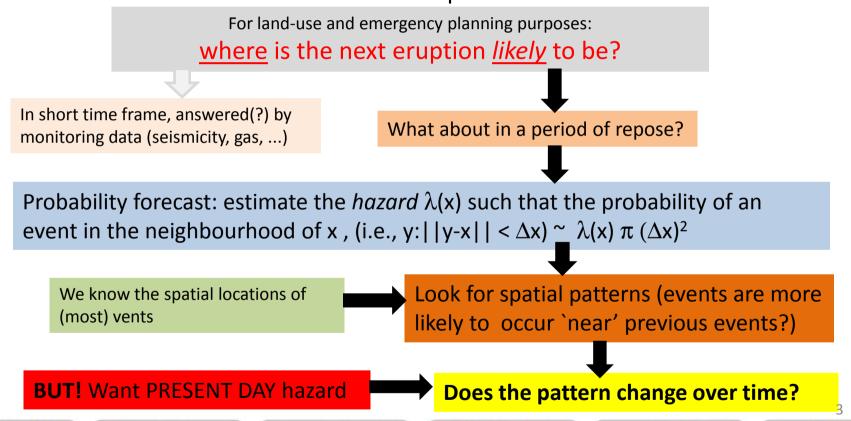
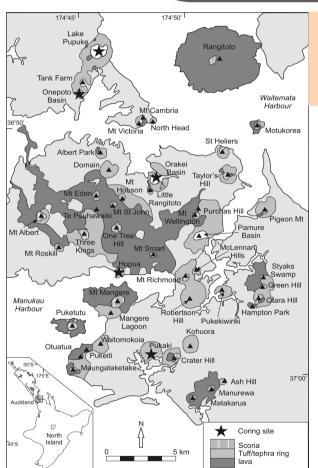


The Auckland Volcanic Field

High population density, lifelines narrowly constrained


- WHERE is the next eruption likely to be?

Spatio-temporal hazard estimates


Monogenetic volcanic fields have multiple volcanoes; a new eruption is expected to create a new volcano. Events are infrequent.

The Auckland Volcanic Field

51(?) small basaltic volcanoes young (~250,000 years) Most recent eruption ~600 years ago

Data:

- Stratigraphy, ~33 vents constrained in at least one direction
- Age determinations
 - Paleomagnetism ~5+ vents
 - C14, ~13 vents
 - Tephrostratigraphy, 22+ tephra in 5 locations
 - Ar-Ar, ~4 vents
 - Thermoluminesence, 2 vents
 - K-Ar, unreliable due to excess Ar
- Relative geomorphology or weathering

Also: known vent locations, reasonable volume data (Allen and Smith 1994; Kereszturi et al. 2013)

A Monte Carlo sample of age-orderings

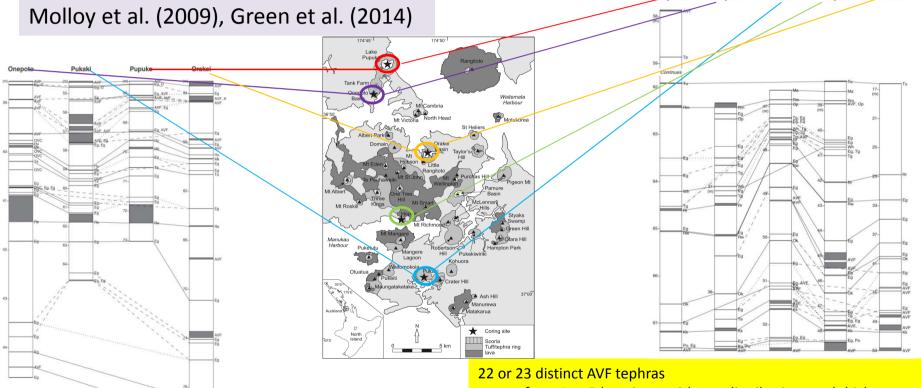
By reverse engineering the tephra dispersal, Bebbington and Cronin (2011, 2012) constructed *feasible* ageorderings.

