this cell
if b ≥ 0||r < T [−b] then

//store the flipped spin including marker bits to global memory
S(ix, iy, iz) ← (s XOR 1) OR (v AND mask modified)

large. Typically, texture references are bound to CUDA arrays, which are
“opaque memory layouts optimized for texture fetching” [21]. However, they
are also read-only and we need to be able to update the spin value. This can
be solved by writing to a second array, which is stored in global memory and
copied to the CUDA array before every iteration. This copy, however, turns
out to be too expensive even though it is a fast device-to-device copy. Simply
reading from global memory is faster than using texture fetches that require
this copy operation. For the 2D simulation exists another solution though.
CUDA allows 1D and 2D texture references to be bound directly to linear
memory, which means that the texture can be bound to the same array that
is used to write to. No copy operation is needed in this case. The written
values are only guaranteed to be visible after the kernel call returns, but
this is not an issue, as the checkerboard pattern ensures that a spin is never
read and modified in the same call. Unfortunately, 3D texture references
can not be bound to linear memory (as of CUDA 2.3), which means that
the 3D implementation has to read directly from global memory. While this
comes at a performance deficit compared to the 2D implementation, it frees
up the texture cache, which can be useful in a different way. Binding a 1D
texture reference to the arc-array allows the neighbours of a cell to be read
using texture fetches, which provides a moderate performance boost.

16 K. A. Hawick and A. Leist and D. P. Playne

5.3 Irregular Rewired Kernel Performance Results

This section shows how the execution times of the small-world Ising CUDA
implementation are affected by the system size N and rewiring probability
P . It also compares the measurements to a checkerboard update based CPU
implementation, which also uses an implementation of Marsaglia’s random
number generator. The timings are for 16384 simulation steps. However,
the CPU algorithm was only executed for 2048 steps and the timing results
were scaled up by a factor of 8 for comparison. Every data point is the mean
value of 10 CUDA or 5 CPU simulation runs using different random number
seeds for every run.

Fig. 7 These plots illustrate how the rewiring probability P affects the timing
results t (in milliseconds). The results for the CUDA kernel are shown on the left
and the results for the CPU on the right. Error bars are smaller than the symbol
sizes except for the CPU results with P = 10−2.

Figure 7 shows how both the GPU and CPU implementations cope with
increasing rewiring probabilities. As expected, the performance degrades
with increasing randomness. An increase in the randomness of the graph
means more explicit look-ups of adjacency-list data from global memory for
the CUDA implementation and less predictable memory accesses for the
CPU. Every rewired edge changes the neighbour structure of 3 cells and
there are 2 times (2D simulation) or 3 times (3D simulation) as many edges
as cells. Therefore, the number of modified cells increases quickly with the
value of P . Both implementations show a significant jump in the timings
between P = 10−3 and P = 10−2. For the CPU, this is even more significant
between P = 10−2 and P = 10−1.

Figure 8 compares the performance measurements for the CUDA and
CPU implementations. Depending on the system size and value of P , the
GPU outperforms the CPU by ≈ 5 − 27 times in the 3D simulations and
by ≈ 9 − 42 times in the 2D simulations. The smaller performance gain of
the 3D CUDA simulations compared to the 2D simulations is due to the
texture caching issue explained in section 5.2 and the higher average degree.

Fast Ising CUDA Simulations 17

Fig. 8 These plots show the timing results t (in milliseconds) compared to the
system size N , where n2 = N for 2D (left) and n3 = N for 3D (right). The
least square linear fits for the 2D/3D simulations are 1.87/2.92 (filled squares),
1.96/2.88 (filled circles), 2.03/3.05 (empty squares) and 2.29/3.49 (empty circles).
Error bars are smaller than the symbol sizes.

The least square linear fits quoted in the caption show that the CUDA im-
plementation scales better than the CPU implementation. The comparably
small difference in the CUDA measurements between 2D systems of size
(27)2 and (28)2 is due to the fact that random numbers are generated in
multiples of 32768, but (27)2 = 16384, which means that half of the ran-
dom numbers are not actually used. This also highlights the fact that the
random number generation accounts for a significant portion of the overall
execution time.

5.4 Alternative Implementation Approaches for Irregular Networks

The previous section described our overall best algorithm for rewired Ising
simulations. Here we briefly describe a number of approaches that, in certain
configurations, slightly outperform this implementation.

The first alternative approach only uses up to 32768 threads for the Ising
kernel, updating multiple cells per thread. This way the random number
generation can be merged into the Ising kernel and the random numbers
do not have to be written to global memory. Every thread block updates
x consecutive blocks of cells, where x is the next multiple of 32768 that
is equal to or greater than 1

2N . By updating consecutive blocks of cells, it
gets the most benefit from the texture cache. This kernel performs slightly
better for P ! 0.01, but suffers considerably more from higher values of P .

