I B
AEDC-TR-91-24

AD-A244 (075
RO

Asymptotic Theory of Transonic
Wind Tunnel Wall Interference

N. D. Malmuth, C. C. Wu, H. Jafroudi,
R. Mclachlan, J. D. Cole, and R. Sahu

Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

December 1991

Final Report for Period March 30, 1984 through July 30, 1990

DTIC

.~".‘}. o | 1 ot
g | FCTE e
R JANOG 19928 K

D

Approved for public release; distribution is unlimited.

92200201
AP

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE BASE, TENNESSEE
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

H?j‘ 1]




NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose
other than a definitely related Government procurement operation, the Government thereby
incurs no responsibility nor any obligation whatsoever, and the fact that the Government
may have formulated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise, or in any manner licensing
the holder or any other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Technical Information
Center.

References to named commercial products in this report are not to be considered in any
sense as an endorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to
the National Technical Information Service (NTIS). At NTIS, it will be available to the
general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

Wad . Bk

MARK S. BRISKI, Capt, USAF
Directorate of Technology
Deputy for Operations

FOR THE COMMANDER

KEITH L. KUSHMAN
Director of Technology
Deputy for Operations




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gatherning and g the data needed, and completing and review:ng the coilection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, Inctuding suggestions for reducing this burden, to Washington Headguarters Services, Disectorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project 50704-01081, Washington, DC 20503
| 3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE . REPORT TYPE AND DATES COVERED
December 1991 Final - Mar. 30, 1984 - July 30, 1990

4. TITLE ANDSUBTITLE 5. FUNDING NUMBERS

Asymptotic Theory of Transonic Wind Tunnel Wall Interference
Study PE 65807F

6. AUTHOR(S)
Malmuth, N. D., Wu, C. C,, Jafroudi, H., Mclachlan, R., Cole, J. D.,
and Sahu, R., Rockwell International Science Center

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Rockwell International Science Center

1049 Camino Dos Rios AEDC-TR-91-24

Thousand Oaks, CA 91360

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Arnold Engineering Development Center/DOT
Air Force Systems Comman
Arnold Air Force Base, TN 37389-5000

11. SUPPLEMENTARY NOTES

Available in Defense Technical Information Center (DTIC).

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13 ABSTRACT (Maximum 200 words)

Two limiting cases are considered related to transonic wall interference. For the first
corresponding to slender airplanes, an area rule for interference holds in which the
interference of the complete airplane can be obtained from that of its equivalent body of
revolution. For large wall height, the slender case exhibits an asymptotic triple deck
structure consisting of a cross flow-dominated zone near the model, a weakly perturbed
free-field mid field which has a linear multipole far field for solid and free-jet wall
conditions. Nonclassical, experimentally determined pressure conditions prescribed on a
cylindrical interface lead to a “tube vortex” far field. For a high aspect ratio second case, the
interference is driven by the imaging effect of the interface on the projection of the trailing
vortex system in the Trefftz plane. This gives a downwash correction to a near-field
nonlinear lifting line flow. Slightly subsonic free-stream conditions give a spike-like
interference flow field due to the shock movement for both limiting cases. Computer codes
written to treat these cases, as well as the underlying numerical methods, are described.
Approaches integrating the asymptotics with measurement to augment Wall Interference
Assessment/Correction (WIAC) procedures are outlined.

14 SUBJECT TERMS 15 NUMBER OF PAGES
transonic flow tunnels perturbation theory fluid dynamics 229
asymptotic series numerical anaiysis 16 PRICE CODE
transonic flow aerodynamics

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Same as Report

COMPYTER GENERATED Standard Form 298 {Rev, 2-89)

Prascribed by ANSIStd 23918
298-102




PREFACE

AEDC-TR-91-24

This report constitutes the final report of the Air Force contract F40600-84-C0010,
Asymptotic Theory of Transonic Wind Tunnel Wall Interference Study. This effort was
conducted under the sponsorship of Arnold Engineering Development Center (AEDC), Air
Force Systems Command (AFSC), Arnold Air Force Base, Tennessee 37389. Dr. Keith
Kushman and Captain Mark Briski, USAF, were the AEDC technical representatives for
the contract. The manuscript was submitted for publication on August 1, 1990. Editorial
comments were provided by J. Erickson and W. Sickles of Calspan. Reproducibles used in
the publication of this report were supplied by the authors. AEDC has neither edited nor

altered this manuscript.

D \\
..u;’[~ "

Lon,

2 "s"’{ -




AEDC-TR-91-24

TABLE OF CONTENTS

Page
Preface . . . . . e e e e e s s s e e e i
Table of Contents . . . . . . . . . . . . . .. e e e e e e e iii
List of Ilustrations . . . . . . . . . . . . ... ... e e e e e v
Listof Tables . . . . . . . . . . . . . . ... e X
1. Imtroduction . . . . . . . . . . ..o e e e e 1
2. Confined Slender Configurations . . . . . . . . . . . . . .. 5
2.1 Treatment »f Pressure Specified Interface Boundary Conditions . . . . . . §
211 KGTheory . . . . . . . . . . . ... ... e e e e e 6
2.1.2 PoblemQ: . . . . . . . .. ... .. .. e e e e 7
213 TargeH Theory . . . . . . . . . . . . . .. ... LT
214 CennnalLayer . . . . . . . . . . . . .. ... T
2.1.5 Free Field Approximation . . . . . . . . . .. ... ... - 7
2.1.6 Variational Equations . . . . . . . . . . . .. ... L. LT
217 WallLayer . . . . . . . . . . . .. e e e e e e e e .9
2.1.8 Beheavior of pg near Orlgln e e e e e e e e .. .9
2.1.9 Asymptotic Representation of (2 ~16)as Rt -0 . . . . . . A b |
2.1.10 Matching . . . . . . . . oL Lo oL S b
2.1.11 Discussion . . . . . .o 0.0 e e e e e .. .. .15
2.2 Generalization to Angula.r a.nd Unsymmetncal Variations . . . . . . . . .16
2.2.1 Discussion . . . . . . . . ... e e e e e e . .20
2.3 Shock Jump COndlthl’lS e e e e e e e e e s .. 20
2.4 Shock Conservation Laws for Wall Correction Flow . . . . . . . . |
2.5 Regularization of the Problem for the Correction Potential ¢, . . . . . . . 26
2.6 Basic Code Modules . . . . . e e e e e .27
2.7 Upstream and Downstream Far erlds ............. S 27
2.8 Difference Equations for the Wall Interference Correction Potential . . . . . 33
2.9 Finite Height Application of Zeroth Order Code . . . . . . . . . . . .. 35
2.10 Improved Accuracy Procedures for Numerical Treatment of Body Boundary
Conditions . . . . . . . . o000 Lo .. 40
2101 Results . . . . . . . . 00000 - ¥
2.11 Shock Fitting Scheme for Wall Interference Correction Potentlal 3 |
2.12 Determination of Second Term of Central Layer Large Height Expansion . . 55
2.13 Structural Aspects of Slender Body Code . . . . . . . . . . . ... . .56
2.14 Incompressible Validation of Interference Module RELAXV1I . . . . . . . 60
2.15 Transonic Application of Free Field and 0** Order Code . . . . . . . . . 60
2.16 Fuither Remarks on Difference Schemes near Shock Notch . . . . . . . . 68
2.16.1 Bidiagonal Approach . . . . . . . . . . . . .. .. ... . . . .68
2.16.2 Tridiagonal Methodology . . . . . . . . . . . . . . . .. Y 41
2.17 Definitions of Interference-Free Condmons in Vde Tunnels from
Asymptotic Slender Body Code . . . . . . . . . . .. . .. ... . T6

2.18 Determination of Interference-Free Flows . . . . . . . . . . . . . . . .77

i




AEDC-TR-91-24

Page
2.19 Numerical Implementation . . . . . . . . ... .. .. .. ... .. 79
220 Results. . . . . . . . . . L e 82
3. Large Aspect Ratio Configurations . . . . . . . . . . . . ... ..... 93
3.1 Theory of Far Field Boundary Conditions . . . . . . . . . . . ... .. 93
3.1.1 Solid Well and Free Jec Corrections . . . . . . . . . . . ... ... 93
3.1.1.1 Discussion . . . . . . . . ... L e e e e e 93
3.1.1.2 Anmalysis . . . . . . ... 94
3.1.2 Pressure Specified Boundary Conditions . . . . . . . . . . . . .. 104
3.2 Numerical Procedures and Outlineof Code . . . . . . . . . . . ... 109
3.2.1 Boundary Value Problemfor¢o . . . . . . . . . . . ... ... 110
3.2.1.1 Analytic Formulation . . . . . . . . . . ... ... .... 110
3.2.1.2 Numerical Formulation. . . . . . . . . . . .. . ... ... 110
3.2.2 The Three-Dimensional and Wall Interference Correction ¢; . . . . . 118
3.2.2.1 Analytic Formuletion . . . . . . . . . ... ... 118
3.2.2.2 Numerical Formulation . . . . . . . . . . .. .. ... ... 121
3.2.2.3 Program Operation and FlowChart . . . . . . . . . . . . .. 128
3.2.3 Convergence Acceleration . . . . . . . .. ... L. L. 133
3.3 Results for Subcritical Interference Flows . . . . . . . . . . .. . .. 137
3.4 Supercritical Interference Flows . . . . . . . . . . . ... ... .. 150
3.4.1 Refinements of Shock Fitting Procedures . . . . . . . . . . . . .. 153
3.5 Computational Implementation of Pressure Specified Boundary

Conditions . . . . . . . . . . . . . . ... 160
36 ViscousEffects . . . . . . . . . ... ..o, 165
3.7 Nonsimilar Section Wings and Lockheed Database . . . . . . . . . . . 165
3.7.1 Swept Wing Comparison Database . . . . . . . . . . . .. ... 170
3.7.2 Code Generslization to Nonsimilar Section Wings . . . . . . . . . . 170
373 Results . . . . . . . . . ..o 174
374 Discussion . . . . . . . ... L0 oo 174
3.8 FuselageEffects . . . . . . . . . . . .. ... ... 179
381 Discussion . . . . . . . . ... Lo e e e e e e e 185

4. Asymptotics Integrated with Measurement (AIM) Wall Interference
Methods . . . . . . . . . . . . . . .. 186
4.1 Interference on Moderate and Low Aspect Ratio Configurations . . . . . 186
4.2 High Aspect Ratio Configuration WIAC Method . . . . . . . . . . .. 192
421 Discussion . . . . . . . . ... L0 L o e s e e e e 196
5. Conclusions, Highlights and Summary of Findings . . . . . . . . . . . .. 197
6. Recommendations . . . . . . . . . . . . . . ... ... 203
7. References . . . . . . . . . . . .. L. s 206
Nomenclature . . . . . . . . . . . . . Lo 210
Appendix A — Models for Interference Flow Near Shocks . . . . . . . . . . . 214
Appendix B — Reexpansion Singularity Details . . . . . . . . . . . . . ... 216

iv




Figure

-1 O Cr

o
o OO0

13

18
19
20
21

22

23
24
25
26

27a

27b

27¢

AEDC-TR-91-24

LIST OF ILLUSTRATIONS

Page

Comparison of computational area rule with experiment . . . . . . . . . 3
Control surface in tunnel . . . . . . . . . .00 0000 0L 8
Matching of central and wall regions for axially symmetric

interface pressures . . . . . . . ) e e e e e e e . 14
Spherical coordinates . . . . . . . . . . . .. . V)
General case of matching of centra! region and wall layers e e e e 19
Orientation of shock surfaces . . . e e e e e e e .21
Regions appropriate to shock conservatxon laws e e e e e e 25
Flow chart for preprocessor and solver . . . . C e e oo oL L 28
Model confined by solid cylindrical -alls and control volume - 3
Area distribution of blended wing fighter configuration . . . ... . .36
IsoMachs over blended wing configuratinn in free field, Mo, = 95 - Y
Finite height solid wall interference effect at Mo, = .95 on blended fighter

configuration equivalent body — Mach number distribution

overbody . . . . . . . . ... Lo . 38
Finite height solid wall mterfereme effert at Mc,o = 05 on blended fighter

configuration equivalent body — surface pressures . . . . . . . . . . .39
Validation of RELAX1 code against Couch experiment, B-{ body, M = .99 . 41
Nodes in vicinity of axis . . . . . . . . . . . . . . . . . ... .. 42
Iterative convergence studyof ¢ . . . . . . . . . . . . . . . . .. .. 46
Mesh convergence study of ¢ (DASH2 legc.:J

is the dash-dot curve) . . . . . . . . . C e e e - ¥
Iterative convergence study of ¢'(z) . . . . . . . . . - £
Roundoff study of ¢'(z) . . . . . . . . .. e e e e e . 49
Roundoff studyof ¢'(z) . . . . . . . . . . . . ... ... .. . .50
Interference pressures on a confined parabolic arc body. H ~ 1.1,