Laschamp magnetic excursion

No apparent spatio-temporal structure, but plenty of both temporal and spatial structure

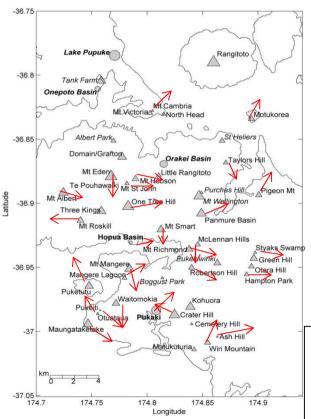
Mono Lake magnetic excursion

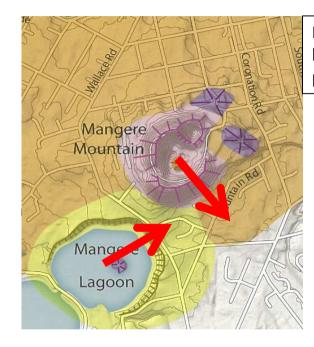
But can we find the **MOST LIKELY** age-ordering?


Name M Onepoto Basin 248 Albert Park 229		Age Error (ka) 27.8 39.5	Min Order	Max Order
Albert Park 229		-	1	7
	9.8	30 5		
		33.3	1	7
		•••••		
St Heliers 185	5.0	52.8	2	9
Te Pouhawaiki 152	2.9	70.3	1	34
Mt St John 54.	.8	4.6	10	13
Maungataketake 41.	.4	0.4	13	15
Otuataua 41.	.4	0.4	14	16
McLennan Hills 40.	.1	1.2	13	16
One Tree Hill 34.	.9	0.7	16	18
Hopua Basin 32.	.3	0.4	19	26
Puketutu 31.	.9	0.3	22	27
Wiri Mountain 31.	.9	0.3	21	28
Mt Richmond 31.	.7	0.3	21	28
Taylors Hill 31.	.7	0.3	21	28
Crater Hill 31.	.6	0.3	23	28
North Head 31.	.2	0.1	27	29

Maar Tephra Thicknesses

Figure 3. Stratigraphy of post-29 cal ka BP tephra layers. Dotted lines show the tephra correlations from Molloy et al. (2009). Dashed lines show the correlations returned by our procedure when the non-linearity constant defined in Eq. (1) equals 0.5 ka. Solid lines show correlations consistent between our arrangement and that of Molloy et al. (2009).




- at from 1 to 5 locations, with age distributions and thicknesses
- interspersed with 10 dated rhyolitic marker tephras

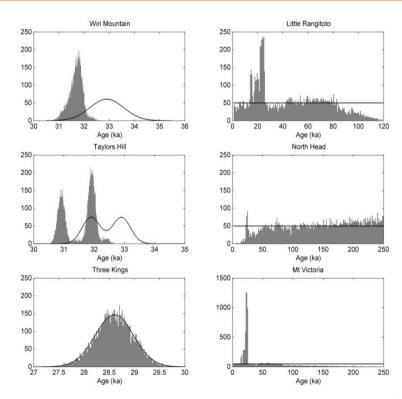
Eruptive Tephra Volumes and Directions

Dispersal axis in line with highest point on the rim

Bold = cored maars Italics = too old Symbol size ~ volume^{1/3} Arrow = dispersal axis Volumes: Allen and Smith (1994), Kereszturi et al (2013)

Directions: Hayward et al. (2011)

