
ANZIAM J. 50(2009), 320–332
doi:10.1017/S1446181109000042

RECONSIDERING TRIGONOMETRIC INTEGRATORS

DION R. J. O’NEALE ˛ 1 and ROBERT I. MCLACHLAN1

(Received 16 November, 2007; revised 3 December, 2008)

Abstract

In this paper we look at the performance of trigonometric integrators applied to highly
oscillatory differential equations. It is widely known that some of the trigonometric
integrators suffer from low-order resonances for particular step sizes. We show here that,
in general, trigonometric integrators also suffer from higher-order resonances which
can lead to loss of nonlinear stability. We illustrate this with the Fermi–Pasta–Ulam
problem, a highly oscillatory Hamiltonian system. We also show that in some cases
trigonometric integrators preserve invariant or adiabatic quantities but at the wrong
values. We use statistical properties such as time averages to further evaluate the
performance of the trigonometric methods and compare the performance with that of
the mid-point rule.
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1. Introduction

Trigonometric integrators, or exponential integrators, have enjoyed recent popularity
due to their efficiency at solving highly oscillatory differential equations [4, 6, 8–10].
For a particular class of second-order differential equations with (highly) oscillatory
solutions these methods require a new complete function evaluation only after a time
step of one, or even many, periods of the fastest oscillations of the system.

It is already known that such methods can suffer from low-order resonances for
particular step sizes but, to our knowledge, there has been little analysis of the effect
of higher-order resonances for such methods. These resonances can lead to growth of
errors in conserved quantities such as the total energy of Hamiltonian systems and to
loss of nonlinear stability.
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The methods arise from the discretization of the differential equation

ẍ +�2x = g(x) where �=

(
0 0
0 ωI

)
, ω� 1, (1.1)

with blocks of arbitrary dimension and where g(x)=∇U (x).
Partitioning x as (x1, x2) according to the blocks of � we see that System (1.1) is

Hamiltonian; total energy is given by

H(x, ẋ)= 1
2

(
|ẋ1|

2
+ |ẋ2|

2)
+

1
2ω

2
|x2|

2
+U (x).

The system also has an adiabatic invariant, or almost conserved quantity, of the
oscillatory energy:

I (x, ẋ)= 1
2 |ẋ2|

2
+

1
2ω

2
|x2|

2.

Preservation of these two quantities is one of the many possible criteria which one
could use for judging the performance of a numerical integrator.

In Section 2 we describe one class of trigonometric integrator along with the
celebrated Fermi–Pasta–Ulam (FPU) problem—a standard test problem of integrators
for highly oscillatory problems. In Section 3 we illustrate the problem of higher-order
resonance for trigonometric integrators using conservation of an invariant quantity
(the total energy) and an adiabatic invariant (oscillatory energy) as measures of
performance. In Section 4 we extend our comparison to other measures of performance
and look at how the integrators treat some of the statistical properties of the FPU
system. We summarize our findings in Section 5.

2. Numerical integrators and a highly oscillatory test problem

In this section we describe the trigonometric integrators along with the FPU
problem which we will use to illustrate our results.

Applying the variation-of-constants formula to (1.1), one can verify that(
x(t)
ẋ(t)

)
=

(
cos(t�) �−1 sin(t�)
−� sin(t�) cos(t�)

) (
x0
ẋ0

)
+

∫ t

0

(
�−1 sin((t − s)�)

cos((t − s)�)

)
g(x(s)) ds

is a solution, where x0 and ẋ0 are given at t = t0 = 0.
An explicit, one-step, discretization is given by

xn+1 = cos(h�)xn +�
−1 sin(h�)ẋn +

1
2 h29gn, (2.1)

ẋn+1 = −� sin(h�)xn + cos(h�)ẋn +
1
2 h(90gn +91gn+1), (2.2)

with constant step size h and where gn = g(8xn), 8= φ(h�), 9 = ψ(h�), 90 =

ψ0(h�), and 91 = ψ1(h�). Here φ(ξ), ψ(ξ), ψ0(ξ) and ψ1(ξ) are real, even
functions and ψ(0)= φ(0)= 1. This discretization is exact when g(x), the nonlinear
part of the differential equation, vanishes.

We omit, for brevity, further details on the design and analysis of trigonometric
integrators and refer the reader to [4, 6, 8, 9]. We mention, however, that the method
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TABLE 1. Filter functions for the various trigonometric integrators.

