
Parallel Acceleration with GPUs for High Performance Applications
K.A. Hawick and D.P. Playne

Computer Science, Massey University, Albany, North Shore 102-904, Auckland, New Zealand

http://complexity.massey.ac.nz

Graphical Processing
Units (GPUs)

Graphical Processing Units (GPUs) and other devices have
proved a valuable mechanism to speed up many applications
using a data-parallel programming model that can accelerate a
conventional CPU. It is becoming economically viable to host
multiple GPUs on a single CPU host node, and clusters using
this multi-GPU assisted node model are becoming prevalent.
We are experimenting with the hosting of up to eight GPUs on
a single CPU using PCI bus extension technology and report
on the attainable performance of a range of simulation and
complex systems applications.

We are exploring a range of combinations of multi-core CPUs,
running various thread management software systems to man-
age their multiple GPU accelerators. We anticipate significant
flexibility and scalability achievable using this approach and
believe it has major implications for future generation HPC
systems including clusters and supercomputer facilities.

Many of the supercomputers in the present Top 500 list[1] now
incorporate graphical processing unit devices as accelerators
for the individual nodes. Such systems use fast interconnec-
tion technologies such as InfiniBand or a proprietary technol-
ogy instead of regular Ethernet switching technology. These
interconnects aim at providing fast and low latency intercon-
nections between individual nodes, each of which will typically
run a full operating system software stack. Applications pro-
grammers will typically use a software model such as message
passing - implemented with for example MPI or a variant - to
communicate between participating nodes in a single MIMD
program.

Individual nodes however can be accelerated by one or more
devices. Although other accelerators such as customised field
programmable gate arrays are sometimes used, at the time of
writing GPUs are becoming a very popular acceleration devices.
Typically a hosting CPU node is accelerated by one or more
GPU devices which are connected to the CPU using PCI or
PCI Express bus technology.

Applications programmers invoke special codes on the GPU
that are called from the normal CPU program. The GPU typ-
ically offers a very large number of simpler cores than those
found on a CPU. The parallelism model most likely used on
GPUs is that of fine grained data parallelism whereby very
many threads are used to manage data-parallel operations.
Modern GPUs often are structured with some shared facilities
such as floating-point units(FPUs) – not all the individual cores
will have an FPU and they are typically grouped together so
that for example some sort of multi-processing unit with float-
ing point capability acts to group together individual simpler
cores.

The CPU hosting program can in fact be multiple threaded,
and this approach is often used to make use of the multiple
cores that a modern CPU will typically incorporate. It is also
possible for these cores to run more than one thread and this
approach is often favoured if there are slow memory or data
access operations required. A single hardware CPU core will
quite often be given two or more applications threads to run
to allow data accesses to be suitably interleaved with compu-
tations. Modern CPUs will often have special extra hardware
capabilities to explicitly support this approach.

We therefore find that there are several hierarchical layers of
parallelism available to exploit on a multi-noded, multi-cored,
GPU-accelerated supercomputer system. Different applica-
tions and user schedules can make use of these in many differ-
ent manners to exploit the overall hardware resource to best
effect. The following terminology is useful to describe this hi-
erarchy of levels of parallelism, where we give some references
to our recent work against each relevant category:

Grid: Distributed and often separately owned supercomputing
resources can be used [2]

Node: Individual Nodes connected with InfiniBand or Ethernet
switching technology [3, 4]

Multi-CPU:Multiple CPUs on multi-socket motherboard
share node main memory [5, 6]

CPU: Individual CPU has multiple cores of high individual ca-
pability including their own floating point unit [7, 8]

CPU-Core: CPU core can run more than one application
thread [9, 10]

GPU-Device: CPU thread can be accelerated by a GPU de-
vice [11, 12]

GPU-MP: GPU device has some number of individual multi
processors, usually with their own floating point unit and
controlling some group of lower-level simple cores [13, 14]

GPU-Core: Individual fine-grained accelerator cores carry out
data-parallelism operations [15, 16]

There is potential scope for work at all levels of this hierarchy.
Practicably, the financial resources required to work at the high
end of supercomputing are now restricted to a very few insti-
tutions. Nevertheless it is quite feasible to progress systems
software, library development, applications development and
other parallel computing software research anywhere.