100 x 50 grid, 1200 iterations . . . . . . . . . . . . . . R ¥
Schematic of shock fitting geometry for wa.ll mterference correction

potential . . . . . . . . . . . . .. e e e e e e e e e 53
Comparison of exact and appr(“'\mate integrands . . . . . . . . . . . .87
Integrands used in evaluationofag . . . . . . . . .. ... oL . 58
Convergence study of ¢ integration . . . . . . . . . . . e e . 59
Scheme for handling jumps in vertical velocities across shocks . . . . . . . 61
Sonic bubble over a parabolic arc body at Mo, = 99, (A supersonic

points, © subsonic points) . e e e e e e e e . 62
Closeup of shock notch for conﬁguratlon of Flg 27a (x sugmﬁeb points

for which |[Mg -~ Ma|>.01) . . . . . . . .. ... 62
Typical overview of notch in relation to sonic line, Moo = .99, NU = 0,

ND = 2, JDEL = 0, NSPMAX = 66, NSPMIN = 59, JSMAX =19 . . . . 63

Logarithmic singularities associated with parabola of revolution . . . . . . 64




AEDC-TR-91-24

Figure
29 Comparison of analytical (approximate) and transonic variational code
computation of interference pressures in subsonic flow . . . . . . .
30 Convergence study of incompressible free field solution, § = .178 . . . .
31 Gridusedinsolution . . . . . . . . . . . ... L0

32 $o0, behavior near the body . . . . . e e e e e e e

33 Streamwise distribution, parabolic arc b'\dy, Mo=099 .. .. ...

34 Formationofshock . . . . . . . . . . . . . .. .. ... .. ..

~-

40 Three-dimensional relief of ¢ field for M = 0.99 parabolic arc body
41 Three-dimensional relief of ¢¢_, field for My, = 0.99 parabolic arc body

42a Schematic of ACp versus K1 . . o« v v v i
42b Schematic of variation of interference-free Ky with Ko . . . . . . .
43 Interfercnce drag versus interference similarity parameter . . . . . . .
44 Shock jump geometry . . . . . . . . . ... ..o oL

45a ERRMAX convergence history for 0*F order flow parabolic arc body,

6=.1,M=.99 . . . . ... ... e e e

45b Cp convergence history for 0'* order flow, parabohc arc body,

0=1,Mc=.99 . . . . ..

46a Variational solver convergence history, parabohc arc body,

Meo=.99,6=1 .. ... e e e e e e e e

46b Variaticnal solver convergence hlsto'y, parabo‘xc arc body,

Meo=.99,6=.1 . . .. e e e e

47 Free field 0'" order C,, for various Mach numbers 6 = 1 parabolic

ercbody . . . . ... .. L. e e e e e e e

48 Normalized 1nterference C,,, AC H?/ 52 parabohc arc body, for

Mo = .99, 6 = 1, (K = 1.99) . o

49 K dependence of reduced interference pressures — bidiagonal scheme for
shock jumps .

50 Comparison of 0'! order and tota] C unscaled H = 10+ parabohc
body, STINT25, M., = .99,46 = .1, bxdlagonal scheme,

K=199 . . . ... ... ..... e e e e e e e
51 Sensitivity of mterference pressures to notch size pa.rameters parabolic

arcbody, 6 =.1, Moo =99, (K =199) . . . . . . . .. .. ...
52 Normalized interference drag ACpH?3 /6% as a function of transonic

similarity parameter K = (1 - MZ2)/8% . . . . . . . . . ... ..
53 Lifting line in rectangular cross section wind tunnel . . . . . . . . .
54 High aspect ratio wing within cylindrical pressure specified control

surface . . . . . L L L L L e,

vi

35 isoMachs showing closeupof shock . . . . . . . . . . . .. .. ..
36 Perturbation velocity vy over the parabolic body at Mo, = 0.99 . . . .
37 Closeup of Fig. 36 vy distribution near shock . . . . . . . . . . ..
38 up distribution for Mo, = 0.99 parabolicarcbody . . . . . . . . ..
39 Closeup of Fig. 34 ug distributien . . . . . . . . . . . ... L.

. . 83

.. 83

. . 84

. . 84

. . 86

. . 87

. 88




Figure

55
56

37
58
59
60
61
62
63
64
55
60
67
68
69
704
70b
70c
71
72
73
74
75
76

78
79

80
81

82
83

84

AEDC-TR-91-24

Page

Far field flow configuration showing lifting line and vortex sheet . . . . . . 97
Angular variables for Green’s function associated with cylindrical

walls . . . . . e e e e e . 98
Contour for inversion of the inner mtegral in Eq (3 51) . . . . . . .. 108
Airfoil geometry . . . . . . . . . ..o oo 0oL 11
Computational grid . . . T § B
Flow chart for MAIN program computmg ¢>0 O U
Flowchart of subroutine MKFOIL . . . . . . . . . . . . . .. ... 115
Angular relations for far field . . . . . . . .00 000000 115
Flowchart for subroutine SOLVE . . . . . . . . . . . . . . . . .. . 116
Flowchart for subroutine SLOR . . . . . . . . . . . . . ... ... 117
Elliptic planform . . . . C e e e ... 119
Front view of wing conﬁned in cxrcular wmi tunnel C e e oo o120
Arguments used in Eq. (3—-70) . . . . . . . . . ... . 123
Orientation of sheck noteh . . . . . . . .. 0oL oL 125
Linear extrapolation at shock . . . . . . . . . . . . . ... 125
Wide shocknotch . . . . . . . . ... oo . N V.
One point shocknotch . . . . . . . . . . .. C e e e e A
Three point shock notch . . . . . . . . . . . .. . 02
Periodic extension of planform . . . . . . . . . . . ... oL 131
Computational molecule used in SETUP .............. 131
Pre and post shock sides of shock notch . . . . . C e e e e ... 131
Flowchart of nostprocessing elements . . . . . . . . . . . . . . . .. 134
Flowchart of subroutineSLOR . . . . . . . . . . . . . . .. .. 135
Effect of convergence acceleration on attainment of asymptotic value of

circulation " . . . . . . . . . oL oL oo .. . 138
Mean wing chordwise pressures, circular open jet test scction

wind tunnel, My, = .63, a = 2°, NACA 0012 airfoil, 100 x 60 grid,

elliptic planform . . . . . . . . . . . ..o o000 139
IsoMachs for zeroth order ﬁow for wing of Fig. 77 . . . . . . . . . .. 140
Perturbation (¢;) isoMachs for wing of Fig. 77 . . . . . . . . . . .. 141
Total (¢0 + %) isoMachs for wing of Fig. 77 . . . . . . . . . . .. . 142
Variation of the chordwise pressure distribution along the span for wing

of Fig. 77, Moo = .63, =2° . . . . . . . . . . . .. .. oo 144
Spanwise loading for wing of Fig. 77 . . . . . . . . . .. . . . .. . 145
Spanwise loading for nonelliptic wing. All other para.meters identical to

those associated with Fig. 77 . . . . . . . . . . . . . . . . .. . 146
Pressure distributions over NACA 0012 airfoil, My = .75, a = 2°,

50 x 50 grid, Ay =.05,AJ=1 . . . . . .. ... ... ... 147

vii




AEDC-TR-91-24

Figure
85

86
87

88

89
Qi
91
92
93
94
95

96

97

98
99
=90
101

102
103

Pressure distributions over NACA 0012 airfoil, M = .75, a = 2°,

98 x60grid . . . . . .. L L e e e
Variation of perturbation downwash with pressure in relation to shock

hodograph, Mo, = .75, a = 2°, NACA 0012 airfoil . . . . . . . . . .
IsoMachs for NACA 0012 airfoil, Mo, = .8, a = 2°, grid adapted to

leading edge bluntness . . . . . . . . . ... 0 L.
Chordwise pressures on elliptic planform wing inside open Jef wind

tunnel, AR = 8.0, My, = 0.7, a = 2°, p = 1.05, NACA 0012 airfoil,

100x60grid . . . . . . . ... e e e e
Flow chart of OUTPUT module relevant to variational solver for

interference potential, repeated version of Fig. 74 for convenience
Circulation perturbation convergence, My, = 0.75, a = 2°. elliptic

planform, NACA 0012 airfoil . . . . . . . . . . . . .. .. ...
Iree field isoMachs for My, = 0.75, a = 2°, AR = 8, ellipti~

planforin, NACA 0012 airfoil section . . . . . . . . . . . . . . ..
Free field isoMachs for Mo, = 0.75, a = 2°, AR = 8, elliptic

olanform, NACA 0012 airfoil section — closeup . . . . . . .

Free jet wind tunnel corrected isoMachs for Mo, = 0.75, o = 2°,

AR = 8, p = 1.05, elliptic planform, NACA 0012 airfoil section
Chordwise pressures along span in free field, Mo, = .75, a = 2°,

elliptic planform, NACA 0012 airfoil section . . . . . . . . . . . ..
Mean chordwise pressure in free jet, My, = .75, a = 2°,

elliptic planform, NACA 0012 airfoil section . . . . . . . . . . . ..
Chordwise pressures along span within free jet wall boundary,

My = .75, a = 2°, p = 1.05, elliptic planform, NACA 0012 airfoil

section . . . . . L L L L L Lo e e e e e e e e e
Chordwise pressures at midspan with pressure boundary condition,

elliptic planform wing NACA 0012 airfoil, My = 0.75, a = 2°,

p=105,AR=8¢1=€6=02 . . . . . ... .. ... ...
Comparison of predictions from viscous interacted full potential

equation solver and experiment . . . . . . . . . . . .. ... ..
Density level lines for inviscid flow — shock at trailing edge, NACA 0012

airfoil, Mo, = 0.799, a = 2.26°, 1650 iterations . . . . . . . . . . . .
Density level lines for viscous interacted full potential code. Viscous

effect moves inviscid trailing edge shock to midchord,

NACA 0012 airfoil, Mo, = 0.799, o = 2.26°, 1650 iterations . . . . . .
Planforms of tested wings (from Ref. 52) . . . . . . . . . . . . . ..
Wing A airfoil sections (from Ref. 52) . . . . . . . . . . . . . ...
0** and 1® order chordwise pressure distributions on Wing A,

=045 M =.76,a=0° . . . . . . . .. ... ...

viii

Page

148

149

151

152

154

155

156

157

158

161

162

163




Figure

104
105
106
107
108
109
110
111
112
113
Al

B1

B2

B3

B4

0'* and 1°* order pressure distributions on Wing A, 7 = 0.5, M = .76,
a=1° . . . C. .
Comparison of theoretlcal and experlmental chordwxse pressures for
Wing A, n = 0.5, tested at M = (.76, a = 2.95° .
Comparison of theoretical and experimental chordwise pressures for

Wing A 73 = .5, tested at M =0.82, a = 2.9°
Confined high aspect ratio wing-body model
Projection of durblet sheet in Trefftz plane . .
Slender vehicle. confined inside cylindrical wind tunnel walls .
Front view of wind tunnel model confined by cylindrical walls, showing
important regions
F-14 ccalignration . .
Isobars in F-14 cross-flow plane .
High aspect ratio wing model
Detail of shock region . . .o
Reynolds number effect on pressure dlstrxbutxon — exa.mple
of upstrzam shock displacement R
Reynolds number effect on pressure dlStI‘lbﬂthl’l — example
of change from single to double shock system
Effect of a closed wind tunnel on .he pressure dxstnbutxon over
an NACA-0012 airfoil . .
Comparison of analytical reexpansion smgularlty w1th that
from numerical solutions

AEDC-TR-91-24

Page

176

177

178
180
183
188

189
193
194
195
214




AEDC-TR-91-24

LIST OF TABLES

Table Page
1 Type Sensitive Switches Employed by ¢o Modules . . . . . . . . . .. 112
171

2 Wing Model Geometry (from Ref. 52)




AEDC-TR-31-24

1. INTRODUCTION

For the foreseeable future, the wind tunnel will continue to be a vital tool in the
development of atmospheric vehicles. In the application of data from such facilities to
obtain aircraft performance predictions, wall effects must be accounted for. Procedures
to treat subsonic wall interference have received considerable attention. A view of exist-
ing technology for this speed regime can be obtained from Refs. 1-3. By contrast, the
methodology for the transonic case is much less developed since it gives rise to a par-
ticularly difficult environment. Some problem areas that contribute to the inaccuracy of
transonic wall interference assessment have been summarized by Kemp in Ref. 4. These

1. Nonlinearity of the governing equation at supercritical flow conditions.

2. Nonlinearity of ventilated wall cross flow boundary conditions and difficulties in pre-
dicting or measuring them.

3. Wind tunne] geometry features, such as finite ventilated wall length, diffuser entry,
and presence of a wake survey rake and its support.

4. Boundary layer on tunnel side walls, which causes the flow to deviate from two-
dimensional test conditions when they are desired.

In addition to these, other viscous effects such as shock-boundary layer interactions are
relevant to interference assessment considerations. Regarding Items 1-4, sidewall boundary
layers have received attention by Barnwell in Ref. 5. Crossflow boundary conditions and
wall boundary condition simulations have been treated in Refs. 6 and 7.

To deal with the nonlinear effects, computational procedures have to be utilized to
treat the interaction of the test article with the walls. Some of these are applied to “clas-
sical” boundary conditions simulating the latter. As a concurrent approach, techniques
incorporating measurements on control surfaces of flow quantities such as the pressure and
velocity components are gaining acceptance. Refs. 8~14 illustrate different concepts using
this approach for subsonic and transonic ranges. Discussions of related issues are contained
in Refs. 15 and 16.

