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ABSTRACT: We study some aspects of a two-parameter family of ODE’s which reduces,
for @) < 0, to the isosceles three-body problem; for @ = 0, to the anisotropic Kepler
problem; and, for @ > 0, to the charged isosceles three-body problem. In this case the
collision manifold is the simplest possible, a sphere. It is well known that the collision-
ejection orbits are a source of periodic orbits as the parameters change. We investigate,
analytically and numerically, in the bifurcation diagram, a global connection between
these orbits and the continuation of the classical circular Kepler orbit.

1. The Problem

Three particles move in a planar isosceles configuration as in figure 1. The two
symmetric ones ¢; and ¢, have equal mass M and equal charge e. The third particle,
gs, has mass m and charge f of opposite sign. Initial velocities are given so as to keep
an isosceles configuration throughout the movement. g3 has vertical initial velocity, ¢;
and ¢y have initial velocities symmetric with respect to this vertical direction.

The equations of motion are given by Newton’s law. Since the configuration remains
1sosceles, Jacobi coordinates are specially suitable for this problem (fig 1).

In these coordinates and after rescaling time (new time 7 = ¢4/ Gm — %/It ), the equa-
tions are ([A]):
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where 7? = 22 + 22, 1 > 1 is the mass ratio, and the parameter Q measures the

difference between gravitational and electrostatic forces. Since e and f have opposite
signs, the denominator in () is always positive. For @ < 0 we have stronger gravitational
forces and so particles ¢; and gy attract each other and double collisions are possible.
@ = —11s the classic isosceles 3-body problem. @ = 0 is the anisotropic Kepler problem
(A.K.P) studied by Gutzwiller [1973], Devaney [1978], and Casasayas and Llibre [1984].
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For (@, 1) = (0,1) we have the equations of the classical Kepler problem. For Q > 0,
the symmetric bodies repel each other and only triple collisions can occur. We will focus
on this case.

We treat the two parameters ) and p as independent. Define the potential V(z) and
the mass matrix M as
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where z = (21, 22) € R?. Taking y = Mz, the equations can be written in Hamiltonian
form with Hamiltonian

1,
H(z,y) = Jy'M ™'y + V(2).

2. Blow up, McGehee Coordinates and the Collision Manifold
We blow up the singularity at the origin with a change of coordinates due to McGe-

hee [McG]. These are given by
7= (a:tM:c)l/z, v =r?sty,
s=r"lg, U= rl/Z(M_ly-ys).

It is easily seen that s*Ms = 1, which defines an ellipse. Taking an angular coordinate
§ = tan~! 22 on this ellipse, a new variable ¥ such that u? = u*Mu, and rescaling time

by a factor 73/2, the equations of motion then become

T =TV

v=u?+ v+ V(6

P ? (6) Energy integral: rh = é(u2 +v?) + V(8) (2.1)
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The so called collision manifold is the common intersection of all the energy level
sets (2.1) with r = 0. We will denote it by A. Notice that » = 0 is an invariant set.

Using the energy integral, we reduce the system to determine a flow in (u, 6,v) € R3:

where V(8) =

v =u?+ o2 + V(6)
f=u (2.2)
U= —1uv — V'(§).

A C R? is now a surface of revolution around the f-axis, invariant under the flow,
with equation

1
A: §(u2 +0%) +V(8) = 0.
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We have three topologically different collision manifolds depending on the sign of Q.
This bifurcation is presented in [A]. We focus in the case 0 < @ < 1 where we obtain
A = 5%, a 2-sphere.

For a fixed energy value H = h < 0, the energy level set is the interior of A. We
denote this set by Ej. Thus, 0FE, = A and interior points correspond to real configu-
rations (z1,z3). All of A corresponds to the triple collision point 27 = z; = 0; orbits
near A are near collision.

Fig. 2

3. The Flow

It is easily seen that there are no fixed points for the flow away from the collision
manifold A. We summarize here its main features ([A]):

1. The only two rest points are on the colliston manifold A, they are the south and
north poles.

Yo

On A, the flow spirals counterclockwise from the south pole to the north pole.

to

The vertical v-azis is an orbit and it is the only collision and/or ejection orbit.
4. The flow in Ey circulates counterclockunse around the v-azis.

The spiralling on A is finite or infinite depending on the parameters. The effect of
this on the periodic orbits bifurcating off the collision-ejection orbit is studied in [A].
This orbit is one of the “main sources” of periodic orbits. Here we show the “other
source” which turns out to be the continuation of the classical circular Kepler orbit.

Let & = {u =0,6 > 0} N Ey. Except for the collision-ejection orbit, every orbit in E},
crosses this 2-dimensional section transversally infinitely many times, i.e., it is a global
Poincaré section. Let

P:¥Y—3

denote the corresponding first return (Poincaré) map. The existence of a fixed point for
all values of the parameters can be shown by first looking at the flow on A. The image
of the right-hand endpoint of ©F (the positive §-axis) under P lies above the axis and
the image of the left-hand endpoint (6 = 0) lies under the axis. By continuity P(O™)



must intersect ©F. By an index argument one can see that at least one of these points
of intersection is a fixed point.