A particularly interesting area is that of automated parallel
code generation. The notion of expressing the algorithm and
application in a high level domain-specific language and sub-
sequently using tools to generate MPI code, threading code,
GPU CUDA code or some other platform specific implementa-
tion is an attractive one that can leverage the increasing cost
of programmer effort in exploiting parallel computer systems.

Complex systems simulations often require very high perfor-
mance computing resources either to enable the simulation of
large enough models to exhibit multi-length scale complexity
and emergence, or just to obtain adequate statistical averag-
ing to support quantitative conclusions and comparisons with
theoretical predictions. Simulation of large scale models that
exhibit phase transitions and other complex phenomena is the
main driver behind our group’s work on parallel computing.

Multiple GPUs (mGPU)

While GPU devices provide a very powerful computing archi-
tecture, the performance of a single GPU is still far too lim-
ited for most high-performance computing applications. The
logical solution for these applications is to distribute the com-
putational task between multiple GPU devices. Computing on
multiple GPU devices or mGPU involves solving a computa-
tional task on more one GPU that can be hosted on the same
host machine or different hosts connected by a network.

Figure 1: A lattice split between eight GPU
devices hosted by separate nodes connected by

a network.

The advantages of this approach is two-fold - firstly the num-
ber of GPU cores available to process the computation is in-
creased and secondly the amount of available memory is in-
creased. Many GPU applications are limited by the relatively
small amount of memory available on each device. By split-
ting a problem between different devices, the total amount of
device memory is increased. The down-side is that, for most
applications, some amount of communication between devices
is necessary. The amount of communication will depend on the
nature of the application, for example the lattice shown in Fig-
ure 1 is split between eight GPUs with the boundaries of each
lattice segment highlighted. Each time-step these boundaries
must be communicated to the neighbouring devices.

mGPU Systems

Graphics cards are connected to their host by the PCIe bus,
GPUs will operate best when connected to a PCIe x16 slot.
Some motherboards have four such PCIe slots and can host
four cards. As there are dual-GPU graphics cards such as
the GTX295, GTX590 or GTX690 a single host is capable
of hosting up to eight GPUs. Figure 2 shows a single host
connected to four single-GPU devices.

Figure 2: Four GPU Devices connected to a
single host.

Another way to host multiple devices from a single machine
is to host them in a PCIe chassis and connect them to the
host through a PCIe extender card. The Dell C410x is one
such PCIe extender chassis which is capable of hosting sixteen
Tesla computing cards (See Figure 3). A host equipped with
a PCIe Host Interface Card (HIC) can connect to this chassis
and be connected to 1-8 of the device in the chassis. While it
is theoretically possible for a host with multiple HIC cards to
connect to all sixteen GPU devices, in practice this has proved
problematic due to unidentified hardware/driver limitations.

Figure 3: Dell C410x PCIe chassis.

The final configuration for mGPU systems is to host the de-
vices in distributed nodes connected via a network. This type
of mGPU system is more extensible as additional nodes can
easily be added to the network. However, the downside of
such a system is the increased communication time between
devices. GPUs hosted by the same machine are connected to
the same PCIe bus and can communicate with the host CPU
or other devices through this bus. However, when GPU devices
are hosted by separate machines this communication must go
through the relatively slow network. This architecture is shown
in Figure 4.

Figure 4: A cluster of GPU accelerated nodes
connected by a network.

mGPU Communication

Any interesting mGPU application inevitably requires commu-
nication between the devices. If the mGPU system is a dis-
tributed architecture there will be an additional transfer cost if
the two devices involved in the transfer are hosted on different
nodes. The impact of this communication will depend on the
nature of the application, the computation to communication
ratio and the type, architecture and speed of the network.
Prior to the release of the Fermi architecture GPUs all commu-
nication between devices took place through the host memory.
In this communication method, any data transfer requires two
separate memory transactions. Initially copying from the first
device to an area of host memory and the second copying to
the second device. This transfer method is shown in Figure 5.

Figure 5: Data transfer between two GPU
devices through host memory.

