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Abstract

Droplet nucleation occurs when a small fluctuation in a system forms
and subsequently grows in magnitude. Raindrop formation is a famil-
iar everyday example. Droplets can be modelled using a field equation
such as the Cahn-Hilliard system [1, 2, 3]. Attempts to understand
and describe growth processes in material physico-chemical systems
are often made using nucleation theory, which works well in the di-
lute limit. The range of validity of nucleation theoretical models can
be explored using microscopic simulation models in which nucleating
clusters can be counted and measured exactly. The Becker-Doring
nucleation theory is described and its range of validity is discussed
for binary alloy simulations using the Kawasaki exchange model in
various concentration regimes. Graph labeling and enumeration tech-
niques are employed to study the range of sizes of clusters present in
nucleating systems.

Droplet Formation

The Cahn-Hilliard model [1, 3] models the phase transition and do-
main separation of a binary alloy consisting of two types of atoms A
and B, the ratio these atoms is known as the mass fraction. In a
Cahn-Hilliard system with an extreme mass fraction, the dilute atom
will form nuclei in the same way a real binary alloy nucleates. Fig-
ure: 1 shows a comparison between a Cahn-Hilliard system with an
extreme mass fraction and an electron micro-graph of a real binary
alloy.

Figure 1: Cahn-Hilliard Simulation with a mass fraction of 25%

on the left showing similar behaviour to the Electron

Micro-graph on the right (J. Gunton).

Growth Laws

If l is the size of a cluster and the total system has cluster density of
nl(t) per unit volume at time t, according to conservation of mass,
the volume fraction Vf occupied by all the clusters is:

Vf (t) =

∫

n(t)dr = Vtotal

inf
∑

l=0

nl(t) (1)

To avoid infinities, this can be limited to nlmax provided the maxi-
mum cluster size lmax is known. It is also useful to identify a special
cluster size, denoted by l∗ which will typically be the mean or me-
dian cluster size (or some other moment) in a distribution. Given
that φ is the difference species or phases in a given system, we have
N(t) =

∑k
φ=1 Nφ(t) for k separate phases or species. Generally

there will be one majority phase and the other phases form minorities
against it as a background. This majority phase can be ignored or
the vacancies on the background matrix or lattice can be treated as
“particles” in their own right. Clusters can be compact or not but
they always occupy some space and create an exclusion volume that
cannot be occupied by other clusters. This constrains the density
fractions of phases and not all arrangements and combinations are
possible.
There are various processes we can consider for a system of clusters,
it is convenient to consider nucleation theory based on growth and
decay of clusters by monomer activation. This means the cluster size
changes by ±1 for growth and decay. In some systems this may be
sufficient to explain all behaviours, but the probabilities of clusters
breaking up or merging is non-zero even when size changes are con-
siderably greater than unity.
The central assumption behind droplet and cluster theories of growth
in binary solutions is that it is the heterophase or droplet fluctuations
which lead to the decay of metastable states. These theories are gen-
erally formulated in the dilute limit, where a small volume fraction of
solute material is uniformly distributed in the solvent as a single phase
state. Following a quench, droplet fluctuations start the nucleation
process, and these droplets then grow or shrink in size according to
the condensation and evaporation mechanisms available.

A convenient starting point for this approach is that of [4], whereby a
rate equation can be set up to describe changes in the cluster distri-
bution function. Let the number of the minority-phase clusters with
a mass of l A-atoms be denoted by nl(t) per unit volume at time t.
The rate equation for condensation and evaporation processes can be
written as:

dnl(t)

dt
= C+

l−1
nl−1(t) − C+

l nl(t) +

C−
l+1

nl+1(t) − C−
l nl(t), l ≥ 2

dnl(t)

dt
= C+

1
n1(t) + C−

2
n2(t), l = 1 (2)

The coefficients for condensation or growth of an l-cluster, C+
l

and

for evaporation or decay of an l-cluster, C−
l

are themselves func-
tions of time. Their values must reflect the facts that we are only
considering monomer activated processes, that is processes where a
cluster increases or decreases its mass by a single atom, and that in
a canonical simulation, the monomer population is finite. As clusters
grow, the monomer population is depleted, and so C+

l
will necessar-

ily decease with time. Equation 2 can be rewritten using the detailed
balance condition for growth and decay that states:

C+

l n
eq
l = C−

l+1
n

eq
l+l = W (l, l′ = 1) (3)

Where l′ = 1 denotes that we are only considering monomer activated
processes, and W is the combined rate factor, and is strictly speaking
time dependent itself, although it is treated here as constant in time.
The rate equation is now parameterised by n

eq
l

, the equilibrium or
most probable cluster size distribution. The main task for a nucleation
theory is to predict a form for this equilibrium cluster size distribution,
by some approximation [5, 6]. It is sufficient here to suppose that the
equilibrium cluster distribution can be written as:

n
eq
l

= n0e
−△FlkbT (4)

after Fisher, in which n0 is a constant, and △Fl is the non-classical
droplet free energy. This approach is essentially that of an ideal gas
law for a non-interacting assembly of droplets, and is correct in the
dilute limit[5]. Following [7], the rate equation can now be recast as:

dnl(t)

dt
= W (l − 1, 1)

[

nl−1(t)

n
eq
l−1

−
nl(t)

n
eq
l

]

+ W (l + 1, 1)

[

nl+1(t)

n
eq
l+1

−
nl(t)

n
eq
l

]