ψ(ξ) φ(ξ) Reference

(A) sinc2(ξ/2) 1 [5]
(B) sinc(ξ) 1 [3]
(C) sinc2(ξ) sinc(ξ) [4]
(D) sinc2(ξ/2) sinc(ξ)(1+ 1

3 sin2(ξ/2)) [10]
(E) sinc2(ξ) 1 [8]
(G) sinc3(ξ) sinc(ξ) [6]

given by (2.1) and (2.2) is symmetric (that is, exchanging h↔−h and n↔ n + 1
leaves the methods unchanged), for all g(x) if

ψ(ξ)= sinc(ξ)ψ1(ξ), ψ0(ξ)= cos(ξ)ψ(ξ), (2.3)

where sinc(ξ)= sin(ξ)/ξ . The methods are symplectic if and only if, in addition
to (2.3), φ(ξ)= ψ1(ξ) holds. In this paper we consider six1 different trigonometric
methods of the form (2.1), (2.2). The filter functions which characterize the methods
are given in Table 1.

One can see that of the methods in Table 1 only (B) and (C) are symplectic.
For comparison we also consider the mid-point rule (MPT) and the leap-frog/Verlet
method, both of which are symmetric and symplectic. Although the trigonometric
methods are not symplectic in general, one can show that they preserve a modified
symplectic form [9, Section XIII.11, Problem (3)]. For short time periods (that is,
T = 1) and small (that is, h→ 0) step size all the methods are second-order accurate
in position; see [9, Section XIII.2.3]. The mid-point rule and the leap-frog method
which we use for comparison to the trigonometric integrators are both symmetric,
symplectic, and second-order accurate.

The main test problem we use in this paper is the FPU problem with three stiff
(fast/harmonic) and four soft (nonlinear) springs as it is given in [9, Section I.5.1].
The Hamiltonian for the FPU system can be written as

H =
1
2

3∑
i=1

(y2
0,i + y2

1,i )+
1
2
ω2

3∑
i=1

x2
1,i

+
1
4

(
(x0,1 − x1,1)

4
+

2∑
i=1

(x0,i+1 − x1,i+1 − x0,1 − x1,i )
4
+ (x0,3 + x1,3)

4
)
,

1 The methods are denoted (A)–(E) and (G), with (F) omitted to avoid confusion with the method (F)
of [9, Section XIII.2.2].
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where:
• x0,i is the scaled displacement of i th stiff spring;
• x1,i is the scaled expansion (or compression) of the i th stiff spring;
• y0,i and y1,i are the conjugate momenta of the above.

As in [9], we use initial conditions x0,1(0)= 1, x1,1(0)= ω−1, y0,1(0)= 1,
y1,1(0)= 1, and all other entries are zero. That is,

z(0)= [1, 0, 0, ω−1, 0, 0, 1, 0, 0, 1, 0, 0]T ,

where z = [xT
0,i , xT

1,i , yT
0,i , yT

1,i ], i = 1, 2, 3. The Hamiltonian of the system is clearly
a conserved quantity. The oscillatory energy of the i th stiff spring is given by

I j =
1
2

(
y2

1, j + ω
2x2

1, j

)
,

the total oscillatory energy I =
∑

j I j being an adiabatic invariant.
The FPU system is chaotic, and therefore, global errors are not sensible quantities

to study as indicators of the performance of the numerical methods since arbitrarily
close trajectories can diverge exponentially. Instead, we use measures such as the
change in the Hamiltonian and preservation of other physical properties to quantify the
performance of the methods. In the following section we use changes in the total and
the oscillatory energy to show the effect of resonances on the numerical integrators.

3. Resonances, energy conservation and oscillatory energy

The problem of resonances for numerical integrators can be most easily and
dramatically illustrated for a planar Hamiltonian system.

The resonances which affect the trigonometric integrators at odd and even multiples
of π are order two and one resonances, respectively. These resonances are typically
unstable (result in unbounded growth with time). The trigonometric integrators can
also suffer from order three resonances; these are also typically unstable but are
slower to increase than the lower-order resonances. The order three resonance occurs
at hω/π = 2/3 for the trigonometric integrators and at hω/π = 2

√
3/π ' 1.1 for

the mid-point rule. Order four resonances (at hω/π = 1/2 for the trigonometric
methods, hω/π = 2/π ' 0.64 for the mid-point rule) can be either stable or unstable
but typically have smaller magnitude/growth than the lower-order resonances. Higher-
order resonances are generally stable [1].