In addition to the utility of purely numerical large-scale computationally intensive
methods for transonic wall correction prediction, there is a need for approaches that can
reduce the number of input parameters necessary to compute the correction, shed light
on the physics of the wall interference phenomena, simplify the necessary computations,
and be generalized in three dimensions, as well as unsteady flows. Asymptotic procedures
such as those described in Refs. 17-20 provide such advantages. Furthermore, they can
stimulate valuable interactions with the other methods previously mentioned to suggest
possible improvements, as well as deriving beneficial features from them.

The crucial importance of understanding transonic wall interference and developing
simplified computationally non-intensive models has also occurred in developing drag esti-
mates based on a computational nonlinear area rule algorithm developed at the Rockwell
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Science Center. Figure 1 from Ref. 21 shows the sizeable impact of wall interference char-
acterization in accurately predicting the drag rise of wing-body combination~. In the
figure, various classical models for the wall interaction are compared to approximation of
the slotted wall condition corresponding to a slot parameter of approximately 1. It is seen
that a dramatic improvement in the agreement of theory and experiment can be obtained
with the proper wall simulation.

Because of the importance of obtaining simplified procedures for transonic wall inter-
ference predictions for three-dimensional models and adaptive wall applications such as
those described in Refs. 22-28, the Rockwell Internationc! Science Center team conducted
an effort for Arnold Engineering Development Center (AEDC) under Air Force Contract
No. F40600-82-C0005 to develop three-dimensional extensions of its two—dimensional
asymptotic theory of transonic wall interference, described in Ref. 20. Out of this pro-
gram, Rockwell developed theories for low and high aspnect ratio configurations. From the
effort summarized in Ref. 29, which was restricted to an analytical investigation, a formu-
lation for the numerical treatment of the low aspect ratio case was obtained. A partial
development of the high aspect ratio theory was also obtained and 1s described in Ref. 29.

On the basis of this study, a follow-on program has been conducted under the con-
tract, "Asymptotic Theory of Transonic Wind Tunnel Wall Interference”. This effort was
sponsored by AEDC under Contract F40600-84-C0010. One objective of the program was
to fully develop the high aspect ratio theoretical wall interference model for solid wall and
pressure specified boundary conditions (Task 2.0). Another was to numerically implement
both the slender and high aspect ratio theories in the form of computer codes, (Tasks 1.0
and 3.0, respectively).

Based on discussions with AEDC and Calspan personnel during the program, the con-
tract was modified to perform additional studies regarding the application of the asymp-
totic methods to Wind Tunnel Interference/Assessment Correction (WIAC) procedures in
which computational and analytical techniques for interference prediction are augmented
with the use of appropriate experimental measurements (Task 4.0). The original thrust
of this effort was to combine the asymptotic theory with momentum theorems to obtain
more information on the nature of the interference. However, on the basis of the results
obtained in the theoretical and computational phases of the work, it became evident that
the information from the momentum theorems were naturally present in the asymptotic
developments and that the emphasis should be on exploiting the latter to develop new and
improved WIAC techniques. This motivated the formulation of two Asymptotic Integrated
with Measurement (AIM) techniques in the contract. They are in line with the high aspect
ratio and slender configuration models developed. For the slender case typifying compact
fighter and missile test articles, additional theoretical analyses beyond the original State-
ment of Work were performed to devise asymptotic models of the wall interference when
pressure boundary conditions are prescribed on a wall or interface. This led to a new triple
deck model of the interference flow field.

This report summarizes the work conducted under Tasks 1.0-4.0. Section 2 describes
the theoretical and computational studies conducted under Task 1.0 as well as the supple-
mentary activity related to the pressure interface condition for slender bodies. In Section 3,
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Fig. 1. Comparison of computational Area Rule with experiment.
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the investigations conducted under Tasks 2.0 and 3.0 are discussed. The AIM concepts are
detailed in Section 4. Numerical procedures as well as structure of the codes are outlined
in Sections 2 and 3. This information will complement User’s Guides for both confined
slender and high aspect ratio configuration codes which will be released in the near future.
Results for both slender and high aspect ratio limiting cases are presented. In Sections 5
and 6, conclusicns and recommendations for future work are provided.
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2. CONFINED SLENDER CONFIGURATIONS

In what follows, the flow over a slender airplane model in a circular wind tunnel test
section will be considered. The main contractual activity in this phase was to computa-
tionally solve the wall interference problem (P1) derived in Ref. 29. A schematic of the
arrangement is shown in Fig. 2. The interference problem derived in Ref. 29 is associated
with free jet and solid wall boundary conditions imposed on an interface control surface
(shown in phantom in Fig. 2). For tbis purpose, a secondary limit of a large test section
radius within the primary Karman Guderley transonic small disturbance limit was used.
Only subsonic freestreams are considered in the analysis. In Ref. 29, the flow was shown
to have a “triple deck” structure. These decks or zones are shown schematically in Fig. 2.

Nezr the axis of symmetry of an equivalent body of revolution having the same stream-
wise distribution of cross-sectional area as the complete airplane (axis layer), lateral gra-
dients dominate. In Ref. 29, the equivalent body was shown to simulate the interference
of the complete airplane (Area Rule for Interference). Within a “central layer”, if a, the
angle of attack, and the characteristic thickness, §, are such that a/é = O(1), as é — 0, the
flow is nearly axisymmetric and can be characterized as a nonlinear line source. Asymp-
totic representations for the central and axis layers were derived in which the first order
terms are those associated with the unconfined flow. The second order corrections of these
regions are due to the wall effects. A third region denotcd as the wall layer was identified,
where the assumption of small wall perturbsations is invalid. Here, other simplifications
apply which represent the slender airplane as a multipole reflected in the walls.

It was shown that the effect of the walls on the flow field is deduced by solving the
second order problem for the central layer. This consists of the equation of motion, here-
inafter referred to as the “variational equation”, subject to boundary conditions devised
from matching the wall and azis layers.

In the next section, prior to considering the computational solution of the problem
P1, some extension of the concepts of Ref. 29 will be applied to a generalization of P1
to handle pressure boundary conditions. The numerical solution of this problem was not
artempted within the contractual effort.

2.1 Treatment of Pressure Specified Interface Boundary Conditions

In what follows, the flow structure in the region close to the interface, hereinafter
called the wall layer, will be determined for pressure data specified on the interface. This
provides a modified far field for the variational problem from those appropriate to free
jet and solid wall conditions. The wall layer as well as the other flow regions have been
identified in Fig. 2 of Ref. 29 and the inset of Fig. 2. Although the pressure boundary
condition theory was called out as a contractual requirement in connection only with
the high aspect ratio code associated with Task 3.0, the contractor deemed it useful to
develop a corresponding theory for the slender body code written under Task 1.0 in the
Work Statement of the contract. This software presently handles solid wall boundary
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conditions. The formulation of the computational problem for pressure specified boundary
conditions will be given in which the free jet conditions are a special case. This discussion
in this section will be restricted to axially symmetric pressure data on the interface. This
limitation will be removed in a subsequent section.

Referring to Fig. 2, the orientation of a slender model as related to a cylindrical control
surface delineated in the figure is shown. The set up is similar to that described in Ref. 29.
However, a pressure boundary condition is to be specified on the cylindrical interface Sc.
These pressures are assumed to be obtained by suitable measurements such as from static
probes and rails. The pressure distribution is also censidered to be an arbitrary function of
the streamwise coordinate z and in a later section the angle variable §. Such distributions
car be associated with the following effects:

o Wall boundary layers

o Noncircular cross section walls such as octagona! and rectangular test sections
o Yaw

e Asymmetric control surface deflections.

Moreover, the pressure specified formulation is relevant to the two variable method,
adaptive wall applications, and our recently developed combined asymptotic and experi-
mental interference prediction (AIM) method.

2.1.1 KG Theory

For a self-contained account, some of the analytical deveiopments which are common
to the solid wall analysis will be repeated here. The viewpoint will be similar to the solid
wall case, i.e., a secondary approximation of large radius h of the control surface (shown
schematically in Fig. 2) within the basic approximations of the Karman Guderley (KG)
small disturbance model. Thus, the body is represented as the surface

r=6Fz,0) , (2-1)

within the coordinate system indicated in Fig. 2, with § = the characteristic thickness
ratio, and overbars representing dimensional quantities.

The asymptotic expansion of the velocity potential ® in terms of the freestream speed

Uis

¢
-(j=5+62¢(I77‘:’9;I\’,H3A)+"' ’ (2_2)
which holds for the KG outer limit,
z,7=6r0,K = (1 - MZ%)/6*, H="h6/c,A=a/b fixed as § — 0, (2-3)

where M, = freestream Mach number, K" = KG similarity parameter, H = scaled height
of control surface, A = incidence parameter. For (2 — 3), the ideas of Ref. 29 and the
pressure formula valid on the interface,

Cp = —26%¢, (2—4)

give the following (primary) KG formulation:



AEDC-TR-91-24

2.1.2 Problem Q:

(K —(v+ 1)¢z)¢zz + ’:;(ﬁﬁi); + ;lgd)gg =0 (2 - 5a)
;§5F¢;=§¥l , O<z<i (2 - 5b)
¢#(z,0)=0 , z>1 (2 - 5¢)
¢:(z,H,8) = f:(z,6,H) = "'Cp/252 (2 —5d)
¢(z,H,0) = f(z,6;H) (2 - 5d')

Here, S(z) = streamwise area progression of the test article, S(Z ) = dimensional cross
sectional zrea, T = dimensional coordinate in freestream dircciicn, and S(z) = 5, 7 )/62L?,
where L is the body length. Problem Q above -epresents a generalization of those discussed
in Ref. 29 because of the fully three-dimensiov.ial nature of the equation of motion (2 — 5a)
and in accord with the previous remarks, the more general nature of the external conditions.
The latter are given by either (2 — 5d) or (2 — 5d').

2.1.3 Large H Theory

The secoudary expausions associated with H — oo will now be considered. It is
anticipated thac the structure of the various iayers, i.e., Axis, Central, anda Wall layers
showa ia Fig. 2, will resemble those for solid walls. Accordingly, these repreccatations are:

2.1.4 Central Layer

¢ = ¢o(x,7) + prj2(H)$y jo(2,7,0) + pi(H )y (2,7,0) + - - (2 ~6a)
K = K + v(H)K +--- (2 — 6b)
A=Ag+r(H)A +--- (2 - 6¢)

which hold in the central limit
z,7 fixed as H — o0
These lead to the following generalized hierarchy of approximate equations:

2.1.5 Free Field Approximation

(K3 = (7 + dn.)do.. + 3 (70,), =0 (2-Ta)

2.1.6 Variational Equations

. 1, 1 -
(Ko — (v + 1)¢0,)01/2.. — (7 + D)o, b1/2., + =(F1/2,), + ;5‘151/200 =0 (2-7b)

r
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Fig. 2. Control surface in tunnel.
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. 1, 1
(K — (v + D)o, ) 1. — (v + )¢, 00, + ;(r«mf); + 51 = ~Kido,. (2-7c)

where vy (H) = p;(H) to keep the forcing term in (2 — 7¢), and to address the possibility of
adjusting K as a Mach number correction to achieve interference-free flow. The significant
complication of Egs. (2 — 7b) and (2 — 7c¢) over their solid wall counterparts is the presence
of the terms involving @ derivatives. On the other hand, a substantial simplification from
the Problem Q is the allowability of factorization and superposition due to the linearity of
these equations. As will be seen, the angular dependence of the far fields for these problems
involve simple factors such as cos 8, cos 26, etc. It is envisioned that this dependence can be
factored out, e.g., by allowing ¢; = él(r, 7)cos 8, which gives a two—dimensional equation
for ;. Also to be confirmed by matching is the assertion that the far field for ¢¢ has a
similar structure to that given in Ref. 29.

2.1.7 Wall Layer

The appropriate representation is assumed to be
¢=€0(H)<P0(Itvrfv9)+51/2(H)501/2+€1591+"' ) (2 - 8a)
for the wall layer limit,
t=u/H r':f‘/H , thxedas H — o0 . (2 — 8b)

Substitution of (2 — 8a) into the KG formulation gives

O(eo) : L[»ao] =0 (2 - 9a)

O(e1/2) : L[Wl/z] (2 —99%)

O(er,e3/H) : Llpr] = ((v + Do, — K7 )po .y s (2 -9¢)
where 9 3 3 o
AN | 19 (40, 10
L=Kegm+Ar « A1=555 (’ an) + 1 56

2.1.8 Behavior of ¢ near Origin

2
As in the solid wall case, if Rt = \/(k‘ ) + 72/ H, the source-like behavior,

.
[}

S(1) 1
~ _ 2 - 10
& \/175{4an+ } ! (2-10
1s anticipated.