Prior age distributions


Age determinations

Volcano	Age (ka)	Dating method	References
Ash Hill	31.80 ± 0.16	^{14}C	Hayward (2008a)
Boggust Park	> 130	Sea level	Hayward et al. (2011a)
Crater Hill	33.33 ± 0.67	^{14}C	Searle (1965)
Domain	> 60	^{14}C	Grenfell and Kenny (1995)
Green Hill	199.83 ± 8.98	¹⁴ C methanol	Sameshima (1990)
Hampton Park	26.60 ± 8.10	40 Ar/39 Ar	Cassata et al. (2008)
Hopua	> 29	Oldest tephra	Molloy et al. (2009)
	< 33	Age of lava at base	Lindsay and Leonard (2009)
Kohuora	34.02 ± 0.27	^{14}C	Searle (1965); Grant-Taylor and Rafter (1971)
McLennan Hills	42.60 ± 3.80	40 Ar/39 Ar	Cassata et al. (2008)
Maungataketake	39.99 ± 0.53	^{14}C	Fergusson et al. (1959); Grant-Taylor and Rafter (1963)
Contract Con			Polach et al. (1969); McDougall et al. (1969)
Motukorea	> 7	Sea level	Bryner (1991)
Mt. Albert	> 30	^{14}C	Fergusson et al. (1959); Grant-Taylor and Rafter (1963)
Mt. Eden	28.39 ± 0.35	^{14}C	East and George (2003)
Mt. Mangere	21.94 ± 0.40	^{14}C	Searle (1959, 1965); Grant-Taylor and Rafter (1971)
Onepoto Basin	> 99.5	Oldest tephra	Molloy et al. (2009); Green et al. (2014)
Orakei Basin	> 83.1	Oldest tephra	Molloy et al. (2009)
	< 120	Sea level	Hayward, pers. comm.
Panmure Basin	31.73 ± 0.17	^{14}C	Fergusson et al. (1959); Grant-Taylor and Rafter (1963)
			Polach et al. (1969); McDougall et al. (1969)
Pukaki	> 67	Oldest tephra	Molloy et al. (2009)
Puketutu	33.60 ± 3.70	$^{40}Ar/^{39}Ar$	Cassata et al. (2008)
Pukewairiki	> 130	Sea level	Lindsay and Leonard (2009)
Pupuke	207 ± 6	40 Ar/39 Ar	Cassata et al. (2008)
Roberston Hill	29.90 ± 0.60	^{14}C	Sandiford et al. (2002)
Three Kings	28.59 ± 0.38	^{14}C	Eade (2009)
Wiri Mountain	32.88 ± 0.67	^{14}C	Searle (1965); Grant-Taylor and Rafter (1971)

Stratigraphy

Stratigraphy	References
Ash Hill > Wiri Mountain	
Green Hill > Styaks Swamp	Sibson (1968)
Kohuora > Crater Hill	
Mangere Lagoon > Mt Mangere	Kermode and Heron (1992)
Mt Albert > Mt Roskill	Searle (1962)
Mt Eden > Mt Hobson	3.1 300 0 40 1 120 ° 0 (40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mt Mangere > Mt Smart	Kermode and Heron (1992)
Mt Roskill > Three Kings	Allen and Smith (1994)
Mt St John > Three Kings	Eade (2009)
North Head > Mt Victoria	
One Tree Hill > Hopua	Allen and Smith (1994)
One Tree Hill > Mt Eden	- A - 51
One Tree Hill > Mt Mangere	Hayward (2008b)
One Tree Hill > Mt Smart	Searle (1962); Hayward (2008b)
One Tree Hill > Three Kings	Hayward (2008b)
Orakei Basin > Little Rangitoto	Kermode et al. (1992)
Pukeiti > Otuataua	Searle (1959)
Te Pouhawaiki > Mt Eden	Affleck et al. (2001)
Waitomokia > Pukeiti	Searle (1959)
Wiri Mountain > Matukutureia	
Cemetery Hill ≥ Crater Hill	Nemeth, pers. comm.
Otara Hill ≥ Hampton Park	Cassidy and Locke (2010)
Maungataketake ≥ Otuataua	Cassidy and Locke (2010)
Mt. Cambria = Mt Victoria	

'Known' ages and stratigraphy combined with paleomagnetic (e.g. Mono Lake) constraints to simulate 10,000 feasible age sequences

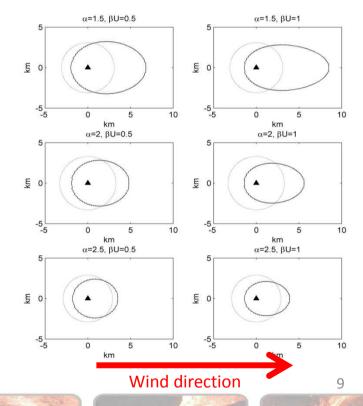
Tephra attenuation

Expected thickness, with wind

wind speed

dispersal axis

column height term


$$\hat{T}_{ik}(r_{ik}, \xi_{ik}) = \gamma_i \exp\{-(\beta U)r_{ik}[1 - \cos(\xi_{ik} - \phi_i)]\}r_{ik}$$

without wind

$$\hat{T}_{ik}(r_{ik}) \epsilon_{ik} = \gamma_i r_{ik}^{-\alpha}.$$
 distance

Gonzalez-Mellado & De la Cruz Reyna (2010) ; Kawabata et al. (2013)