The analysis in [12] shows that for a planar Hamiltonian system,

H(q, p)=
1
2

p2
+

1
2
ω2q2

+
1
3

Bq3
+

1
4

Cq4
+O(q5), (3.1)
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FIGURE 1. Maximum error of total energy on the interval [0, 1000] as a function of hω/π for the
Hamiltonian H(q, p)= 1

2 p2
+

1
2ω

2q2
−

1
3 q3
−

1
4 q4 (step size h = 0.02). Note the different vertical

axis for methods (C) and (G).

the mid-point rule has order 3 resonances (at h = (2/ω)
√

3) leading to an unstable
equilibrium point whenever B 6= 0, while the order 4 resonances (h = 2/ω) cause the
equilibrium to be unstable when (ω2C − B2)(ω2C − 2B2) < 0.

We take the system given by (3.1) with B = C =−1 and, fixing the step size
at h = 0.02, we vary ω such that 0< hω/π ≤ 4.5. Figure 1 shows the maximum
deviation in the Hamiltonian after integrating the equations of motion over the
interval [0, 1000].

The widths of the resonant bands for the symplectic trigonometric method (B)
appear to render it unusable. Method (A) fares slightly better due to the absence of
the wide resonant spikes at even multiples of π . Methods (C) and (G) seem to give
excellent results, though we will see later that this is not the case in general.

The mid-point rule is not affected by resonances of order lower than three because
its eigenvalues are limited to exp(iθ), θ ∈ (0, π).



[6] Reconsidering trigonometric integrators 325

0 1 2 3 4
0

0.05

0.1

0.15

0.2

(A)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

(B)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

(C)

0 1 2 3 4
0

0.05

0.1

0.15

0.2
(D)

0 1 2 3 4
0

0.05

0.1

0.15

0.2
(E)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

(G)

0 1 2 3 4
0

0.5

1

1.5

2
x 10–3

(MPT)

h  /ω π h  /ω π h  /ω π

h  /ω π h  /ω π

h  /ω π

h  /ω π

FIGURE 2. Maximum error of total energy for the FPU problem on the interval [0, 1000] as a function of
hω/π (step size h = 0.02). Note the different vertical axis for (MPT).

Although the planar system considered above is sufficient to illustrate the
phenomenon of resonance, it does not have the multiple time scales which make other
highly oscillatory problems so challenging numerically. We turn, therefore, to the FPU
problem—the standard test problem. The FPU problem is Hamiltonian – its energy is
an invariant quantity. Since the system is chaotic it does not make sense to look at
the global error (in position) of an individual orbit, except for very short integration
lengths. Therefore, to illustrate the effect of resonances on the numerical solutions we
look at the errors in the energy of numerical solutions for fixed step size and integration
length. In Figure 2 we plot the maximum deviation in the energy over the interval
[0, 1000] as a function of hω/π for fixed h = 0.02.

In Figure 2 the trigonometric methods do not appear to show any of the order three
and four resonances that were so clear for the planar system. This is due to relatively
slow growth of these higher-order resonances combined with the relatively short
integration length. For longer integration times these resonances become apparent.
We illustrate this in Figure 3 by plotting the value of the Hamiltonian for three choices
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FIGURE 3. Total energy of solutions calculated with method (A) for step sizes slightly below (h = 0.04)
and slightly above (h = 0.044) the resonant value of h = 2π/3ω ' 0.0419 for ω = 50.

of step size using method (A) with an integration time roughly ten times longer than
those used in Figure 2. We take one step size h = 2π/(3ω)' 0.0419 on the order three
resonance and two step sizes immediately either side of the resonant value, h = 0.044
and h = 0.04.

We observe that the maximum energy error is no longer bounded for the resonant
step size.

The oscillatory energy I =
∑

j I j of the FPU system is not a conserved quantity
but, rather, an adiabatic invariant: a nearly conserved quantity which oscillates
about its mean value with some standard deviation. The standard deviation of I is
therefore possibly a better characterization of the oscillatory energy than the maximum
deviation.

The exact solution of the FPU problem has I (t)= Const.+O(ω−1). That is,
the standard deviation of the total oscillatory energy as a function of ω should look
like Cω−1. We used a very long (T = 106) integration period and a small (h =
0.002) time step which resolved all the fast oscillations (for ω = 50) to calculate σI ,
the standard deviation of the oscillatory energy. This allowed us to determine the
coefficient value (C = 0.75) and give a reference solution for the behaviour of σI (ω).
Figure 4 shows σI /ω minus the reference solution, that is, we plot σIω − 0.75 against
hω/π , again for fixed step size h = 0.02.

We can see that for the trigonometric method (G), the cost of preventing resonances
is to also prevent the correct behaviour of the oscillatory energy. The only method
which manages to approximate the correct behaviour (a horizontal line at zero) is the
mid-point rule. The trigonometric methods (A) and (D) show the correct behaviour
away from resonant values of ω. In general, for fixed hω the value of σIω does not
converge to the correct value as h→ 0.
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FIGURE 4. Error in the scaled standard deviation of oscillatory energy of the FPU problem, on the interval
[0, 1000] (that is, σI (ω)ω − 0.75) as a function of hω/π (step size h = 0.02).