From (2 — 5d’), the similarity form,

f(r.6:H) = 2 1(51,6) 2-11)
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is appropriate, and leads to the boundary conditions

goo(rt,l,e) = f(zt,e) = f(x",0+ 2m) (2 -12a)
e1/2.(21,1,6) =0 . (2 - 12))
If 5 5
1 6 1
t- 9 29 [a9
A= 5t T it (' a-vt) T oe
X'=z"/VK;
Then (2 — 10) implies
S(1) §+(rt)
t, 2 o 43O AT ) _
Atog \/K_aé(z Vo (2 —13)

With the following exponential Fourier transform pair
* _ikxt
Bo = / e kX pod X!
-0

@ L7 ext gk
0= 5 W )
27 J oo 0

the boundary value problem for @, corresponding to (2 — 10), (2 — 12a) and (2 — 13) is

Ly, = (ah - k?) B0 =0 (2 - 14a)
. .dp, 1 S(1)
130 _ 1 i -
L N - 14)
Po(1,0) = f(6,k) = f(8+ 2m,k) . (2 — 14¢)

In contrast to the solid wall case, the decomposition of the solution into the fundamental
solution My and a part M; that is bounded at X = +oo as indicated in Egs. (12) of
Ref. 29 is not required since with the Dirichlet conditions, there can be mass flow through
the interface to eliminate the solid wall source flow division at upstream and downstream
infinity. The eigenfunction expansion solving (2 — 14) is

Bo = AoKo(kr') + Bolo(kr') + Y _ In(kr'){ B, cosnf + Cnsinné} (2 - 15)

n=1

where K and I,, are Bessel functions, the periodicity condition in (2 — 14c¢) has been used
to determine the eigenvalues A\, = n, n = 0,1,2,---, and (2 — 14b) has been utilized to
eliminate the K,, for n > 0.




Po = %/0 cos kadk{ SU) [I"( rt)Ko(k)—Ko(k"t)]

VE; | To(k)
Lo(krt) (27— }
To(k) f(8,k)dé (2-16)
+ —22— Z/OO costfII(?I: dk /2* f(@' %) cosn(6 — 6')df’
T 0 n

The integrals in (2 — 16) are convergent since the Bessel ratios decay exponentially as
k — oo and are analytic as & — 0.

As indicated previously, for the analysis in this section, the 6 variation will be sup-
pressed. This may be realistic for many practical appli-ations for nearly circular test sec-
tions and interfaces in the intermediate region of slenaer body theory discussed in Ref. 30.
For convenience, the f distribution has been assumed symmetricin X, ie., f(X) = f(—-X),
to obtain (2 — 16).* Therein, the exponential transforms have been expressed in terms
of cosine integrals. The analysis can be readily generalized to handle unsymmetrical f
distributions.

2.1.9 Asvmptotic Representation of (2 - 16) as Rt — 0

To obtain the required representation, the following integrals are considered:

I, =/°°cost*I‘}(f;))dk " 7(8, k)de (2 - 17a)
0
_ e Io(k?‘t)Ko(k) _ Tt ] S t _
Ig_/o {——————Io(k) Ko(kr') p cos kX "dk (2 — 17b)

AEDC-TR-91-24
Application of (2 — 14¢) and inversion gives finally,

QI (kr 2 ' ’ '
Ty = Z oskX dk F(8 k) cosn(6-6)d8' . (2-17c)

Consistent with the assumption of axisymmetric interface pressures, Z3 will not be consid-
ered here. By approximating Io(kr') and cos kXt as Rt — 0, and term by term integration
of the series obtained, the following approximation for ¢g results:

S(1) 2
@0 = ———==—+ (Ao + Bo) + (Co + Do) R" Py(cosw)
4m\/K} Rt (2 - 18q)

+0 (R*”)

* This restriction will be removed in Section 2.2.




AEDC-TR-91-24

where

S(1) [ Ko(k)dk

Ay = 2-18b
°F Tiant fy Io(k) (2-180)
1 [ dk [™
- 1 LY tdx 9 __
By = 7"./; To(k) / f( XN coskX'dX (2 - 18¢)
k2dk
SAU t t 1 ) _
Co = 7r/é A k)/ f(X")coskXTdX (2 —184d)
- ® L2R
. S(l) I\O(k)dk ] (2_ 186)

Dy = —221
0 272\/K§ Jo Iy(k)
Here, w is the scaled analogue of the polar angle defined in Fig. 2 i.e., w = cos ' X1/R?

and P;(cosw) is a Legendre polynomial.

The censtants given in (2 — 18b)—(2 — 18e) are all given by convergent integrals. In
particular, B converges if f(k) is bounded as |k| — oc, and even under milder conditions
on f. This results from the potent exponential decay of Iy. No problem is encountered as
k — 0 since the integrand 1s analytic at that point.

The terms involving By and Cy give the effect of the pressure boundary condition.

2.1.10 Matching

For purposes of matching, the following asymptotic approximations for tne wall layer
and central region are appropriate:

3 RT m

cos Jw — cosw) +

Peeniral =+ 52 {ﬁ B cosw Co

—\/.-%-Pg(cosw)}

(2-19)
+ p12(H)dy 2 + (eoR*Py(cosw) + a1 Reosw + az) +
as R — oo
Qwan 2 [ 42
= =z+6 \/—L pp R* + (Ag + Bo) + (Co + Do)R' Py(cosw) + - -
1
+ 51/230 cosw [R’z + (Co + Do)Rf]
+ € {C[_&(l‘;’#"_) +Co + Do] Igfa (cos 3w — cosw)}
4 as Rt -0
(2 — 20)

where Ay, By, Co, and A are constants that have been previously defined in Ref. 29 with

2
a corrected value for Cy being (r#1)S*()
10872 K52
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Preliminary matching considerations govern the selection of the various elements com-
prising (2 — 19) and (2 — 20). The ¢, coefficient of y; represents a harmonic solution of
(2 — 7c¢). The response to the nonlinear forcing terms (v + 1)¢do, ¢1,, and (y + 1)¢1, 0.,
are decaying terms as I — oo that are higher order to the order of the matching and can
be neglected. Regarding (2 —20), 12 and ¢4, the coefficients of ¢, /; and €;, respectively,
consist partially of X1 derivatives of (g, such that the multipole expansion has primary
singularities which are source, doublet, and quadrupole forms with their appropriate re-
flections. Thus, the reflection of the doublet is an X derivative of the sources, and the
quadrupole has the same relationship to the doublet.

For matching Egs. (2 — 19) and (2 — 20) are written in the intermediate variable
R, = - (2 -21)

which is held fixed as H — oo. The gauge function 7 is an order class intermediate between
1 and H as H — oo. This is expressed symbolically as

l<<ny(H)<< H . (2 -22)

Thus, ﬁ ~0as H - oc,and §+ — 0 as H — oc. For axial symmetry of the interface
oressures, the matching process is almost identical to that discussed in Ref. 29. The only
difierence will be the redefinition of certain constants associated with the streamwise inte-
grals of the specificd pressure data as well as the switchback terms. For understanding of
basic issues related to the extension to non-axisymmetric interface pressures, the matching
is diagrammed in Fig. 3.

Referring to the figure, the various labeled terms denoted by the circles give the
following matchings:

O o @ =2a0=-0  o=4
@ «» @D =ap=3

@ — (5.3) matched

@ e @D »a=g , C=-A
@ o @ >mp=14 , ¢12=AH4+Bo
@ L @ Spu=gs , ao=Co+ Do

62 o @2 = a =B
@ - 5.2) = a3 =acC

As will be seen in the next section, the non-axially symmetric case requires additional
terms in the wall, central, and axis layers to deal with the effect of the higher harmonics.
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Fig. 3.
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Matching of central and wall regions for axially symmetric interface pressures.
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The matching of the central layer and the axis layer proceeds along similar lines to
that given in Ref. 29. All that is required is the essential result for the boundary condition,
which is

$1;(2,0) =0 . (2-23)

The expression for the interference pressure remains the same as that given in Ref. 29.
However, there is an implicit dependence on the interface pressure data through the far
field influence of the terms involving the constants By and Cy defined in (2 — 18¢) and
(2 — 18d). Also, the flux of streamwise momentum of the interference field through the
interface must be considered in the calculation of the interference drag. The implicit
dependence on the interface pressure data is shown in the following altered problem P1
denoted P2 for the interference potential in the central region ¢,.

P2:
- , 1, .

(Ko — (v + Dot b1, —~ (v + 17 wovi, + 2 (Fé1.); = ~K i do.. (2 — 24q)
$1.-. M =10 (2 — 24b)
o1 ~ a0R2P2(cosw) +a;Rcosw+as as R— oo (2 — 24¢)

where
ay =Co + Dy (2 — 24d)
ay = BoO(o (2 e 246)
ap = —8—7r-b—qA = QQC . (2 - 24f)

JE

For the free jet case, Cp = 0 in (2 — 24d) and By = 0 in Fig. 3. Solid wall conditions are
modeled by making ao = by = b S(1)/\/K{, with a; = 87 Bobo, with by = .063409*.

2.1.11 Discussion

Because of the relationship of P1 to P2, the computational algorithm which has been
developed for the solid wall case can be used to solve P2 with corrections of the indicated
constants and the post-processing subroutine DRAG1 to account for the flux of streamwise
momentum through the interface. Note here that the effect of a; in (2 — 24c) can be
neglected.

* The determination of this value is discussed in Section 2.12.

15
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2.2 Generalization to Angular and Unsymmetrical Variations

Summary

In this section, the pressure boundary condition asymptotic analysis given in Sec-
tion 2.1 is extended to handle angular interface and unsymmetrical variations of measured
pressure.

Central Layer

With the generalized angular variation at the interface, (2 - 6a) is anticipated to be
modified as

¢ = ¢olz,7) +p1j2(H)b12(z, 7, 0) +paja(H) s a2, 7,0) + 1 (H) s (2,7,8) +--- (2~ 25)

As compared to (2—6a), (2—25) contains an extra term (indicated by 3/4 subscripts). This
insertion is required by matching considerations associated with the more general class of
interface pregsure distributions involving angular and asymmetric streamwise variations.

The analysis and results are such that Egs. (2 — 3) to (2 — 6) remain unchanged.
Reflecting th= inore general interface distribution the expression for ¢y becomes

= ﬂf%’_‘ ( Q2> Qo 2;2 Z (Qn cosnb + P, sinnf) (2 — 26a)

where
[ Do (k) Ko(k) e
O _/_w A (2 —26b)
Q2 = /m Ko (kr) e*X" dk (2 — 26¢)
Qn = /_ ze"‘x'l (k))dk 2"T(0,k)cosnodo (2 — 26d)
© xr@n(k
P. =/_°o ¢! I((;))dk F(6, k) sinnbdf . (2 — 26e)

Upon expanding the integrands in (2 — 26) for small R, and with considerable algebraic
manipulation, the asymptotic expansions of the integrals can be obtained. The methodol-
ogy exemplified in Ref. 29 involves expansion of the Bessel functions for small rt and the
kX" kernel for small Xt and gives a series that can be integrated term by term. These
integrals are convergent for the ray limits (R' — 0, 6 fixed) of interest.
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Collecting results, the desired expansion of g is

A
Yo = 72(? + Ao+ By + Ame

+ Eortcos 8+ Fortsin@+ X1 | Eo17t cos 8+ Forrtsind
{ T , N N y

y z Xty X1z (2 - 27a)
2 -
Gor'! cos 20 + Hor! sin26
Db — -’
y2_.,2 yz

(Co + Do) RY Py(cosw) + -

where the ter.ns shown under those in (2 —27a) are listed to indicate their correspondence
with spherical liarmonics and the spherical coordinates are as shown in Fig. 4.

S$C50443
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///

-~ 8
w
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| > X
|
|
|
|
1
z

Fig. 4. Spherical coordinates.

From the asymptotic expansions, the constants in (2 — 27a) are:

S(1)
Aop = ——— = 2 —27b
o0 4m/K} ( )
5(1) > Ko(k) 1 [ dk ["—
’ 2r2y /K3 Jo  Io(k) 0~ 4x2 oo To(K) Jo fr(6,%) ( c)
1 *  kdk m
- — . 2_ -
Aol Y /;oo () Js fr(8, k)dk ( 27d)
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1 © Kk [P - — 1 o rdk [ _
= —Re 1 6d6 = — —_— s
& 47r2Re /_w Lo /. f cos , Fo i Re /_oo Lo ) f sin 640
(2 — 27¢)
1 < rdk [P — 1 ® 2k [T
= — ) 0 = — A —_— 1
Eo 4‘”2Re ) A fcosbd8 | Fy e Re z/;w L) J, f sin8d6
(2 - 27f)
o0 1.2 1”7 k o 2 . a21r__
Co = SA) K Kolk) , Dp= ! kldk frdé (2 -27g)

_47r2\/K5‘ o To(k) LN A Io(k) Jo

1 > Kk [P 1 Sl SN R
= —— —_— 7] = - — - — ]
Go 4W2Re /.oo L J, fcos268d8 |, Hg 47"2Re/_ao o) J, f sin26d6
(2 -27h)

Matching

Using the intermediate limit described in Section 2.1.10, matching of the central and
wall regions is schematically indicated in Fig. 5 in which both representations are written
in terms of the intermediate variable R, defined in Section 2.1.10. It should be noted that
nonlinear effects are associated with Poisson equation forcing terms such as ¢;,¢o,, in
2 - 72). The Poisson form is associated with R — oo ray limit of the central region flow.
In Fig. 4, Q) is a particular solution of the equation

——sinw 7 = COSw (2 —28a)

1 d da Q)
(dw dw ) + sin® w

sinw

and Q(2) is the solution of

—sinw

= - (2 — 28b)

sinw

1 ( d dQ(z)) 4 Q)  3Py(cosw) + 2Py (cosw)
sinfw 5

As indicated in Section 2.1.10, the matching of the central and axis layers proceeds
along similar lines to that discussed in Ref. 29.