Actual thickness has lognormal distribution with given mean and coefficient of variation 0.5

Likelihood Equations

Includes terms for observed thickness, not observed (but should have been!) thicknesses, difference in ages, and the presence of rhyolitic marker tephras ...

$$u_{ijk}(T_{jk}) = \begin{cases} \frac{1}{T_{jk}\sqrt{2\pi\sigma^2}_N} \exp\left[-\frac{(\log T_{jk} - \mu_{N_{ik}})^2}{2\sigma_N^2}\right], & T_{jk} > 0\\ \frac{1}{\sqrt{2\pi\sigma_N^2}} \int_0^{0.05} \frac{1}{t} \exp\left\{-\frac{[\log(t) - \mu_{N_{ik}}]^2}{2\sigma_N^2}\right\} dt, & T_{jk} = 0\\ 1, & T_{jk} = NA, \end{cases}$$

$$f_j^n(s_i^n) = \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left[-\frac{(s_i^n - \mu_j)^2}{2\sigma_j^2}\right]$$

$$v_{ik}^{n}(T_{jk}) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_N^2}} \int_0^{0.05} t^{-1} \exp\left\{-\frac{[\log(t) - \mu_{N_{ik}}]^2}{2\sigma_N^2}\right\} dt, & s_i^n \in C_k \\ 1, & \text{otherwise} \end{cases}$$

$$g_{j,j^*}^n(s_i^n) = \begin{cases} Pr(j^* < s_i^n) = \frac{1}{\sqrt{2\pi\sigma_{j^*}^2}} \int_{-\infty}^{s_i^n} \exp\left[-\frac{(t-\mu_{j^*})^2}{2\sigma_{j^*}^2}\right] \mathrm{d}t, & \text{AVF} j \text{ older than } j^* \\ Pr(j^* > s_i^n) = 1 - \frac{1}{\sqrt{2\pi\sigma_{j^*}^2}} \int_{-\infty}^{s_i^n} \exp\left[-\frac{(t-\mu_{j^*})^2}{2\sigma_{j^*}^2}\right] \mathrm{d}t, & \text{otherwise,} \end{cases}$$

$$\log L_{ij}^{n} = \begin{cases} \sum_{k=1}^{5} \log u_{ijk}(T_{jk}) + \log f_{j}^{n}(s_{i}^{n}) + \sum_{j^{*}=1}^{10} \log g_{j,j^{*}}^{n}(s_{i}^{n}) & j = \{1, \dots, 20\} \\ \sum_{k=1}^{5} \log v_{ik}^{n}(T_{jk}) & j = 0, \end{cases}$$

Solved by linear programming:

$$\log L^{n} = \sum_{i=1}^{41} \sum_{j=1}^{20} x_{ij}^{n} \left[\sum_{k=1}^{5} \log u_{ijk}(T_{jk}) + \log f_{j}^{n}(s_{i}^{n}) + \sum_{j^{*}=1}^{10} \log g_{j,j^{*}}^{n}(s_{i}^{n}) \right] + \sum_{i=1}^{41} \sum_{k=1}^{5} x_{i0}^{n} \log v_{ik}^{n}(T_{jk}).$$

with constraints for stratigraphy, etc.

$$\sum_{i=1}^{41} (ix_{i,j+1}^n - ix_{ij}^n) > 0, \forall j = 1, \dots, 19.$$

Results, $\beta U=0.5$, $\alpha=2$

Table 6: Marginal posterior probabilities for a volcano to have produced a given tephra for the baseline scenario with $\alpha = 2.0, \beta U = 0.5$. The global best arrangement is indicated by bold type.