(5)

which is valid for l ≥ 2, and expanding about l using:

nl±1(t)

n
eq
l±1

=
nl

n
eq
l

±
∂

∂l

nl

n
eq
l

+
1

2

∂2

∂l2
nl

n
eq
l

+ · · ·

W (l − 1, 1) = W (l, 1) −
∂

∂l
W (l, 1) (6)

to yield:
∂nl(t)

∂t
=

∂

∂l

[

W (l, 1)
∂

∂l

nl(t)

n
eq
l

]

= −
∂

∂l
Jl (7)

where Jl defines the cluster current. Since this is a continuity equa-
tion in cluster-size space {l} it can be generalised by allowing the
case l′ ≥ 1 where clusters grow or decay by more than one atom (see
equation 8). By expanding the derivative in equation 8 and assuming
Fisher’s form n

eq
l

in equation 4 we can derive equation 9 where Rl

defines the cluster reaction rate for processes involving l ⇋ l′.

Jl = −
∑

l′

l′
2
W (l, l′)

∂

∂l

nl(t)

n
eq
l

(8)

Jl = −

[

Rl

∂

∂l
nl(t) −

∂

∂l

△Fl

knT
Rlnl(t)

]

(9)

Rl =
1

n
eq
l

∑

l′

l′
2
W (l, l′) (10)

This illustrates that Jl contains two terms: a diffusive term:

−Rl
∂
∂l

nl(t) and a drift term: ∂
∂l

△Fl

kbT
Rlnl(t).

Only the drift term contains explicit dependence on the form of the
equilibrium distribution. These two terms are of opposite sign, and it
is supposed in cluster theories that there is a critical droplet size l∗ at
which the two terms are equal. For l < l∗ the drift term acts against
the diffusion so that if a large droplet does form, it is likely to decay

again. However, for the case when l > l∗ the drift term acts with the
diffusion and hence super-critical droplets can grow steadily.
Following a quench to a metastable state, there is a transient time
during which the cluster concentration nl(t) grows for clusters less
than the critical cluster size l . l∗, until clusters saturate weakly at
their equilibrium sizes. After this time lag, the nucleation current Jl∗

around the maximum cluster size, has almost reached a steady state
value known as the nucleation rate J .
So far the formulation of nucleation theory has only relied on the
approximation of taking a specific form for the unknown droplet free
energy function. Further progress can not be made without building
in the restrictions mentioned earlier, of having a large dilute system,
with a fixed monomer population density, and the additional con-
straint, that large droplets once formed, are removed from the sys-
tem. This latter prevents all the solute material from precipitating out
of solution and allows us to solve the steady state condition for the
dilute system. Following Becker and Doring [7] and the requirement
that the monomer population density is fixed, these constraints can
be expressed by:

lim
l→0

nl(t)

n
eq
l

= 1 (11)

lim
l→∞

=
nl(t)

n
eq
l

= 0 (12)

for the removal of large droplets. The steady state cluster concentra-
tion nss

l can be obtained using:

∂nss
l

∂t
= 0 (13)

requiring that Jl ≡ J independent of l. Hence:

J = n
eq
l Rl

d

dl

nss
l

n
eq
l

(14)

which gives:
nss

l

n
eq
l

= J

∫ ∞

l

dl′

Rl′n
eq

l′

(15)

with
J =

1
∫∞

0

dl

Rln
eq
l

(16)

using the boundary equations 11 and 12. If l∗ is large, the free
energy term in Rl can be expanded as a quadratic around l∗ as:

△Fl ≈ Rl∗ −
1

2
gkbT (l − l∗)2 (17)

where g is a constant. Equation 15 can be recast as:

nss
l

n
eq
l

=
1

2
{1 − erf

(

l − l∗
√

g
2

)

} (18)

The meaning of the parameter g is then to control the width of

the region in which the ratio
nss

l

n
eq
l

changes from unity to zero. This

parameter is known as the Zeldovitch parameter [8].
The ratio in equation 18 varies with values of the Zeldovitch param-

eter g and implies that
nss

l

n
eq
l

is close to unity around l . l∗ and goes to

zero rapidly, for cluster sizes greater than l∗. This justifies the idea
that the critical cluster size is a useful concept and can be employed
as a cutoff on the full distribution.

Figure 2: Cluster Distribution in 64x64 Alloy

Using the simulation configurations generated by the model it is pos-
sible to apply graph labeling and analysis methods [9] and to exactly
enumerate clusters and histogram them by size. Figure X shows the
cluster distributions as measured from a typical model system of a
64× 64 binary alloy with minority phase concentration of 10% and at
temperature T = 2Tc.

Discussion and Conclusions

Our simulations show that when the monomer population is de-
pleted the distribution is no longer approximated by Fisher’s expo-
nential form. It is better described by a log-normal distribution or
a Maxwellian distribution. This illustrates that although Fisher’s ex-
ponential form for the free energy is useful at high temperatures, it
breaks down for quenches to temperatures below the critical temper-
ature. This is attributable to the depletion of the crucial monomers
in the simulation, although this would in principle extend to other
small mobile clusters, in a real alloy system. There are clearly other
deficiencies with the Becker-Doring theory, as it fails to take proper
account of the particle interactions.
Simulating and visualising[10] the phase transition in these model
systems has made use of several computational resources. We are
presently investigating the use of graphical processing units (GPUs)
[11] to speed up the simulations and make it possible to simulate
bigger and more realistic systems.
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