All that is required is the essential result for the boundary condition, which is
$1,(z,0) =0

The expression for the interference pressure remains thc same as that given in Ref. 29.
However, there is an implicit dependence on the interface pressure data through the far
field influence of the terms involving the constants defined in (2 — 27¢) to (2 — 27h). Also,
the flux of streamwise momentum of the interference field through the interface must be
considered in the calculation of the interference drag. The implicit dependence on the
interface pressure data is shown in the following altered problem P1 denoted P2 for the
interference potential in the central region ¢,.
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PRESSURES SPECIFIED ON INTERFACE

Ao DBy cosw Co Ao

AL 4 {08 3w — cosw) 4 ————— P (cosw)
l’lnq =y 'lln,],(““ W 0sw) + f——l\,u.,’]RJ 2 il

Peentral 2
=+ 4
U

1 1 . . .
+ ﬁ“'“ + ——7 [/‘l.lv/n,, cosw - Sy R sinweos 8+ Fun M, sinwsin 8 4 Wiy

Py(cosw)l
anR, J

+ /—I_' ? R I’ con e P\F /l g, vosw + 4; "’v «'uaw\‘lnu(s‘.m('n\'ﬁﬁ fn|53 |9)

E /hr/n,,sx h A, coslod £ 2040 26) Agn 1, sinw ces
+ (vQ(” !9‘ Gevatral /

Puwant PR _1_ +.A ) (Co + R ’__.p, cosw)
v M, A 'R m

wh
+ H'smu h cos 8 + Fp~ mO sm YWCo cos 20 + 2

0sin26)

2
1
+ ’I 2" cos\sinw (&1 cbs B+ Fyin )

1 [(;(Nu: . :,I? [I .
+ == B | + 20N Do) —f conw + —Nsihw(Ey cONE + Fuy sinf) + Ag,
2 it}
7o I I
1

+ L 2(cosw)

1 P(cosw)
Ccl -
=le(-3

: Co
vy wR + '2C,> J“_, —5 (cos Jw —osw) +
IR

gy ago Mp(cosw

mo + Do) () + QP (£ cos § + 2Fg, sin G)J } =1+ dn

=

i

Fig. 5. General case of matching of central region and wall layers.
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- 1. -
[Ks = (v + Do, }o1.. = (7 + L)oo, 61, + ;(T%,-); = —Kj¢o,.
o1,(r.0) =0

@

o1 ~ RZ{A—QPZ((‘()SL&) + coswsinw | £y cos @ + Foy sinb

2

— )
+sinfw | A;cos20 + A, sin 26
3

3

+ R{A_lcosw + sinw | Assin + .A_ﬁcosﬂ) }

+ Ay +- asR-— o
where by Fig. 5, with B and C defined in Ref. 29

Ao =Co + Do
Ay = 2BA,
Ay =2CCy = 2B (Co + Dy)
As =G
Ay =Hyo
As = For
As = &

2.2.1 Discussion

(2 — 29a)
(2 — 29b)
(2 — 29¢)
(2 — 29d)
(2 — 29¢)
(2 -29f)
(2 —299)
(2 — 29h)
(2 — 294)
(2 —295)

The problem (2 — 29a)-(2 — 29c) is the generalization of the Problem P2 given in Sec-
tion 2.1.10 accounting for asymmetries in the streamwise distribution of the interface pres-
sures as well as angular 8 variations. These effects are given by the terms marked as @
- @ in (2 —29c). They represent averages of the early harmonics which to this order is
all that the far field ss sensitive to. The specialization to the free jet case is obtained by

setting Do = go = Ho =& = For=0in Eqgs. (2 - 29).

2.3 Shock Jump Conditions

An important element to be considered in the numerical solution of the Problem P1
referred to in the previous sections is the satisfaction of the shock jump conditions. For
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the free field case, these relations are satisfied by the divergence or conservation form
of the Karman Guderley small disturbance equation. These give the Rankine Hugoniot
jump conditions. They are satisfied using type sensitive shock capturing schemes such as
those originally developed by Murman and Cole in Ref. 31. On the other hand, the wall
interference corrections related to the Problem P1 have to be satisfied by use of explicit
relations. These have been derived for the high aspect ratio transonic lifting line theory
fo.mulated in Ref. 32. These relations will be derived for axisymmetriz Jow in this section.

Referring to Fig. 6, conditions across the shock front denctea as S will be discussed.
This surface is giver by
S=z-g(F)=0 , (2 -30)

where 7 = ér, and consistent with the Problem P1 delineated in Ref. 29, axial symmetry is
assuined. The Problein P1 describes the wall interference flow away from the walls on the
¢xis of symmetry of a cylindrical test section. The velocity potential in this zone, denotcd
by @, is given by the asymptotic expansion

$C84-29502

s x=gl SHOCK
r
 —
u
> SHOCK SURFACE
X

Fig. 6. Orientation of shock surfaces.

2

U=:r+52 {¢0(1,F)+%+%¢1(:c,1:)+---} ) (2-31)

where U is the freestream speed, the ¢, are perturbation potentials, ag is a constant, H is
the wall height in units of the body length, and 6 is the confined body’s thickness ratio.
The secondary expansion in the braces in (2 — 31) is an approximation for the perturba-
tion potential ¢ which is governed by the Karman Guderley transonic small disturbance
equation (2 — 5a), with ;% assumed zero.

Equation (2 — 5a) can be written in the divergence form,

y+1

L{¢} = {KQS, - —2—¢Z} + ;1‘;(1’¢;)F =0 , (2-32)
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where subscrxpts denote partial differentiation. Denoting the transverse velocxty vector as
7= vlz, (v = ¢#), the 7 derivative term in (2 — 32) can be written as V - %, where V- is
the cross flow divergence.

The integral form of (2 — 32), applied to the infinitesimal thickness (= €) volume V

shown in Fig. 6 is
// L{¢}2r7didz =0 |,
v

and the divernence theorem gives rise to the flux form

JAl

wheare [f] = 1iin(_.0{f(:z: g+e¢)— f(z, e)} u = ¢, and fi is a unit vector normal to S.
Since (2 — 33) holds for an arbxtraxy area, the integrand must be zero,

1 -
u2}+[17]-%}21rfdf:0 , (2 - 33)

v+1 o
[Ku———2—u2]+[v]-g=0 . (2—34)
Now -
vs _ 7—8g'(T)15
VST V1+0(82)

where 7' is the unit vector in the z direction and 1; that in the 7 direction. Substituting
into (2 — 34), this gives

n=

(2 — 35)

k- 2200 g = 2-34)

By virtue of conservation of tangential momentum across the shock, the perturbation of
the velocity vector § is normal to the shock surface. This perturbation velocity is given by

q-UT

o = 6%ui'+ 6%v1;

On the basis of tangential momentum conservation,
(§-UT)xVS=0 |,

which gives
[v] = -[u]d'(F) . (2 - 35)
Eliminating ¢’ from (2 — 34") using (2 — 35) gives

[Ku _ ﬁ%”lﬂ] (] + [1)2 =0 . (2 - 36)
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Since tangential momentum is conserved, the tangential velocity component to the
shock is continuous across it. Upon tangential integration, and disposing of an unessential
constant, the following relation is obtained

[¢) =0 . (2-37)

Equations (2 — 36) and (2 — 37) lead upon substitution of the asymptotics into the jump
relations for the approximate quantities appearing in (2 — 31). To obtain a determinate
set of quantities, the shock’s representation is assumed to be in the same form as that for

¢, le.,
1 N 1
g = go(7) + Eglﬂ(r) tgpato (2 -38)

Denoting f as a quantity of interest which has the same asymptotic form as ¢, on the basis
of (7 — 38} and Taylor’s expansiug,

f(z,9) =fo(z,90) + = (fm.(r g0) + g1/2f0.(z,90))

91/2 (2-39)

7 fo..(z,90) + 7 (fl(fC go) + g1 fo.(2,90))
+...

By virtue of (2 — 39), substitution of the expansion (2 — 31) into (2 — 36) gives the approx-
imate shock relations which are:

0Q1) : [ (K - luo) uo] +wo) =0 (2 — 40a)

] [0 — L2 + o] (K = (3 + 1]

20} o] = =01 [uo] [ = (3 + Doy,
+1 (2 — 400)
+ {Kuo - l—é——ug] [uoz]
+ 2[vo] [vo,]}

where u; = ¢;, and v; = ¢;, where i is equal to 0,1. The quantity g,/ can be shown to
vanish on the basis of (2 — 37) which with (2 — 39) leads to the additional set of relations:

O(1) : [¢o] =0 (2 —41a)

H™%) : [é1]) = —g1{¢o,] - (2 —41d)

It should be noted that the O(H '), O(H ~?) equations obtained in the process leading to
Egs. (2 — 40) are vacuous.
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Equations (2 — 40) and a vorticity relationship to be derived in the next section
complete the formulation necessary for the computational solution.

2.4 Shock Conservation Laws for Wall Correction Flow

In addition to the jump relations derived in Section 2.3, a useful conservation law
can be derived for use in the numnerical solutions. In analogy to the free field large aspect
ratio case discussed in Ref. 32, this law w1l be obtained using the divergence theorem.
Considering the region shown in Fig. 7, the divergence form of (2 — 7c) (with 535 =0 and
dropping the stars on the K’s) is

. . 1,
{K1¢o, + Koo1, — (7 + 1)¢0,¢1,}I + ;(Nﬁx;); =0 ,
or R
V- (Kigo, + Kog1, — (v + 1)do, 1., Ko¢1,) =0 , {2 —42)
where V- refers to the divergence operator in the z, 7 coordinate system in which # = /Ko7

From (2 — 42),
//(I\'1¢o, —wéy,, Koo, ) -7idS
s

where w = (y + 1)¢o, — Ko, S represents the surface of revolution consisting of the sphere
Sr, R = Ry, the cut Sg around 7 = §, Sy around the shock or shocks, and 77 is the unit
normal to the shock surface.

Now, since ¢y,(z,0) =0,

[ L] fonaemo

where 1; is the unit vector in the # direction. Also, / fSn can be shown to vanish to the
order of approximation considered by virtue of Eq. (20b) in Ref. 29. From the previous
section, with the first approximation of the shock shape given by

X = Go(¥)
ol _ g
(60.] Go(7)

where [ ] denotes the jump of the indicated quantity across the shocks and
s T o(#)1e
V1+ GE(F)
the desired conservation law is

/So {1\', [80.] = [wé1.] - M—[’(b]gid}df =0 , (2 - 43)
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F* SC85-30608
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_/ L/_[ _E__ J

Fig. 7. Regions appropriate to shock conservation laws.

25




AEDC-TR-91-24

where Sy is the shock surface.

2.5 Regularization of the Problem for the Correction Potential ¢,

To avoid the singularity at oo, the problem P1 in Ref. 29 is transformed by subtracting
off the far field for ¢;. Accordingly, the variable ¢, is introduced in P1, where

é1 =01 — bpr . (2 —44)

dere,

M[¢1] = (Ko — (v + D)o, ) 1., — (v + D)o, 1, + %(ﬁﬁl;); =-Ky¢o,, (2~—45a)

and
linfl)qﬁlf =0 . (2 — 450b)
Noting that (for solid walls)
$1 >~ FF = b{,fZZPg(cosw) + 8wbaBoR cosw (2 — 45¢)
as
_ 22
R= A_'g + 72 — oo
and ”
¢FF = ba (X2 - %‘) + SWbQBOX ) (? - 46)
where S(1
b:) = —( )bo

VKo
1 o o] oo
4xB, = _5(1)+/ S(z)dz + n(y + 1) / dz / 25 di
0 J -0 Jo

w = polar angle defined in Fig. 1
S(z) = model cross sectional area

R = polar radius defined in Fig. 1
From (2 — 44) and (2 — 46), (2 — 45a) and (2 — 45b) become

21 2(y + o bo 2bhz  8mboBy _
M[h] = TR () (T4 T ) - Ko} (2-4Ta)
lim gy, =0 (2 - 47b)

$1 —0as R — oo (2 —47¢)
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where R = 6R.

The slender body interference code will use the regularized form represented by Equa-
tions (2 — 47).