Volcano											ra (AVF0 =	'unmatch									
	AVF0	AVF1	AVF2	AVF3	AVF4	AVF5	AVF6	AV F7	AVF8	AVF9	AVF10	AVF11	AVF12	AVF13	AVF14	AVF15	AVF16	AVF17	AVF18	AVF19	AVF2
Ash Hill	.8011					.0004	.1612	.0373													
Cemetery Hill	10040	7			.0002	.0170	.1326	.1716	.5343	.1106	.0008										
Crater Hill	0	_				.0001	.0150	.0068	.2779	.5690	.1301	.0011									
Domain	.7589	1320	.0570	.0210				10000000000							1000000	University of					
Green Hill	.0102	6007	.0031	0162	0255	0160	0059	0003	0004	0037	0376	0164	0555	1900	1223	1029	0775	0874	1098	0878	.030
ampton Park	.3939					.0001								.0648	.1480	.1912	.1051	.0693	.0167	.0070	.003
Iopua Basin	.8042			.0003		.0639	.0499	.0359	.0003	.0021	.0413	.0021									
Cohnora	.0001	0001	0018	6171	8610	0.656	05.14	0010	0010												
ittle Rangitoto	.0440	.1987	.1923	.1444	.0215	.0117	.0013	.0009	.0008	.0025	.0133	.0056	.0182	.0497	.0383	.0288	.0208	.0317	.0488	.0530	.073
Iangere Lagoon	.7382	11111		1111	222				18.00.00	11111	11111		1112			2.22	0.000				
Jatukutureia	.0209									.0008	.0076	.0032	.0067	1381	.1007	.0861	.0683	.0642	.0950	2123	.196
faungataketake	9943	.0012		.0034		0002	.0809														
IcLennan Hills	.9259	1000	.0162	.0435		.0128	.0009	.0007													
lotukorea	.9494	.0023	.0007	.0002		.0019					.0006			.0065	.0008	.0029	.0021	.0276	.0010	.0016	.002
It Albert	.8857	.0585	.0360	.0184	.0007	.0005	.0001				.0001			.0000	18000	10020		10410	.0010	.0010	.00.
Mt Cambria	.7322	.0105	.0238	0175	.0035	.0083	.0001				.0050			0329	.0103	.0492	.0156	.0888	.0012	.0011	.008
It Eden	.0442	.0100	100,400	.0410	-0000	.0000				.0006	.0363	.3759	.5430	.0020	.0200	.0404	.0100	,0000	.00.22	.001.4	
It Hobson	.1233									.0000	.0002	.0038	.0184	1215	.0880	.0743	.0609	.0841	.1128	.1302	.182
It Mangere	.0095										.0002	.0038	.0104	0048	.0431	.1439	3543	.3037	.1366	.0041	.104
Mt Richmond	.7783					.0013	.0717	.1487						.0040	.0401	.1459	13043	.000	.1000	.004	
It Roskill	.9408	.0185	.0261	.0022	.0001	.0067	.0001	.0004			.0051										
dt Smart	.0099	.0100	.0201	.0042	.0001	.0007	.0001	.000-6			10001				.0004	.0050	.0266	.0786	.2761	3807	.222
It St John	.7185											0000			-9004	-0000	.0200	.0100	.2101	.0001	-444
It Victoria	.1755	.0696	.0735	.0718	.0136	.0070	.0030	.0001	.0001	.0018	.0043	.0050	.0076	.1063	.1252	.0652	.0846	.0173	.0773	.0382	.053
North Head	.7306	.1006	.0624	.0508	.0077	.0036	.0004	.0001	.0001	.0003	.0050	.0015	.0050	.0112	.0062	.0041	.0028	.0026	.0019	.0015	.001
ne Tree Hill	.6754	.0843	.1248	.0981	.0023	.0109	.0009	.0002	.0001	.0003	.0018	.0009	.0000	.0116	.0002	.0041	.0028	.0020	.0019	.0010	
tara Hill	.0057	.0004	.0006	.0075	.0052	.0030	.0020	.0002	.0001	.0008	.0073	.0040	.0112	2147	.2664	.1806	1282	.0605	.0686	.0251	.008
tuataua	.6472	.0065	.0601	.2341	.0477	.0040	.0002	.0002		.0000	.0073	.0040	.0112	.2147	.2004	-1000	1202	.0003	.0000	.0201	.000
anmure Basin	.1300	.0000	.0001	.0004	.0004	.7081	.0807	.0568		.0004	.0231										
igeon Mountain	.7722	.0307	.0443	.0358	.0005	.0047	.0801	.0000		.0004	.0062			.0225	.0122	.0161	.0074	.0281	.0039	.0036	.01
ukaki	.7722	.0886	.0443	.0358	.0005	.0047					.0062			.0225	.0122	.0161	.0074	.0281	.0039	.0036	.01
	2.00	.0580																			
ukeiti	- 1				0000	0.000	0000	0.400		00.00		0000									
uketutu	.0210				.0006	.0033	.0383	.0496	.1623	.2245	.4942	.0002									
obertson Hill	.9995						.0005									2420					
tyaks Swamp	.5310			nant.		-					0000			.0116	.0165	.0339	.0362	.0535	.0503	.0538	.213
aylors Hill	.5495	0044		.0001	0.000	.0198	.2255	.2043			.0008										
e Pouhawaiki	.7341	.0941	.0740	.0702	.0079	.0063	.0011	.0003	.0003	.0004	.0087	.0026		1							
hree Kings										.0032	.0954	.5717	.3297								
Vaitomokia	- 1													,							
Wiri Mountain	-0.0 10					.0023	.1535	.2843	.0224	.0783	.0647										