The new GPUDirect 2.0 technology supported by Fermi ar-
chitecture GPUs allows the unnecessary extra transfer through
host memory to be eliminated. It allows data to be transferred
directly from one GPU device to another through the PCIe
bus. This data transfer method is shown in Figure 6. It should
be noted that although this data transfer does not involve the
host memory it is still initiated by a function call from the host.

Figure 6: Direct Transfer between two GPU
devices hosted on the same PCIe bus.

The other option for inter-device communication that GPUDi-
rect 2.0 provides is called Direct Access. With this communi-
cation method the host is not involved in the data transfer at
all. Rather than a memory copy being initiated by the host to
copy a segment of data from one device to the other, Direct
Access allows the threads on one device to access data stored
in the memory of another device. This memory access method
with a thread on GPU1 reading a single memory location from
GPU0 is shown in Figure 7.

Figure 7: Direct memory access between two
GPUs on the same PCIe bus.

The Direct Transfer and Direct Access methods provided by
GPUDirect 2.0 can also be used by distributed mGPU systems
if they are connected together by InfiniBand connections from
certain providers. The communication between GPU device on
different nodes will obviously still be slower than two devices
on the same node but it helps to eliminate non-essential data
copying through the host memory.

Figure 8: Direct data transfer between two
GPU devices across a network.

The mGPU communication methods provided by GPUDirect
2.0 have significantly reduced the effort required to develop an
efficient mGPU application. Prior to this direct communica-
tion, such applications required on more complicated commu-
nication schemes that overlap communication and computa-
tion in order to hide latencies. For some applications this may
still be required for optimal performance but will also benefit
from direction data transfer. Over the last several years the
number of applications using GPUs for computation has been
adopted by a wide-range of application developers. From com-
puter games to major scientific applications, GPUs have been
employed to provide major performance improvements.

Discussion

The recent major improvements in mGPU communication will
help significantly in the transition of these applications to make
use of multiple GPUs. Given that most modern motherboards
are capable of supporting multiple graphics cards or a single
graphics card with multiple GPUs and the increasing number
of supercomputers equipped with GPUs, it can be expected
that the number of mGPU applications will continue to grow
in number.

Of particular note is the performance of the direct access
method of mGPU communication which can provide the best
performance for small transfers and for large transfers it cause
a drop in performance of approximately 20% drop compared
to a more complex asynchronous Direct Transfer. This is a re-
markable result for this type of Non-Uniform Memory Access
or NUMA style communication.

This result can be seen in Figure 9 which shows six different
methods of data transfer. The plot shows a data exchange
where two devices each send the other a block of data. This
transfer can be synchronous (s) where the two transfers are
performed one after the other, or asynchronous where both
transfers take place at the same time. The first method is the
transfer through host (DHD) using paged (pag) and pinned
host memory (pin), the second is the Direct Transfer (DD)
and finally Direct Access (DA). Asynchronous Direct Trans-
fer and Direct Access methods provide the best performance
with Direct Access providing the best performance for small
transfers and Asynchronous Direct Transfer providing the best
performance for large transfers.

Figure 9: Two devices with Transfer through
Host (DHD), Direct Transfer (DD) and Direct
Access (DA). Data for synchronous (s) and

asynchronous (a).

One phenomena that may develop is the number of users, espe-
cially computer games enthusiasts, holding onto older graphics
cards and using them to accelerate computation. Old graphics
cards that are not capable of running the latest games with the
best graphics may be recycled as a secondary computation card
used to simulate physics engines or other computational tasks
in a computer game. This recycling of GPUs would extend the
usable lifespan of the device and improve the performance of
modern applications without impacting graphics performance.

Further Information

Further information on our work in these areas is available at:
http://complexity.massey.ac.nz.
You can learn more about parallel computing and modern
parallel programming languages and other technologies such
as: CUDA; MPI; OpenMP; OpenCL; TBB; pThreads;... in
Massey’s Computer Science courses:

159.335 Concurrent Programming & Operating Systems

159.735 Parallel & Distributed Systems

159.732 Advanced programming & Simulations

References

[1] TOP500.org, “TOP 500 Supercomputer Sites.” http://www.top500.org/. Last accessed
November 2010.