2.6 Basic Code Modules

Figures 8 show flow charts which give an overview of the interaction of the functional
modules to be used in the design of the wall interference code under Task 1.0. The
preprocessor ATF sets up the grid and inputs other parameters through the subroutines
INITIA, INPUT. The input geornetry data is read in from the disk file. The solver STINT25
has primary subprograms denoted as RELAX1, OUTFNI,, SONIC, DRAG]1 used to solve
the zeroth order flow problem and RELAXV1, OUTFNL1, and DRAG1 for the variational
problem for ¢;. RELAX1 and RELAXV1 are modules which respectively are the principal
successive line overrelaxation routines which serve the purpose of solving the tridiagonal
system for the free field and the interference problems. The tridiagonal solver is denoted as
TRID. RELAX1 and RELAXV1 include special treatment of far field, internal, boundary,
and shock points with appropriate type sensitive switches. SONIC determines subsonic
and supersonic zones, and OUTFNL and OUTFNL1 provide the basic flow and interference
pressure fields as well as the quantities ¢; defined in Ref. 29 necessary to compute free field
and interference drags. These are computed in DRAG and DRAG], respectively. The
relationship of the flow solving modules is shown in Figs. 8.

2.7 Upstream and Downstream Far Fields

For slender test articles that are sting mounted inside solid walls, the flow at great
distances from the model behaves as a confined source in accord with the analyses given in
the previous sections. Referring to the cylindrical coordinate system indicated in Fig. 9,
far field behaviors were worked out in certain “ray limits” in which if R = vz2 + 72 and
cosw = z/R, R — 0 for 0 fixed. The case w = 0, or 7, i.e., £ — *oo however is degenerate
and requires special treatment and had not been analyzed.

For a properly posed numerical simulation of the finite height case, the structure of
this flow must be properly modeled. This can be achieved using the Divergence Theorem.

If z is the usual dimensionless coordinate in the freestream direction depicted in Fig. 9,
then the transonic small disturbance formulation gives the following equation of motion

(v+1)
vK

where K = (1—-M?2)/§%, My, = freestream Mach number, ¢ is the perturbation potential,
and X = z/VK. The slender body boundary condition is

i 26 _ 512

im0 OF 2

Ad=dxx + %(Mf); = dxPxx (2 —48)

(2 — 49)

where S(z) is the cross sectional area distribution for 0 < z < 1, and S'(z) is without
great loss of generality assumed zero for 1 < z < oo, (constant diameter sting).
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SC-0382CS
ATF ATFIX.DAT
INPUT HT PAR.DAT
TO SOLVERS INPUT AND
CONTROL FILES
K3
INPUT
(SETSUP |
GRID
PARAMETERS)
_3
INITIA
{ A A
G5 BODY
GX GRID GY GRID (SET UP
(SETUP (SETUP BODY
X GRID) ¥ GRID) GEOMETRY
SMOOTH DATA)

Fig. 8. Flow chart for preprocessor and solver.
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S$C-0360-CS

SOLIND. DAT
ATFBOPT. DAT
ATFBOPTV. DAT
x, T VECTORS, DX,GAMM1, GAM,
P1, IMAX, JMAX, PHI, PLS, SBODY,
PLS1, TAU, ETC.

v

STINT25
MAIN DRIVER

v
RELAXI, RELAXV1
(SOLVE DIFFERENCE
EQS) FOR 0'h AND
PERTURBATION FLOW

Y

COMPUTE
COEFFICIENTS

Fig. 8. Flow chart for preprocessor and solver (continued). N in the notation STINTN denotes
the Nth version of the main driver.
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COMPUTE SUPERSONIC DRAG) Cp,
g', Cpg, ACp REGIONS) AND
FOR 0+" ORDER INTERFERENCE
FLOW DRAG ACp
CONVERCZ?
(ERRMAX YES
CRITERION)
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A control cylinder is considered consisting of the walls (S ), an internal surface bound-
ing the model near the axis, (S¢), and the inflow and outflow faces (S-o) and S, respec-
tively. Accounting for the impermeability of the walls expressed as

!
o F=H_o , (2 - 50)

the diverg-nce theorem when applied to (2 — 48) gives

[ foow=[[ oo, Fas=on [ rar [~ {0 }ax

(2-51)
where V' denotes the volume of the control cylinder. Evaluating the terms in (2 — 51),
2 oo ot
/ —d.S'-.hO/ do/ a¢“dX_2 / %{”)dxzsm . (2 - 52)
From (2 — 50),
/ o¢ dS=0 . (2 - 53)
SH on F=H

For a slender configuration, we sssert that as in the subsonic case, the lift effect produces
a Trefftz plane (z = oo) flow component that can be represented as an infinitesimal span
vortex pair reflected in the walls. This pair is the Trefftz plane projection of the trailing
vortex system from the body. Superposed on this flow is an outflow due to the source
effect. A similar outflow occurs at z = ~o00. Accordingly, we are led to the asymptotic
inflow and outflow cnnditions

¢ ~Crrz + f(y,2) as £ — 00 (2 — 54a)
y=rsinf
Z=7cosb

¢~ —Crrzx as ¢ — —oo , (2 — 54b)

where f(7, z) is related to the lift, and the constant factor Crpr appears in the manner
indicated in order to preserve the anticipated symmetry of the apparent source flow from
the sting-mounted, finite base area model. In this connection, it is important to note that
Eqgs. (2 — 54) are exact solutions to the nonlinear small disturbance equation (2 —48). This
is true even for f(§, Z), since it satisfies cross flow Laplace’s equation. It should be noted
that the inflow and outflow conditions to be specified at £ = oo are independent of the
form of f.

From (2 — 54), it is clear then that

/ / a¢d5 omCrrH? . (2 — 55)
Seo+S5-

3l




AEDC-TR-91-24

Fig. 9. Model confined by solid cylindrical walls and control volume.

The last term to be evaluated in {2 — 51) is the right hand side, which is

T [Tt 0 _ G+ fH . 1 g
2*/0 rdr/_x Vi ox (Px)4X =" | # {8k (00,F) ~ $(~o0,F)} dF

which vanishes by virtue of (2 — 54), as a milder condition of symmetry of the axial
component of the far upstream and downstream flow. From this, as well as (2 — 51)
to (2 — 55), it follows that the inflow and outflow conditions are,

S(1)
é,::tzﬂHz asr — too |, (2 - 56)

i.e., the apparent source strength is proportional to the body base area. Equation (2 — 56)
is used in the numerical simulation of the flow field.

A complete asymptotic expansion based on the eigenfunction expansion for a confined
point source given in Ref. 29 can be used to obtain refinement of (2 — 56) and treat the
transonic case. From Green’s theorem and the properties of the Green’s function G, the
perturbation potential ¢ in the confined incompressible solid wall circular cross section
case is

1 /! ) 1, e~ 2nlz=¢l gy (Aar)
6= 5o ), oGSO+ o [ SO T
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where the summation is over the eigenvalues A, which solve the following secular equation

Thus,
A1 H = 3.8317
A2 H = 10.1734
A\ H = 13.3237

From these eigenvalues, it is clear that for moderate H, the confined flow decays much
more rapidly upstream and downstream than the free field, with the former demonstrating
exponential relaxation to the freestream and the latter, algebraic behavior.

Based on these considerations, and extension to compressible flow which introduces
a nonlinear volume source the expression for the asymptotic upstream and downstream
behavior is

o e )

2w H? K
+ TST as T — too

(2 - 56')

where TST = exponentially small terms which are

o(e-‘#"'-l) as |z| — oo

- /o ' S()d

The last term in (2 — 56') represents the average kinetic energy of the horizontal pertur-
bation of the flow.

2.8 Difference Equations for the Wall Interference Correction Potential

A successive line overrelaxation (SLOR) algorithm for the large height correction
potential has been coded. The initial approach is to use modifications of type sensi-
tive switches developed by Murman and Cole®!, and pseudo-time operators devised by
Jameson®? as well as generalizations of the procedures developed in Ref. 34. Results to be
discussed for the full nonlinear finite height theory algorithm show good convergence for
transonic Mach numbers.

The basic code modules to treat this problem have been flow charted in Fig. 8. Prin-
cipal modules are RELAX1 and RELAXV1 which are used to solve the discretized form
of Eqs. (2 — 47) by nonlinear iteration and SLOR. Some highlights of our approach will
now be outlined.
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Applying the SLOR approach to Egs. (2 — 47), the discretized form is

i —wldt — (1 —w—Na. -14. — w1 — T
2{(1-#=';')(COEF0)-'J'(dwl Wl —(1—w)éi w0t (1-wh)ds ¢._‘>

Tiyl — X4 Ti — Ti-1
¢ — i — o bio1 — iz — &F
t -1 ( Ti— Ti— "o ¢ 2:.'—1(;'5— 12;‘—2¢ ) }/(Iiﬂ _zi_l)
¢t - ét,
= (7 + 1) (¢o..);; {Tx.:}

1 fj+1+f,> i ay
* ((F)j(f'j+1 - fj_l)) { (FH_I -7 (¢)+1 45] )
Fi—Fiot N+ _ 3+ V| Z rus.
- (f,-+1 - ,:1._1> (¢j ¢,_1) } = RHS;;

(2 — 57a)
v _ )20y +1)do,by 2z 8mbyBo )
(RHS),; = { Ko + o, (7 +1) K, + TR - K, ., (2-5Tb)

ij

(COEFy),; = (Ko ~ (v + 1)¢0.);; (2 —57c)

and
i = {0, for COEFy,; > 0 (subsonic flow) (2 — 57d)

1, for COEF,; < 0 (supersonic flow)

Here, (RHS);; is the discretization of the forcing terms in (2 — 47a), w is a relaxation
parameter chosen such that 1 < w < 2, the plus superscripts signify current values, the
quantities without plus subscripts denote values from the previous sweep through the flow
field, quaatities with ¢ subscript only, have j suppressed, and j subscripted entities have
i suppressed. The structure of (2 — 57) is similar to that for the free field dominant and
finite height (fully nonlinear) problems with the following exceptions:

1) For the nonlinear problems, a factor analagous to COEF,, COEF appears, involv-
ing the actual dependent variables rather than a known quantity, giving a nonlinear
difference equation rather than the linear form (2 — 11).

2) Eq. (2 — 57a) contains a first order linear contribution and a right hand side (RHS);;
absent in the nonlinear free field and finite H problem.

3) Artificial damping has been used for the nonlinear problem but may not be required
for the linear one.

4) (COEF), by its nature is frozen in pseudo-time, whereas COEF is constantly being
updated using time linearization with ¢, given by its value at the previous sweep
(time level).

5) Additional boundaries associated with the zero'" order shocks are required in the é
problem across which the perturbation shock conditions need to be satisfied.
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Note, for bodies with pointed tails, Eq. (2 — 57b) specializes to
(RHS)i; = 8wboBo(7 + 1)(¢0..);; - (2 - 57%)
The tridiagonal system for ¢ j is then

B;i—1 + qu;j + Aj$j+1 =C; , 3j=23,---,JMAX -1 (2 — 58a)

_ N COEF, 1 1 _
D= —2{ (1= #U)( w ).-,- ($i+1 - * Ti— 1':’—1)

_u,-_l,,-(COEFo)'__l’j( 1, )}/(x,-ﬁ—z.»-n) (2 - 58b)

Ii— Ti-1 Ti-1 — Ti-2

O+ (4o..)i; 1 {fj+1 i Tt Fi-1 }
Ti — Ti-1 Fi(Fjer = T5-1) | Fip +75 75— 7
. ('P’*'P’“) (2 - 58¢)
7 (Fj+1 — Fi-1) \Fj = i
l - -~ .
Ay = et (f’“ + ”) (2 - 58d)
75 (Fie1 = Fj1) \Fj — 7

Cj=—2{(1—uaj)(COEFo).-,-< e — 20 p———

o4 At A b 5t
_— (¢u + ¢, + é_1 — &i 2) } (4 1)(¢0==)ij {;—4&'—;_1} + (RHS),;

Ty —Ti-) Ti—1 — Ti-2 i = Ti-

$it1 — (L-w1)4s (1w - ‘;?—1)

(2 — 58¢)
At the body, 7 = 2, and the previously indicated boundary condition, ¢;, = 0 implies
D, =D}>* 4 L (2 — 59a)
T2T3
B,=0 . (2 — 59%)

Also, A; and C, take their specialized values at + = 7, (with 7} = 0).

In (2 — 58) and (2 — §9), the u,; are designed to provide the necessary type sensitive
switching and implementation of Murman'’s shock point operator defined in Ref. 35. This
behavior is essential not only for the zeroth order solution but the variational one as well.

Subsequent sections will describe the scheme of shock fitting that interacts with the
difference equations (2 — 58) and (2 — 59).

2.9 Finite Height Application of Zeroth Order Code

As indication of an application of the zeroth order part of STINT25 calculated by
RELAX1, an equivalent body of revolution representative of a transonic/supersonic
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blended wing fighter configuration was computed in a solid wall wind tunnel. The cross sec-
tional area progression of the model is indicated in Fig. 10 which shows curvature changes
associated with such geometrical features as wing-body intersections, canopies, and inlets.
One purpose of this study was to explore aspects of the application of the code to realistic
airplane geometries.

0.12 x 10° ~

0.9 x 104}
N
£
= 0.6 x 104
x
w

0.3 x 104

0.0 | i | | [

2200 0 200 400 600 800 1000
X (in.)
Fig. 10. Area distribution of blended wing fighter configuration.