Results for symplectic integrators concerning approximate energy conservation and
preservation of a modified Hamiltonian hold in the limit of small step size. As the
step size increases, one sees the difference between the modified Hamiltonian and
the original one grow—the energy of the numerical solution oscillates with greater
amplitude as step size increases and backward error analysis (the usual tool for
showing near-conservation of energy) no longer holds.

It is also worth noting that although the trigonometric integrators are second-order
accurate in position, they are in general only first-order accurate with respect to the
total energy. That is, decreasing the step size used with the method and holding hω
fixed, one only observes a linear decrease in the error in the Hamiltonian. Exceptions
are methods (A) and (D) which, along with the mid-point rule, are second-order
accurate with respect to the total energy. In fact (A) and (D) satisfy a condition
necessary for O(h2) energy conservation [9, Section XIII.11, Problem (8)]. These
are the same methods which showed the correct behaviour for the oscillatory energy.
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4. Other performance measures: slow exchange and long-time statistics

The FPU problem exhibits a slow exchange of energy between the stiff springs, that
is, the distribution of I between I1, I2 and I3 changes with time. These effects take
place on a time scale t =O(ω). A good numerical method should capture the rate of
the slow exchange and should give correct statistics for the mean distribution of energy
between the stiff springs. For the trigonometric integrators to correctly approximate
the slow exchange to first-order in h it is necessary that their filter functions satisfy

ψ(hω)φ(hω)= sinc(hω) (4.1)

(see [9, Section XIII.4.2]).
Of the trigonometric methods considered here, only (B) satisfies the slow exchange

Condition (4.1), though, since the slow exchange condition is a function of hω other
methods manage to satisfy the condition for particular values of hω > 0. In addition
to the rate of energy exchange, a good numerical method should also ensure that the
correct amount of energy is exchanged between the slow springs. This property is
not guaranteed by Condition (4.1); in fact, for hω� 0 method (B) only transfers
about 90% of the oscillatory energy between the springs, albeit on the correct time
scale.

The mid-point rule, too, fails to show transfer of oscillatory energy on the correct
time scale—though it fares better than the trigonometric integrators with respect to
transferring all of the oscillatory energy between springs.

One is often interested in the time average of some observable rather than an
individual solution. This is particularly true for chaotic systems like FPU, where
accurate measurements of position are impossible due to trajectories diverging
exponentially quickly, but where it may nevertheless be possible to accurately measure
long-time averages. For example, symplectic integrators applied to hyperbolic
Hamiltonian systems give results which converge to the correct time averages as the
integration length increases independently of initial conditions (see [7, 11]).

Here we look at long-time results for the FPU problem and ask whether the
numerical schemes get the correct mean values and distributions for the energy in
the stiff springs. We used an integration interval of [0, 106

] and frequency ω = 50
for the fast oscillations. The step size was fixed at h = 0.02 for the trigonometric
methods and the mid-point rule. As a reference solution, we used the leap-frog method
with h = 0.002, a step size small enough to resolve the fast oscillations. We saved
every 100th data point for the trigonometric methods and mid-point rule and every
1000th for the leap-frog method. We present, in Table 2, the relative errors in the
average values of the oscillatory energy in each of the stiff springs and the standard
deviation in the total oscillatory energy using the results from the leap-frog method as
a reference solution. We include also the absolute mean of the differences in I j .

It is worth noting that for these calculations hω = 1 is only moderately large;
hω = 2.5, for example, would give dramatically different results.
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TABLE 2. Long-time statistics for the FPU problem on the interval [0, 106
] with ω = 50. Relative

measurements were made with respect to the solution from the leap-frog method. The calculations with
the trigonometric methods and the mid-point rule used a step size of h = 0.02 and saved every 100th point
for the statistics. The calculation with the leap-frog method used h = 0.002 which resolves all the fast
oscillations to give a reference solution. For the leap-frog method, every 1000th point was saved.