The second alternative implementation uses a bit-packing approach for
random numbers similar to the one described for the regular lattice imple-
mentation. However, there are not only two cases in the 2D rewired lattice
Ising simulation that require a random number (i.e. 3 or 4 like neighbours),
but k cases, where k is the degree of the cell. This is because the degree of a
rewired cell is not always k = 4. Thus it is necessary to bit-pack the result

18 K. A. Hawick and A. Leist and D. P. Playne

for every possible case in the given graph, which is k = {1, 2, 3, . . . , kmax},
where kmax is the maximum degree of any cell in the graph. This means
that only ceil(32/kmax) random number results can be packed into a 32-
bit unsigned integer, thus having to call the random number kernel more
frequently the larger kmax. This kernel is slightly faster for small systems
with small values of P , but larger systems and/or higher values of P make
it more likely that kmax is larger and thus perform worse.

The third approach attempts to optimise the neighbour lookup from the
arc-array. This is not very optimal in the main implementation, as even
consecutive threads access the arc-array with a stride of k+1, which means
the reads can not be coalesced well if at all. Unfortunately, the degree of
every cell is arbitrary, which makes it complicated to optimise the memory
layout. The 3D implementation somewhat improves this sequential reading
from global memory by using a 1D texture reference. However, even this is
not optimal and does not give a performance benefit at all if the texture
cache is already used for the spins. Our approach to improving this access is
to let the threads in the first warp of a thread-block look up their indices into
the arc-array and then use all n threads in the thread block to load n, n× 2
or n×3 elements from the arc-array, more the larger the value of P , starting
from the index determined by the first thread in the thread-block. These
global memory reads are mostly coalesced. The values are then written
to shared memory. Subsequently, if a thread needs to load the neighbour
information, it can look it up from the cached data stored in the fast on-
chip shared memory, and only needs to read from global memory in case
of a cache-miss. However, this kernel introduces a significant computational
overhead and only outperforms the main implementation for very large P .

6 Discussion

Table 1 summarises our performace findings for the cases of various regular
lattice and irregular small-world network structured Ising model simulations
of GPUs with comparison figures on a single core of a typical CPU.

We provide the CPU figures only as a rough comparison. In practice
the nature of these simulations are that multiple jobs can be usefully run
to make better use of multi-cored conventional CPUs. When simulating
very large systems, the consequent large memory requirements can cause
contention between cores.

In practice we are bound at present by the memory available on the
graphics cards—which is 896MB per GPU for the GTX 295 used for these
measurements. Especially the memory requirements for the irregular small-
world simulations increase quickly with the rewiring probability p, system
size N and number of dimensions d, as these affect how much neighbour
information has to be stored explicitly. With this graphics card, it is possible
to simulate irregular graph systems of approximately up to N = 81922 with
P ≤ 0.01 or N = 3203 with P ≤ 0.1. With the use of bit-packing for

Fast Ising CUDA Simulations 19

Simulated System Size
Monte Carlo Hits (million per second)

CPU GPU

Regular N = 81922 40.8 5239.9

Regular N = 5123 34.8 4360.1

Irregular N = 40962; P = 10−5 35.9 1151.1

Irregular N = 40962; P = 10−1 11.8 499.6

Irregular N = 2563; P = 10−5 28.8 572.3

Irregular N = 2563; P = 10−1 8.4 226.4

Table 1 Ising Kernel Performance Summary. The CPU results are for a single
core of an Intel Core2 Quad CPU running at 2.66GHz, and the GPU results are
for one GPU of the NVIDIA GTX 295.

the regular lattice simulations we can simulate meshes of N = 81922 and
N = 5123, an improvement on previously stated limits [10].

7 Conclusions

We have shown that GPUs are excellent cost effective accelerator platforms
for Ising simulation work due to their high number of homogenous cores and
the consequent data-parallel programming model which is well suited to this
model. We have found that even for highly irregular problems we have been
able to obtain considerable performance improvements over a conventional
CPU implementation - typical a factor of 20-40 fold.

We conclude that a good architecture for managing production level in-
vestigations of critical phenomena might be a Beowulf style cluster with rela-
tively cheap interconnect hardware between nodes and a suitable head node
with appropriate storage capacity. Each individual compute node would
have a medium priced CPU with an associated GPU card so that the com-
bined CPU/GPU-Kernel programming model we have employed can be ex-
ploited to the full. Depending upon the size of system being investigated and
the relative costs of memory, it might be preferred to have dual core CPUs
and dual GPUs such as provided by the GTX 295 card. We would anticipate
that the forthcoming GT300 based graphics cards—which reportedly have
up to 512 cores and a new memory model—may be even better for this sort
of simulation model.

We have found CUDA an entirely usable programming model for use
with NVIDIA GPU cards. In practice, the general form of CUDA code has
much in common with OpenCL program source code. However, we think it
not unlikely that for this sort of application, where speed is of the utmost
importance, simply due to the statistical requirements of the investigation,
it may remain worthwhile running vendor optimised code such as CUDA
for the immediate future at least.

We note that as in the supercomputer era of the 1980s the Ising model
is very susceptible to algorithmic optimisations that make the particular

20 K. A. Hawick and A. Leist and D. P. Playne

systems size or model variation fit the parallelism available on a particular
architecture. It is an optimistic sign for parallelism in general that many of
these ideas can now be exploited on a commodity chip and with a relatively
open programming model.