As an indication of the flow environment for subsequent wall interference studies,
Fig. 11 shows the pattern of isoMachs over the configuration associated with Fig. 10 in a
free field at M, = .95. These results could be practically obtained using the nonlinear
analoguc of the difference method associated with Eqs. (2—57)-(2—59) on a VAX computer
in a CPU limited Fast Batch or interactive environment. The grid utilized 194 points in
the z direction with uniform spacing over the body and logarithmic stretching ahead
aud behind. In the 7 direction, a similar geometric progression spacing was used with
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50 points. Nominal convergence* typically was achieved between 500 to 1500 sweeps, with
more sweeps required at the higher transonic Mach numbers.

2/15 —

~

r 1/15 p-

0 i
—-4/3 -2/3 0 2/3 4/3

X

Fig. 11. IsoMachs over blended wing configuration in free field, M, = .95.

The complexity of the flow structure evident in Fig. 11 is to be associated with the
multiple inflection points of the area progression and the possibility for envelopes to form
in the steeply inclined wave system. In Fig. 11, a shock is formed near about % of the
body length from such an envelope process.

Figures 12 and 13 illustrate the Mach number and surface pressure distributions at
the same freestream Mach number for the free field environment and a solid wall confined
case. To obtain a nominal simulation of the free field, the upper computational boundary
J = JMAX was placed at H ~ 1.3 and homogeneous Dirichlet conditions were imposed
there. Homogeneous Neumann inflow and outflow conditions at £ = +o0o were also pre-
scribed. For the solid wall simulation, H ~ 0.66 was utilized. Homogeneous Neumann
conditions were used at j = JMAX and Eq. (2 — 9) applied at z = o0.

* Defined as mMax 1<i<IMAX | ¢.+J - &ij |= 1075,
13 IMAX
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LOCAL MACH NUMBER

M

Xit

Fig. 12. Finite height solid wall interference effect at M,
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ERRMAX = 0.00004
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HOMOGENEOUS DIRICHLET
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H = 0.66 "CONFINED"":
FREESTREAM PERTURBED
ERRMAX =0.00008
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= .95 on blended fighter con-

figuration equivalent body — Mach number distribution over body.
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Fig. 13. Finite height solid wall interference effect at Mo, = .95 on blended fighter con-
figuration equivalent body — surface pressures.
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From the figures and in accord with simple one-dimensional gasdynamic reasoning,
the constrictive effect of the solid walls is to exaggerate the effect of stream tube area
changes associated with body area changes.

An experimental validation was performed of the Oth order solver RELAX1 based
on one of the variable blockage ratio tests of a blunt nosed model {B-3) in the Langley
8 and 16 foot tunnels, reported in Ref. 36. The test section was slotted and slatted as
well as uctagonal in shape. For such a blunt body which locally violates small disturbance
tiieorv. the agreement with the data is surprisingly excellent as shown in Fig. 14. For this
comvasison, the special improved accuracy boundary discretization proced-uc described
in the next section was used. The quality of the comparison is believed to be partially
attributable to this improvement.

2.1n  Imrproved Accuracy Procedures for Numerical Treatment of Rcdy Boundary
Conditions

In the finite wall height application of the code, the interference pressures are com-
puted as the difference between the confined and free field pressures. The numerical trun-
cation error is a larger percentage of this difference than of either of the former quantities.
This fact puts a greater demand on numerical accuracy than has beer. stressed in state of
the art codes. Accordingly, all error sources were evaluated. Some items considered within
an incompressible and subsonic framework were:

1. Accurate treatment of boundary conditions on axis of equivalent body.
2. Proper application of upstream and downstream far fields.

3. Need for double precision on shorter word length computers such as the VAX to handle
high frequency errors propagating on fine grids for large iteration counts.

4. Treatment of nose and tail singularities.

The techniques apply directly to the transonic case. Moreover, study of subsonic flows
is particularly useful because of the availability of closed form analytical solutions to check
the numerics.

The second of Figs. 8 shows the subroutine RELAX1, which solves the tridiagonal
system representing a discretized approximation of the transonic small disturbance partial
differential equation of motion (TSDE) (2 — 5a). It contains a special procedure which
deals 'vith the boundary conditions. These are satisfied by incorporating the condition
of flow tangency at the body into the discretization of the vertical perturbation velocity
flux gradient. In the nonlinear difference equation for the free field flow (2 — 57a), this
corresponds to an approximation fulfilling the role of the terms in the braces on the left
hand side near the equivalent body of revolution (EBR) line of symmetry, (z axis). One
scheme employed is associated with Egs. (2 — 59a) and (2 — 59b).

Figure 15 is a schematic representation of the nodes relevant to the boundary points.
In the finite height case, this treatment is made more difficult because the perturbation
potential is logarithmically singular as the scaled radial coordinate tends to zero. Existing
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Fig. 14. Validation of RELAX1 code against Couch experiment, B-3 body, M = .99.
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free field codes familiar to us do not properly deal with this singularity. Whereas this
limitation may be of moderate consequence to the prediction of free and confined vrecs .res,
in accord with the previous remarks, it is absolutely crucial to the treat:.....- of interference
pressures and testing of the variational equation solver. Accordingly, attention was given to
the development of a scheme that accounts for the singularity in the boundary treatment.

T
4
j=3 O
3 x
2 O
2 x
1 O- + X

Fig. 15. Nodes in vicinity of axis.
Referring to Fig. 15, the discretization of the third term,

T =2 (7o,); » (2 - 60)

S|

in the TSDE will now be discussed. This is the vertical flux gradient previously indicated.

Shown in the figure are the first 3 (j) vertical node points as well as 1 node points. If

2
75,3 =1,2,---, JMAX represent the j mesh points,

riv1/2 = (rj+1 +715) /2, (2 - 61)

we consider (dropping the subscript zero on ¢ and the tildes on r), the discretized version
of T =Tj, given by

5={10s. } - (2~ 62)

j
Using the half node points in the vicinity of the r axis

T =t (rér)ssz — (rér)ay2
2 = — .
r2 Tsj2 —T3/2

(2 - 63)
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The essential new idea is that a “regularized” version ¢ of the perturbation velocity po-
tential ¢ is introduced, where

¢¢’()

S'(z) = streamwise (z) derivative of the EBR area progression.

(2 — 64)

The logarithmic singnlarity is represented by the second term in (2 — 64). Numerical dif-
ferentiation of ¢ in the r direction is then accomplished by differentiating ¢ as the suw
of a numerical approximation of its regular part and an analytical evaluation of the loge-
rithmically singular coriponent. The truncation error which would have normally become
large due to the infinity on the axis will be substantially reduced using the differentiatiorn.
of the linear polynomial representing the bounded quantity ¢.

In accord with these ideas, the terms in (2 — 63) can be evaluated as follows:

(rs+72) | é3— o S'(z) _(r3s+12) é3 — b2 S'(z)
(r¢,)5/2 2 { T3 — 1o + 2n(rs + 7‘2)/2} - 2 ( ) + 2n

_(r3t+r2) {¢3 — ¢2 — %,,ﬂlnfa/rz } 4 S'(z)

r3—T2

2 r3 —ro 27
(2 — 65a)
- S'(z) - S'(z)
(rér)3ye = "3/2{¢r 32+ v /2 } =r3/2¢r o + =
) (2 — 65b)
(ra4+m1) | 62— lnrg —g(z) S'(z)
= +
2 7‘2 -r 27
where the fact that s/
¢~ 27::)lx1r+g(:z)+--- (2 - 66)
has been used in (2 — 65b). Noting that ry =0, and collecting results,
p _ (ratre) [ 85— - 111"3/"2]
2 —
r rs — Tg (2 _ 67)
17. 9
-— {cﬁg - (a:) Inry — g(:z:)]
Accordingly, the tridiagonal systexn dlscretlzmg TSDE
Bj&j.-l + D,‘(];,‘ + Aj(}gj.g.l =C; , j=112,---,JMAX
at j = 2, has in accord with (2 — 67),
B; =0 (2 — 68a)
Ay = A%, (2 — 68b)
D = D)?|j= (2 - 68c)

, 1 '
Cz=C}>2|j=2+ {S(:z:) Tstra,C

3
orrara | 27 |ra —ra In e In T2] - g(z)}. (2 — 68d)
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In the computational implementation, g(z) is initialized as zero and then updated each
iteration using (2 — 66). For (2—68d), g(z) is “time linearized” from the previous iteration
without relaxation. As an additicnal refinement, it is useful to note that the three dots

in (2 — 66
n : _ 8"(x) r?lnr ﬂ
T o 4 4

in incompressible and subsonic Prandtl Glauert flow, and is an O(S"(z)r? In? r) expression
at transonic Mach numbers. The updated g is computed using linear extrapolation as

9(z)=ts— (b= ). (2-69)

Numerical experiments show that this produces results equally acceptable to those from an
asymptotic approximation based on previously mentioned higher order terms proportional
to $”(z) when §"'(z) is known analytically. For tabular S(z) input, the linear form (2—-69)
is preferred due to significant errors possible in obtaining $"'(z).

This scheme was applied to treat incompressible flow over a parabolic arc of revolution
body, in the free field and confined by solid walls. The normalized radius F' which is given
by

F(z) =2z(1 — z) (0<z<1) (2 —70a)

gives the cross sectional area,

S(z) = nF? = 4nz®(1 - 2z + z?) . (2 - 70%)
Thus
S'(z) = 8m(x — 32% +22°) . (2 - 70¢)
Now, in the free field,
_ S'(2) 1 1 156 -S"(2)
9(=) = 4n In 4z(1 —z) 4n /o |z — €] @ (2-7)
which for (2 — 70a) specializes to
g(z) = 2z(1 — 3z + 22%)In ——— + 4 5 _99p? +8.’t—l (2 — 72a)
4z(1—-z) 3 3
g'(z)=2(1-6z +62%) {3 —Indz(l —z)} +6 (1 — 6z +62%) . (2 —72b)

The corresponding confined solution is given in Ref. 37.

2.10.1 Results

Figure 16 gives a comparison of VAX 11/780 application of the finite height code run
in the free field to the exact solution represented by (2 — 70a). The vertical (¥) grid was
developed with logarithmic clustering. The clustering parameter SA provides a uniform
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grid when SA = 1 and progressively greater clustering near the z axis with increasing SA.
For Fig. 16, SA = 1.0001 (almost a uniform grid) was used to compute g. (The function
g'(z) is an important term in the expression for surface pressures.) Reasonable agreement
with the exact solution of Eq. (2 — 72a) is indicated with this grid selection as well as
iterative convergence.

Figure 17 demonstrates the effects of changing the clustering parameter SA to 1.1 and
mesh convergence. Improved agreement with (2 — 72a) is demonstrated as well as good
convergence with respect to the mesh size. In fact, it is clear that acceptable accuracy
is obtained with au intermediate 100 x 50 (100 points in the z direction and 50 in the r
direction) grid, as compared to the fine 200 x 100 grid.

Turning to ¢'(z), Fig. 18 shows an iterative convergence study on the almost uniform
vertical grid configuration considered in Fig. 16. Although excellent convergence (in the
mean) to the exact solution (2 — 72b) is indicated, oscillations are present. 1'wo 1tems
were investigated in connection with this phenomenon. One involves the relatively short
word length available on the VAX and its interaction with roundoff propagation present
in the successive line overrelaxation (SLOR) method. If p indicates the “chopping” error
associated with this word length restriction, there is an adverse effect of mesh refinement.
Letting 6z and ér represent characteristic step sizes in the z and r direction, respectively,
the roundoff error is O(p/ézér) as éz,6r — 0. Therefore, p was reduced by a double
precision modification of the finite height code. Returning to SA = 1.1, Figs. 19 and 20
indicate the benefits of this change, where the single precision oscillations of Fig. 19 are all
but eliminated by the double precision algorithm as shown in Fig. 20. There is, however, a
latent inaccuracy in the vicinity of the nose and tail stagnation points. From an asymptotic
approximation of (2 — 71) in the vicinity of the nose,

N S'(z) In

r
9(z) =~
20 9 le+vaT+r2)?

A similar formula with = replaced by 1 — z applies near the tail. The procedure asso-
ciated with Eqs. (2—67) and (2 — 68) must be modified to handle the special z “boundary
layers” near z == 0 and 1. This not only involves subtracting off the associated logarith-
mic singularities, but incorporating refinements in the interpolation procedure as well. As
mentioned previously, these improvements are important in obtaining an adequate predic-
tion of the interference pressures. Computations of the latter without such measures are
shown in Fig. 21 for a 100 x 50 grid. There, the streamwise distribution of the normalized
interference pressure AC, with

as z,r — 0. (2-173)

52

= —2Ag' y A( ) = ( )tunnel - ( )free field (2 - 74)

is plotted, where A signifies the difference between confined and free field distributions at
a value of the reduced height parameter H (wall height in units of the body length) ~ 1.1,
and ¢ is the body thickness ratio. Although qualitative agreement with results of Ref. 37
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Fig. 16. Iterative convergence study of g.
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Fig. 17. Mesh convergence study of g (DASH2 legend is the dash—dot curve).
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Fig. 18. Iterative convergence study of g'(z).
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are indicated, it is speculated that the miid oscillations shown in Fig. 20 near z = 0 and 1
are aggravated by the interaction of the close solid walls and the logarithmic singularities
at these points given by Eq. (2 — 73).

