
Software Architectures for Simulations
D.P.Playne, A.P.Gerdelan and K.A.Hawick

daniel.playne@gmail.com, gerdelan@gmail.com, k.a.hawick@massey.ac.nz

Institute of Information and Mathematical Sciences, Massey University, Albany, North Shore 102-904, Auckland

Simulation-Driven Architecture

A Simulation-Driven architecture focuses on the simulation. In
this architecture, the system is driven by the simulator (often with
an iterative loop) and the entities contained within it are updated
each time-step. These entities are visualised with a graphics en-
gine to allow an observer to see the state of the simulation (see
Figure: 1). This observer can control the visualiser via an input
interface (keyboard, mouse etc) too change the way the graphics
engine displays the entities. The operator has a degree of control
over the visualisation but cannot change the simulation in any way.
In this architecture the simulation and the visualisation engine
have no direct knowledge of each other. The simulation operates
the same way regardless of the visualisation engine and likewise
the visualiser simply displays entities and is unaware that these
entities are actually being updated within a simulation.

Figure 1: Simulation-Driven Architecture.

In this architecture the operation of the simulation is the point of
interest. This may be in the form of a forecast where the simu-
lation can predict what will occur given a starting configuration.
Another possibility is that the visualisation may be examined by
the observer to identify interesting events or phenomena occur-
ring within the simulation. These simulators model systems such
as Particles [1], Field Equations [2] and Animats [3].

Introduction

Simulations are widely employed throughout computer science for a variety of uses. A simulation is defined
by a model that enforces a set of rules upon the entities within it. These entities can only operate or change
their state based on the rules of the model. Simulations often require visualisation for their results to be
easily interpreted. The design architecture for these simulators and visualisers is vital to the re-usability and
portability of the software. Presented here are two common high-level simulation structures - Simulation-

Driven Architecture and Agent-Driven Architecture.

Agent-Driven Architecture

In the Agent-Driven architecture the simulation provides an en-
vironment to test intelligent agents. The agents have a degree
of control over one or more entities within the simulation. The
decisions made by the agent change what the entity does within
the simulation. In Figure: 2 the controlling agent is shown distinct
from the simulation as it may be a human operator or a separate
automated artificial intelligence program.
When a human operator is the controlling agent then the sim-
ulation is no longer merely visualised by the graphics engine, it
is inextricably linked to it. The human operator processes the
visualisation to determine the state of the simulation and from
this information makes decisions about how to control its enti-
ties. This decision is then input into the simulation via an input
interface (see Figure: 2).

Figure 2: Agent-Driven Architecture.

The Agent-Driven architecture does not focus on the direct results
from the simulation. Rather the simulation acts as an environment
to test the performance of the intelligent agents controlling it.
Each agent strives to achieve its goal while following the rules
enforced by the simulation. Applications utilising this architecture
include most modern computer games, robot soccer simulators [4]
and robotic agent simulations [5].

Simulation Repeatability

Repeatability is important within Simulation-Driven architectures. Simulations that incorporate randomness
within experiments should have a method of managing it. There is little point in discovering an interesting
effect or phenomena if the experiment cannot be repeated. Figure: 3 shows a way of managing random-
number generator (RNG) configurations. The simulator loads a configuration file, computes the simulation
over a period of time and saves a final configuration. The configuration of the simulation and the RNG state
is saved and can be recreated at any time. It should be noted that executing the simulation for ten time-steps,
twice should produce the same final configuration as one execution for twenty time-steps.

Figure 3: Configuration-Chaining Architecture.

Summary & Conclusions

As we have shown, the overall architecture can be driven from the
simulation or agent perspective. A better understanding of a simu-
lation’s architecture can help to identify and avoid design-breaking
features which would otherwise reduce the software’s portability
and re-usability.Visualisation is important in any simulation but
plays different roles depending on the software goals.

In Computer Science at Albany it is possible to make use of these
architectures in undergraduate and postgraduate projects (see pa-
pers: 159.333, 159.793, 159.794 and 159.795). Recent
and ongoing projects include: particle simulation, material sci-
ence, animat agents, robotic tank control (see background image)
and network simulations. We believe these architecture concepts
are applicable to simulations across many disciplines.

References

[1] D. P. Playne, “Notes on particle simulation and visualisation,” Hons. Thesis,
Computer Science, Massey University, June 2008.

[2] K. A. Hawick and D. P. Playne, “Modelling and visualizing the cahn-hilliard-
cook equation,” in Proc. 2008 International Conference on Modeling, Sim-
ulation and Visualization Methods (MSV’08), July 2008.

[3] H. A. James, C. J. Scogings, and K. A. Hawick, “A framework and simulation
engine for studying artificial life,” Research Letters in the Information and
Mathematical Sciences, vol. 6, pp. 143–155, May 2004.

[4] A. Gerdelan and N. Reyes, “A Novel Hybrid Fuzzy A* Robot Navigation
System for Target Pursuit and Obstacle Avoidance,” in Proceedings of the
First Korean-New Zealand Joint Workshop on Advance of Computational
Intelligence Methods and Applications, vol. vol.1, (Auckland, New Zealand),
pp. pp. 75–79, 2006.

[5] A. P. Gerdelan, “The Mark IV 3D Battlefield Simulation Engine.”
http://markiv.sf.net, 2008.