- Three Kings (large volume, central, good age) one of AVF 9-12
- Crater Hill (large, good age, azimuth towards maar) also always matched
- Green Hill, Little
 Rangitoto, Mt
 Victoria, North Head
 can match any tephra
- Pukeiti, Waitomokia don't match any tephra

Find most likely **global** arrangement with another linear program ...

Best overall arrangments

Table 7: Best global arrangement of assigning Volcano i to AVF tephra j. Scenarios are outlined in the sensitivity analysis section. The six parameter sets are $\{A = \{\alpha = 1.5, \beta U = 0.5\}; B = \{\alpha = 2, \beta U = 0.5\}; C = \{\alpha = 2.5, \beta U = 0.5\}; D = \{\alpha = 1.5, \beta U = 1\}; E = \{\alpha = 2.5, \beta U = 1\}; E = \{\alpha = 2.5, \beta U = 1\}$. Bold type indicates scenario-determined identifications.

Tephra	Volcano	200000000000	352527 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Scenario				
		Baseline	Maungataketake and North Head older	Three Kings is AVF9	Three Kings is AVF10	AVF9 split in two		
AVF1	Little Rangitoto	ADEF		ACDEF	All	ACDEF		
	Otuataua		DEF					
	Domain	BC	ABC	В		В		
AVF2	One Tree Hill	ADEF	All	ACDEF	All	ACDEF		
	Little Rangitoto	BC		В		В		
AVF3	Otuataua	All		All	All	All		
	Little Rangitoto		All					
AVF4	Kohuora	All	All	All	All	All		
AVF5	Panmure Basin	All	All	All	All	All		
AVF6	Ash Hill	DEF	DEF			EF		
	Taylors Hill	ABC	ABC		DEF	ABCD		
	Wiri Mountain			AB	ABC			
	Crater Hill			CDE				
	Cemetery Hill			F				
AVF7	Wiri Mountain	All	All	CDEF	EF	BCDEF		
	Cemetery Hill			AB	ABCD	A		
AVF8	Cemetery Hill	All	All			BCDEF		
	Crater Hill			AB	All	A		
	Puketutu			CDEF				
AVF9	Crater Hill	All	All					
	Three Kings			All				
	Puketutu				All			
AVF9A						A		
	Crater Hill					BCDEF		
AVF9B						All		
AVF10	Puketutu	All	All	170				
	Robertson Hill			ABC				
	Hopua			DEF	7.14	All		
	Three Kings	4.7500	1.00		All	1.77		
AVF11	Three Kings	ABC	ABC			ABC		
	Mt Eden	DEF	DEF	DEF	4.22	DEF		
ATTENC	Hopua	100	LDG	ABC	All	100		
AVF12	Mt Eden	ABC	ABC	ABC	All	ABC		
	Three Kings	DEF	DEF	DEE		DEF		
ATTRIC	Green Hill	4.77	****	DEF	4.71	4.17		
AVF13	Green Hill	All	All	ABC	All	All		
A37774 4	Mt Hobson	4.77	4.11	DEF	A 31	4.11		
AVF14	Otara Hill	All	All	All	All	All		
AVF15	Hampton Park	All	All	All	All	All		
AVF16	Mt Mangere	All	CDEF	All	All	All		
	Matukutureia	4.77	AB	nonne				
AVF17	Mt Cambria	All	4.72	BCDEF	All	All		
	Mt Mangere		AB	19				
43.5534.5	Mt Hobson	100	CDEF	A	19207			
AVF18	Mt Hobson	AB	AB	7.00	A	AB		
	Mt Smart	CDEF	CDEF	All	BCDEF	CDEF		
AVF19	Mt Smart	AB	AB		A	AB		
	Matukutureia	CDEF	CDEF	All	BCDEF	CDEF		
AVF20	Styaks Swamp	All	All	All	All	All		