For @ near 1 we now show that the intersection P(©%) N ©% is a single point.

As @) — 1, the collision manifold reduces to a point and so does Fj. We study the
limit flow as @ — 1. Let e = 1 — ). Expanding the potential V in 6 gives

V() = —e+ %92 + O8%, 8%,
Thus, the collision manifold A tends to the ellipsoid
u? 4+ 0% + ph® = 2e.

Expanding in powers of €3
v =vi€? 4 vge+ o(e)
6 = 916'12' + O2¢ + o(e€)
U= uie? + uge + o(e).

Substituting in eq. (2.2) and matching powers of € gives

. 6? + 02
b =0 b=l -14 LE0
(#) { b=w (%) § b2 = uy
1p = —pb ) 1
vt e Uy = ———*2'?1,12)1 — /,692.

Integrating the equations (*) above and taking initial conditions (O,ﬁ% 910,6%'010)
on 2 gives

U1 = V1o,
61 = 010 cos(y/pt),
Uy = —Gloﬁsin(\/ﬁt).

To leading order, the trajectories are ellipses; the map P is then the identity. Substi-
tuting in (*#), integrating, and taking initial conditions zero gives

3 1 1 .
va(t) = H(=1+ 7 + 5v1o) — gProv/Esin(2/pit),
1 1 .
62(t) = Zélovm (-\/-ﬁ sin(y/pt) — tcos(ﬁt)) ,
1 .
UQ(t) = 21—610v10\/;7t31n(\/ﬁt).
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The time to return to X is thus 27/, /1 + o(e%), and the map P is given by

B10 ) (910 ) 2m 1 ( ‘“i9lov1o )
— €2 O(e).
(UN v - VI T+ 2 ubo + 308 + 0l

Thus, for sufficiently small e, P has a unique fixed point (610, v10) = ( -fﬁ + O(e3), O),

which is elliptic with eigenvalues
A1,2 = exp (:}:iW\/Q//.L €7 + O(e)) .

We find numerically that this point is the continuation of the circular Kepler orbit
when (@, ) = (0,1) (when the eqs. are identical to those of the classical two-body
Kepler problem). We refer to it as the Kepler orbit.

As @ decreases, periodic orbits bifurcate from the Kepler orbit. The generic bifurca-
tions of an elliptic fixed point of an area-preserving diffeomorphism of the plane are well
known: as A crosses an nth root of unity (n > 5), a pair of periodic orbits of period n
(one elliptic, one hyperbolic) emanates from the fixed point (Meyer [1970]).

P is certainly the most natural Poincaré map for this problem. However, because
of symmetries, P has an area-preserving square root (the map T below) for which the
Kepler orbit is also a fixed point; hence the bifurcations of this fixed point of P are not
always the generic ones. The square root map is T' = Sj:,]g : Y — ¥ where 73 — 3 is

the first return map of 3 = {u = 0,6 # 0} N E} and $: 5 — 3 denotes reflection w.r.t.
the v-axis.

If \, A1 are the eigenvalues of T' at the fixed point, we observe numerically that A
evolves as follows: as the parameter ) moves from one to zero, A moves around the unit
circle monotonically from A =1 to A = —1 and then becomes real. At A = —1 a period
doubling bifurcation for T occurs and the Kepler orbit becomes unstable with A € R.
We also observe that when A = exp(27im/n) and n = 3 or 4, the same bifurcation
occurs as for n > 4; i.e., a pair of periodic orbits emanates from the Kepler orbit. We
note that for n = 3 this is not the generic case treated in Meyer [1970].

Fig. 3 is computer generated showing the bifurcation diagram of orbits emanating
from the Kepler orbit. The horizontal axis is the parameter Q). The vertical axis is
the § axis. p =1 is fixed and as @ decreases, orbits are “born” from the Kepler orbit
and “die” at the collision-ejection orbit (6 = 0). Each of these orbits can be labeled
according to their rotation number (as points of the area preserving map P). The
bifurcation occurring at the collision-ejection orbit was studied in [A]. At @ =1— &4,
we have an oco-furcation.

Fig. 4 shows different curves in the parameter space (@, ). Each dotted curve cor-
responds to parameter values for which we are at the “birth moment” of an orbit of a
particular rotation number from the Kepler orbit. Fig. 3 shows the slice u = 1. The
solid lines show bifurcations from the collision-ejection orbit: primarily the co-furcation,
but for 4 < p* ~ 1.050055, an orbit of rotation number 1 under P can be born first.
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Standard methods are not suitable for detecting and following these bifurcations, and
we refer the reader to [A] for details.
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