We are aware of super-fast spin-cluster update algorithms such as that
by Wolff [28] that considerably improve the Ising model Monte Carlo update
in the vicinity of the critical temperature. We are presently experimenting
with optimal implementations on GPUs.

References

1. Niss, M.: History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to
Cooperative Phenomena. Arch. Hist. Exact Sci. 59 (2005) 267–318

2. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fuer Physik
31 (1925) 253258

3. Onsager, L.: Crystal Statistics I. Two-Dimensional Model with an Order-
Disorder Transition. Phys.Rev. 65 (1944) 117–149

4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Number ISBN
0-12-083180-5. Academic Press (1982)

5. Anderson, P.W.: New approach to the theory of superexchange interactions.
Phys. Rev. 115 (1959) 2–13

6. Bhanot, G., Duke, D., Salvador, R.: A fast algorithm for the Cyber 205 to
simulate the 3d Ising Model. J. Stat. Phys. 44 (1988) 985–1002

7. Blöte, H.W.J., Compagner, A., Croockewit, J.H., Fonk, Y.T.J.C., Heringa,
J.R., Hoogland, A., Smit, T.S., van Willigen, A.L.: Monte Carlo Renormal-
ization of the Three-Dimensional Ising Model. Physica A (1989) 1–22

8. Pawley, G.S., Swendsen, R.H., Wallace, D.J., Wilson, K.G.: Monte-Carlo
renormalization group calculations of critical behaviour in the simple cubic
Ising model. Phys. Rev. B 29 (1984) 4030–4040

9. Baillie, C., Gupta, R., Hawick, K., Pawley, G.: Monte-Carlo Renormalisation
Group Study of the Three-Dimensional Ising Model. Phys.Rev.B 45 (1992)
10438–10453

10. Preis, T., Virnau, P., Paul, W., Schneider, J.J.: GPU accelerated Monte Carlo
simulation of the 2D and 3D Ising model. Journal of Computational Physics
228 (2009) 4468 – 4477

11. Boyer, D., Miramontes, O.: Interface motion and pinning in small-world net-
works. Phys. Rev. E 67 (2003)

12. Pȩkalski, A.: Ising model on a small world network. Phys. Rev. E 64 (2001)
13. Jeong, D., Hong, H., Kim, B.J., Choi, M.Y.: Phase transition in the Ising

model on a small-world network with distance-dependent interactions. Phy.
Rev. E. 68 (2003)

14. Kim, B.J., Hong, H., Holme, P., Jeon, G.S., Minnhagen, P., Choi, M.Y.: XY
model in small-world networks. Phy. Rev. E. 64 (2001)

15. Hong, H., Kim, B.J., Choi, M.Y.: Comment on “Ising model on a small world
network”. Phy. Rev. E. 66 (2002) 018101

16. Yi, H., Choi, M.S.: Effect of quantum fluctuations in an Ising system on
small-world networks. Phy. Rev. E 67 (2003)

17. Herrero, C.P.: Ising model in small-world networks. Phys. Rev. E 65 (2002)

Fast Ising CUDA Simulations 21

18. Hawick, K.A., James, H.A.: Ising model scaling behaviour on z-preserving
small-world networks. Technical Report arXiv.org Condensed Matter: cond-
mat/0611763, Information and Mathematical Sciences, Massey University
(2006)

19. Hawick, K.A.: Domain Growth in Alloys. PhD thesis, Edinburgh University
(1991)

20. Binder, K.: The Monte-Carlo method for the study of Phase Transitions: A
review of some recent progress. J. Comp. Phys. 59 (1985) 1–55

21. NVIDIA R© Corporation: NVIDIA CUDATM Programming Guide Version 2.3.
(2009) Last accessed August 2009.

22. Leist, A., Playne, D., Hawick, K.: Exploiting Graphical Processing Units for
Data-Parallel Scientific Applications. Concurrency and Computation: Prac-
tice and Experience 21 (2009) 2400–2437 CSTN-065.

23. Flanders, P., Reddaway, S.: Parallel Data Transforms. DAP Series, Active
Memory Technology (1988)

24. Hawick, K.A., Playne, D.P.: Hypercubic Storage Layout and Transforms in
Arbitrary Dimensions using GPUs and CUDA. Technical Report CSTN-096,
Computer Science, Massey University (2009) Submitted to Concurrency and
Computation: Practice and Experience.

25. Hawick, K.A., Playne, D.P.: Turning partial differential equations into scal-
able software. Technical report, Computer Science, Massey University (2009)

26. Marsaglia, G., Zaman, A.: Toward a universal random number generator.
FSU-SCRI-87-50, Florida State University (1987)

27. Hawick, K.A., Leist, A., Playne, D.P.: Mixing Multi-Core CPUs and GPUs
for Scientific Simulation Software. Technical Report CSTN-091, Computer
Science, Massey University (2009)

28. Wolff, U.: Collective Monte Carlo Updating for Spin Systems. Phys. Lett.
228 (1989) 379