Scenarios

- Maungataketake ~ 87.4 ± 2.4 ka, North Head > 80 ka
- Three Kings is AVF 9 or AVF 10
- AVF 9 (thick in N and S, thin in middle) is actually 2 distinct tephras

Mono Lake Excursion

6 Conditions

Wind: DEF > ABC

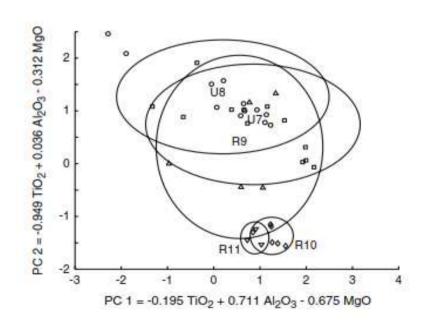
Column height: AD > BE > DF

Results do not change if CV is doubled to better represent certain massively thick tephras.

Conclusions

Table 8: Comparison of event order models

Tephra AVF1 AVF2	Baseline model, this work Little Rangitoto/Domain One Tree Hill/Little Rangitoto	Bebbington and Cronin (2012) Pukaki Domain	
AVF2 AVF3 AVF4 AVF5 AVF6 AVF7 AVF8 AVF9 AVF10 AVF11 AVF12 AVF13 AVF14 AVF15 AVF16	Otuataua Kohuora Panmure Basin Taylors Hill / Ash Hill Wiri Mountain Cemetery Hill Crater Hill Puketutu Three Kings / Mt Eden Three Kings / Mt Eden Green Hill Otara Hill Hampton Park Mt Mangere	Mt St John One Tree Hill Motukorea Kohuora Crater Hill Puketutu Hopua Basin North Head Panmure Basin Three Kings Mt Eden Mt Hobson Little Rangitoto Pigeon Mountain	 Taylors Hill was most likely the first of the Mono Lake volcanoes to erupt. Almost all of the large volume volcanoes are allocated. Maungataketake and Mt Roskill have unfavourable directions. Mt Albert has large volume and good dispersal axis, but only age data is > 35 ka
AVF17 AVF18 AVF19 AVF20	Mt Cambria Mt Hobson / Mt Smart Mt Smart / Matakutureia Styaks Swamp	Mangere Lagoon Mt Mangere Mt Smart Styaks Swamp	



Future Work

Incorporate geochemistry of sources and deposits

- Additional likelihood penalty if the source and deposit geochemistry differs

Describe multi-element geochemistry by multivariate Gaussian distribution (e.g., in 2-D an ellipse)

- Can use principle components to reduce dimensionality
- Need data to quantify whatever systematic bias and heteroscedasticity exists between lava/scoria/tuff and tephra geochemistry.

References

- Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Uni 20: 5-14
- Bebbington M, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73: 55-72
- Bebbington M, Cronin SJ (2012) Paleomagnetic and geological updates to an event-order model for the Auckland Volcanic Field. In: Proc. 4th International Maar Conference, Geoscience Soc. of New Zealand Miscellaneous Publication 131A, pp. 5-6
- Gonzlalez-Mellado AO, De la Cruz-Reyna S (2010) A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios. NHESS 10: 2241–2257
- Green RM, Bebbington MS, Cronin SJ, Jones G (2014) Automated statistical matching of multiple tephra records exemplified using five long maar sequences younger than 75ka, Auckland, New Zealand. Quaternary Research: 405–419
- Hayward BW, Murdoch G, Maitland G (2011) Volcanoes of Auckland: the essential guide. Auckland University Press.
- Kawabata E, Bebbington M S, Cronin SJ, Wang T (2013) Modeling thickness variability in tephra deposition. Bull Volcanol 75: 738
- Kereszturi G, Nemeth K, Cronin SJ, Agustin-Flores J, Smith I, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes Implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266: 16-33
- Lindsay J, Leonard G, Smid E, Hayward B (2011) Age of the Auckland Volcanic Field: a review of existing data. NZ J Geol Geophys 54: 379–401
- Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: Implications for hazards in the Auckland volcanic field. GSA Bull 121: 1666–1677