Ī1− Ī1
ref

Ī2
ref

Ī2− Ī2
ref

Ī2
ref

Ī3− Ī3
ref

Ī3
ref

σI−σ
ref
I

σ ref
I

1
3
∑
| Ī j − Ī j

ref
|

(A) −3.11e−03 1.10e−02 −7.40e−03 −1.46e−02 2.37e−03
(B) −3.09e−02 6.86e−02 −3.51e−02 −1.23e−01 1.49e−02
(C) −1.07e−02 1.73e−02 −6.61e−03 −2.40e−01 3.82e−03
(D) 1.76e−04 5.88e−03 −5.78e−03 −1.27e−02 1.31e−03
(E) −1.72e−02 4.01e−02 −2.18e−02 −2.50e−01 8.74e−03
(G) −5.04e−02 1.09e−01 −5.51e−02 −3.85e−01 2.37e−02
(MPT) 6.65e−03 −1.41e−02 6.84e−03 −1.92e−02 3.05e−03

The methods which give the best results for the long-time statistics for the mean
difference in the oscillatory energy with respect to the reference solution are the
trigonometric methods (A) and (D) and the mid-point rule—the same methods which
did well at capturing the total oscillatory energy (see Section 3).

In addition to getting the average values I j correct, a numerical method should give
the correct distribution of I j values, that is, it should visit the appropriate parts of the
I j phase space for the correct amounts of time. We try to visualize this for the various
methods by looking at the distribution of oscillatory energy between I1 and I2 (recall
I3 ' 1− (I1 + I2)), shown as a flattened three-dimensional histogram in Figure 5. We
split I1 and I2 into 25 bins and record the amount of time that the solutions spend in
each region of I1–I2 described by all possible pairs of bins. Darker regions indicate a
higher frequency count for that particular bin. The reference solution shows quite a lot
of structure, with certain regions of the I1–I2 plane preferred over other regions.

None of the methods considered here manage to capture all of the structure
correctly, though some manage to reproduce more of the features in the plot for the
reference leap-frog solution than others. For example, the reference solution spends
much of its time with oscillatory energy in I2 and I3 but none in I1. This feature is
reproduced by the trigonometric integrator (A) but is opposite to the behaviour of the
solution from (G) and (B). The mid-point rule manages to reproduce some but not all
of the features of the reference solution.

5. Conclusions

We list here some of the main points from the preceding sections of this paper.

(1) Order three resonances are generally unstable and cannot be avoided; as a
consequence the trigonometric integrators are unstable for 3hω = 2nπ , n ∈ Z.
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FIGURE 5. Flattened 3D histogram of amount of time spent by solutions in regions of the I1–I2 phase
space. Solutions were calculated on the interval [0, 106

] with ω = 50 and h = 0.02 (every 100th point
saved), except for the leap-frog (LF) solution which used h = 0.002, to resolve all oscillations and saved
every 1000th point. Darker shading corresponds to higher frequency count.

(2) It is not enough to simply suppress resonances or to bound the variation
in conserved/adiabatic quantities as this can destroy other properties of the
dynamical system. Some of the trigonometric integrators show conserved
quantities being preserved but at entirely the wrong value.

(3) None of the trigonometric methods manage to capture all properties and some
perform worse than the mid-point rule. Although the mid-point rule is implicit
while the trigonometric integrators are explicit, the cost of evaluating matrix
exponentials or similar, for the trigonometric integrators, in contrast with various
techniques which reduce the cost of solving the system of implicit equations,
for the mid-point rule, means that the mid-point rule cannot be automatically
discarded on grounds of computational cost.

Table 3 gives a comparison of the trigonometric methods and the mid-point rule
for a selection of criteria. It is far from exhaustive. Other sensible measures of
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TABLE 3. A quick comparison of the performance of various methods. H(hω) refers to the effect of
resonances on the energy error (see Figures 1 and 2), while H(h) refers to the energy error order behaviour
of the methods for fixed hω. I refers to the preservation of the adiabatic invariant, total oscillatory energy.
d I j/dt refers to the slow exchange of oscillatory energy between the stiff springs. A tick (X) indicates
that a method performs well with respect to that property; two ticks, that it performs very well; and a
cross (×), that it performs poorly. The O(hn) notation for the energy error indicates that the method has
an energy error that grows like order hn with increasing step size.

(A) (B) (C) (D) (E) (G) (MPT)

H(hω) X × X X X X XX
H(h) O(h2) O(h) O(h) O(h2) O(h) O(h) O(h2)

I X × × X × × X
d I j/dt × X × × × × ×

I j stats × × × × × × ×

performance for highly oscillatory systems are other long-time averages, such as
Lyapunov exponents—an area we will further investigate.

One possible way to achieve better results from trigonometric integrators for highly
oscillatory systems is to extend the class of integrators. One possibility for this is to
use more than one force evaluation per time step – for example, the method (F) of
[9, Section XIII.2.2]. Another method for developing new integrators which preserve
geometric properties is to use generating functions and the Hamilton–Jacobi form of
the Newton equations of motion in the style of [2]. The second of these approaches
seems particularly promising.
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