--- title: "161.324 Data Mining" subtitle: "Assignment 1, 2025" author: "YOUR NAME GOES HERE" output: html_document --- ```{r setup, echo=TRUE, warning=FALSE, message=FALSE} # Add any other packages you need to load here. library(tidyverse) # Read in the data uksun <- read_csv("https://www.massey.ac.nz/~jcmarsha/161324/assessment/data/uksun.csv") woops <- read_csv("https://www.massey.ac.nz/~jcmarsha/161324/assessment/data/woops2025.csv") ``` ## Exercise 1: Exploratory analysis of UK weather records ### 1.1. Missing values ```{r} ``` ### 1.2. Mean sunshine hours ```{r} ``` ### 1.3. Mean rainfall per month ```{r} ``` ### 1.4. Reproduce the graphic ```{r} ``` ## Exercise 2: Imputation of UK weather records ### 2.1. Histogram of mean imputed July sunshine hours in Durham city ```{r} ``` ### 2.2. Standard deviation before and after mean imputation ```{r} ``` ### 2.3. k-Nearest neighbour imputation scatterplots ```{r} ``` ## Exercise 3: Woops! ```{r} ``` ## Exercise 4: Reflection WRITE DOWN WHICH SOURCES OF INFORMATION YOU USED, AND REFLECT ON HOW IT WAS USED