[2] K. A. Hawick and H. A. James, “Simulating a computational grid with networked animat agents,” in
Proc. Fourth Australasian Symposium on Grid Computing and e-Research (AusGrid 2006) (R.Buyya
and T.Ma, eds.), CSTN-028, (Hobart, Australia), pp. 63–70, January 2006. ACSW Frontiers 2006,
ISBN 1-920-68236-8, ISSN 1445-1336.

[3] K. A. Hawick, H. A. James, and C. J. Scogings, “64-bit architectures and compute clusters for high
performance simulations,” tech. rep., Information and Mathematical Sciences, Massey University,
Albany, North Shore 102-904, Auckland, New Zealand, April 2006.

[4] D. Playne and K. Hawick, “Auto-generation of parallel finite-differencing code for mpi, tbb and
cuda,” in Proc. International Parallel and Distributed Processing Symposium (IPDPS); Workshop
on High-Level Parallel Programming Models and Supportive - HIPS 2011, (Anchorage, Alaska,
USA), pp. 1163–1170, IEEE, 16-20 May 2011. in conjunction with IPDPS 2011, the 25th IEEE
International Parallel & Distributed Processing Symposium.

[5] M. Gan-El and K. A. Hawick, “Parallel containers - a tool for applying parallel computing applica-
tions on clusters,” Research Letters in the Information and Mathematical Sciences ISSN 1175-2777,
Information and Mathematical Sciences, Massey University, Albany, North Shore 102-904, Auck-
land, New Zealand, May 2004.

[6] K. Hawick and D. Playne, “Spectral and real-space solid representations and visualisation of real
and complex field equations,” Tech. Rep. CSTN-101, Computer Science, Massey University, August
2009.

[7] K. A. Hawick, A. Leist, and D. P. Playne, “Mixing Multi-Core CPUs and GPUs for Scientific
Simulation Software,” Tech. Rep. CSTN-091, Computer Science, Massey University, September
2009.

[8] A. Leist, K.A.Hawick, and D.P.Playne, “Gp-gpu and multi-core architectures for computing clus-
tering coefficients of irregular graphs,” in Proc. International Conference on Scientific Computing
(CSC’11), no. CSC2720, (Las Vegas, USA), July 2011.

[9] K. A. Hawick and D. P. Playne, “Automated and parallel code generation for finite-differencing
stencils with arbitrary data types,” in Proc. Int. Conf. Computational Science, (ICCS), Workshop
on Automated Program Generation for Computational Science, Amsterdam June 2010., no. CSTN-
106, December 2010.

[10] D. P. Playne and K. A. Hawick, “Comparison of GPU Architectures for Asynchronous Commu-
nication with Finite-Differencing Applications,” Tech. Rep. CSTN-111, Massey University, 2010.
submitted to: Concurrency and Computation: Practice and Experience.

[11] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical Processing Units for Data-Parallel Sci-
entific Applications,” Concurrency and Computation: Practice and Experience, vol. 21, pp. 2400–
2437, December 2009. CSTN-065.

[12] K. A. Hawick and D. P. Playne, “Numerical Simulation of the Complex Ginzburg-Landau Equation
on GPUs with CUDA,” in Proc. IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN), no. CSTN-070, (Innsbruck, Austria), pp. 39–45, IASTED,
15-17 February 2011.

[13] K. Hawick, D. Playne, and M. Johnson, “Numerical precision and benchmarking very-high-order in-
tegration of particle dynamics on gpu accelerators,” in Proc. International Conference on Computer
Design (CDES’11), no. CDE4469, (Las Vegas, USA), July 2011.

[14] D. Playne and K. Hawick, “Job parallelism using graphical processing unit individual multi-
processors and highly localised memory,” Tech. Rep. CSTN-159, Computer Science, Massey Uni-
versity, June 2012.

[15] K. A. Hawick and D. P. Playne, “Hypercubic Storage Layout and Transforms in Arbitrary Dimen-
sions using GPUs and CUDA,” Concurrency and Computation: Practice and Experience, vol. 23,
pp. 1027–1050, July 2011.

[16] A.Gilman and K. Hawick, “Field programmable gate arrays for computational acceleration of lattice-
oriented simulation models,” Tech. Rep. CSTN-151, Computer Science, Massey University, 2012.
accepted for and to appear in Proc. International Conference on Computer Design (CDES’12),
16-19 July, 2012, Las Vegas, USA.