2.11 Shock Fitting Scheme for Wall Interference Correction Potential

In Section 2.9, runs were discussed of the finite wall height code option associated
with a realistic compact blended wing fighter configuration. This code has been designed
to incorporate the proper source like irflow and cutflow boundary conditions associated
with solid walls. In addition, d'fference schzmes were developed for the large height theory
formulated as the problem P1 in Ref. 20. The variational equation solver uses a special
procedure to treat shock jumps in the solution for the wall interference correction potential
é. The shock polar relating these jumps to the streamwise and transverse derivatives of ¢
are given as Egs. (2 — 40) and (2 - 11).

Figure 22 shows the relationship of the geometry of a typical shock structure arising
in the ¢ prcblem and the grid. As one choice among various options, also considered in
connection with the high aspect ratio code discussed in Section 3, the finite difference im-
plementation will satisfy the shock relations across PO by surrounding it by the internal
boundary condition carrying “notch” ABCD. The contour of this notch is composed of
lines parallel to the 7 and z axes. It is presently felt that this selection provides substantial
coding simplifications as compared to another option involving a curved internal boundary
not parallel to the axes. A disadvantage of the notch scheme is that it can diffuse the shock
somewhat beyond the few mesh points necessary to capture it in the zeroth order approx-
imation for the perturbation potential. However, this additional spreading is provisionally
assumed to be small, since the cases of primary concern will involve almost normal shocks.

Referring to Fig. 22, the strategy to be applied is to determine shock jumps in é at
the various j levels [ ] = J(NSPMAX, j) - ¢(NSPMIN,]) as a vector sequence

lim J,=J , (2 — 75)
n-—00
where J,, denotes the vector ([é]l, [é&]z, [43]3, cee [&]JSMAX) at the n*® successive line over-

relaxation (SLOR) sweep. The iterative sequence (2 — 75) is required since J is coupled to
the solution field ¢.

In the implementation, J is the solution of a bidiagonal or tridiagonal system which
is solved by recursion. The coupling of ¢ is nonlinear through the coefficients appearing
in the system. Accordingly, a linearization in pseudo-time involving the values of ¢ at the
n — 1 level has been coded. The new values of J are then used for the tridiagonal system
along = = z, lines to update the j row vectors along & along r = z,; on the next sweep.
The process is iterated until convergence is obtained.

Differencing the jump conditions (2 — 40) and (2 — 41) gives

a;[w1]; +bi(wr) + ¢j[va] +dj[d1] =0 (2 — 76a)
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Fig. 21. Interference pressures on a confined parabolic arc body. H ~ 1.1, 100 x 50 grid,
1200 iterations.
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Fig. 22. Schematic of shock fitting geometry for wall interference correction potential.
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where ( ) signifies an average across the unperturbed shock, and

aj = (K — (v + 1uo) [uo)” — [vo)’ (2 — 76b)
b; = [K — (v + L)uo] [wo)” (2 — 76¢)
Cj = 2[‘00] [UQ] (2 - 76d)
l.lj = Ll_)o_]_[l_io_,]_ - 2[‘00] [‘vo‘] - [(K - (‘)’ + I)UQ)UOI] [‘U.o] . (Z - 766)

(o)

Using the shock wuotch idea and assuming without loss of generality, a single shock is i the
flow (fishtails for Mach numbers near unity and choking may require special treatments),
denote the points in the shock notch as:

INSPMIN, TNSPMIN+1; TNSPMIN+2, ***» INSPMAX (2~-17)

where znspmiN < zh; and TNspMAX 2 TEj, and Zyj, zg; denote the upstream and

downstream locations about the shock at each j, or the last hyperbolic and first elliptic
poiuts, respectively.

In more compact notation, let superscripts — and + denote the pre— and post-shock
sides of the notch, respectively (NSPMIN and NSPMAX) and let s indicate the shock as
well as [¢1]; signify the jump of ¢, at j. Then

() = T he (2-78)

uf, +u, 1|11 — 95, = [A1] | b1, = ba1
2 2 +

Top1 — 7 Ty — Tem1
where the ¢ and j subscripts have been selectively suppressed.

Substitution of Eq. (2 — 78) into Eq. (2 — 76) gives the following bidiagonal system
of equations for {¢;| noting that (i;) = (u;) — C, where C = 2x%B
quations for [¢1]j g ( 1) = 1) v 4

.. C;—B;[¢].
["’]f“]—TJ,.U_’—i , 3<j<ISMAX (2 - 79a)
c; a;+b;/2
D; =dj+ 77— =3 2= (2 ~790)
sz_% (2 - 79¢)
ey [ d
J J Azp Azy

(2 - 79d)

b (3520884
Azp Az,
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where A = 7; — 7;_,, U signifies znspmin, D signifies tnspmax, Azp = Tpyy — 2D,
Azy = zy — zy-1, n is the current time level and n — 1 the previous level.

In one version of the variational solver, central difference approximations are applied
to the discretization of the v components in (2 — 76), leading to the use of a tridiagonal
Thomas algorithm. The bidiagonal formulation results from one-sided differences. If the
recursion proceeds downward from the top of the shock notch, it is unstable. At the top,

[&1] is determined from the fact that it is a body point. Section 2.16.1 provides more
information on the upward bidiagonal recursion scheme represented by (2 — 79a).

For a tridiagonal formulation, there has been an issue regarding the appropriate
boundary conditions at the foot of the shock, assumed located at j = 2. Since ¢ (the
finite wall height perturbation potential) and ¢¢ are logarithmically singular there, there
is a question regarding the behavior of [¢;]. This appears to be resolved by the fact that
$1,(z,U) = 0. Hence, [¢1,] ~ 0 at j = 2. Moreover, in the finite wall (H) case, since

"o
g (z)

(2 - 80)

- Infasf—0 |,

then the limit 7 | 0, z fixed = z~, z+, where — and + denote the upstream and downstream
sides of the shock, respectively, with S’(z) continuous at the shock gives

[¢i] =00 —00=0 . (2-81)

Another approach is to multiply the jump equations by 7 and note that [¢;] = [ré;]). This
avoids the infinities in Eq. (2 — 81). The relation [¢;,] = 0 implies that

[#1], = [#1], - (2-82)

Equation (2 — 82) is used to find the interference potential on the body.

A related problem was studied in Ref. 38 in regard to the invariance of the shock
position on a body of revolution in transonic flow. Some aspects of this question and
conditions near the foot of the shock are discussed in the Appendix.

2.12 Determination of Second Term of Central Layer Large Height Expansion

For the numerical work, the asymptotic expansion of the velocity potential & in the
near field of the test article is given by (2 — 31). The constant ap related to ay in that
expression given by

(2 - 83)

ap = = - =

_ap/Ke 1 [ 1 EKi(k)
oamE R E mk)}""‘

has been numerically determined. This result gives an indication of the small H elasticity of
large H theory, a small value being suggestive of extended validity, as in the incompressible
case treated in Ref. 37.
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Although the integral in (2 — 83) converges, the convergence is numerically poor on a
uniform grid due to an integrable logarithmic singularity associated with the ratio of the
modified Bessel functions at the lower limit.

To improve convergence, the asymptotic behavior of the integrand

k
————2———1n§ as k—0 (2 —84)

?--
[+
[
—
-
RA
p
o

was subtracted and added to regularize the integral to provide the modified expression

201 Kyk) 1k 1 Ki(k)
2, alet Zlp — — —
Tlag = 1+/o (k2 A0 + 2ln 2)dk+j£ (k2 2I1(k)) dk (2 —85)

where k) is assumed to be sufficiently large.

The adequacy of (2 — 84) on the interval 0 < k < 2 is shown in Fig. 23. A good
comparison between the left and right hand sides of (2 — 84) is indicated. In Fig. 24, the
second two integrands are plotted. The decay of the Bessel function is rapid, indicating
that a k; of 10 is quite sufficieni for a practical evaluation. Figure 25 indicates the rapid
convergence of the trapezoidal rule over a uniform grid giving the desired value of ag and
bo as

ao = 0.129558

1 .
b= / k2K (k) T{k)dk = 0.063409

The small magnitude of ag is consistent with the extended validity of the theory for mod-
erate wall height hypothesized earlier.

2.13 Structural Aspects of Slender Body Code

A great degree of flexibility has been built into the finite and large wall height codes,
hereinafter referred to as STINT25. Logical variables have been introduced so that the user
can treat incompressible, linear, and transonic flows within the same code by merely chang-
ing a NAMELIST file. For ensuing checking, parametric studies, and running economies,
provision has been made to start either the free field, wall perturbation parts of the code
independently or run the latter serially after the former. Furthermore, both codes can be
restarted from a previous solution. Finally, considerable diagnostic I/O has also been built
into the codes.

In addition to this logic, a procedure has been conceptualized which can be useful
in obtaining a sharper resolution of the shocks than possible in the previously described
(“upright”) shock notch method. Referring to Fig. 26, the shock is considered to consist
of subarcs of the type shown as 1 and 2 in the figure. In the blow—ups of these regions,
these negative and positively sloped portions can be considered in terms of the proper
difference formulas for the determination of the jump of the vertical component of the
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perturbation velocity [vl]. The actual relationship of the points is shown in Figs. 27a-
27¢ which indicate a bubble over a parabolic arc body at Mach .99. The main idea is
that depending on whether range 1 and 2 is encountered, an upward/downward one sided
difference combination or the reverse is used for obtaining [vl]. A tridiagonal system
for the jump in the wall interference potential will be obtained in this scheme rather
than the bidiagonal system associated with the shock notch method. However, this slight
disadvantage could be outweighed by thLe potential for improved accuracy.

2.14 Incompressible Validation of Interference Module RELAXV1

The large height interference (var.ational equation solver (RELAXV1)) code was
tested to establish whether it could provide answers in agreement with the analytical ones
given in Ref. 37 for incompressible interference pressures. As an illustration, the flow over
a confined parabola of revolution war considered. Here, the confining walls are solid and
cylindrical. Figure 28 indicates the free field surface pressure distributions computed by
an incompressible specialization of the finite height code. It is shown to indicate the stag-
nation (logarithmic singularities) resolved by the SLOR method in 300 iterations. Further
study is needed regarding how the numerics treat the interactions of these singularities
with the walls.

For this case, the RELAXV1 portion of the code comparison with analytical results
from Ref. 37 is shown in Fig. 29 indicating perfect agreement.

Of great interest is the convergence of both the free field (RELAX1) and RELAXV1
parts of the code. During checkout, considerable study of factors influencing this per-
formance aspect was made. Figure 30 illustrates one such investigation which shows the
convergence of the algorithm with number of iterations for free field pressures at different
points along the parabolic body of revolution iu incompressible flow. It is evident that at
this speed condition, adequate convergence is achieved in about 500 iterations. A lesser
number of iterations may be needed if a “smarter” than zero initialization is used.

2.15 Transonic Application of Free Field (0*® Order) Code

The numerical formulation indicated in previous sections has been applied to obtain
an understanding of wall effects on slender bodies. Results will be discussed for a flow over
a parabolic arc body of revolution as an illustration of the behavior of the wall interference

& field.

For the calculations to be discussed, a uniform z-grid over the body (in the interval
0 < z < 1) and an exponentially stretched version off of it was employed. Exponential
stretching was also used in the 7 direction. These variable grids are shown in Fig. 31.

Before discussion of the interference field, the structure of the free field base solution
will be indicated. Figure 32 shows that the numerical solution tracks the analytic behavior
$0, reasonably well. Considering that the mesh for this case had a large aspect ratio near
J = 2, improvements could be obtained by configuring the grid to make the aspect ratio
approach unity.

60




AEDC-TR-91-24

N

RANGE 1

RANGE 2
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As an illustration of the use of the code for high subsonic Mach numbers, Fig. 33
shows the streamwise distribution of local Mach number at a freestream Mach number
Mo = .99 over a fore and aft symmetric parabolic arc of revolution of thickness ratio
6 ~ 0.1. In the interval 0 < z < 1, the highest curve corresponds to 7 = 2 and subsequent
lower curves are associated with upward j increments of 4. The dashed line denotes the
position of the sonic line and shock. The far field computational boundary for the free field
was at 7 ~ 5.5 ia thes. calculations. It is clear from these results that the sonic line height
is approximately 7 ~ 0.2. Further results consistent with these are shown as the isoMachs
in Fig. 34. A good, sharp shock formation is indicated in this figure. In Fig. 35, the shock
layer structure is indicated. This is of relevance to the use of the shock notch method.
From these level lines, it is evident that the shock is almost normal. This is confirm«d
from the vy distributions shown in Figs. 36 and 37, where it is clear that [vo] ~ 0. This
leads to simplification of Eq. (2 — 40b) which is the perturbation form of Prandtl’s normal
shock relations, i.e.,

= ug (2 — 86a)

[uo] (1)
(uo,)

where uj is the critical value of the perturbation velocity wug. As a check,
Egs. (2 — 86) were computationally implemented and the results were close to those ob-
tained from Egs. (2 — 79). Figures 38 and 39 indicate the uo distributions. Figure 39
shows indeed that Eq. (2 — 86a) is closely satisfied by the computational solutions. In
related work, a hypothesis suggested by C.C. Wu concerning the invariance of the shock
wave intersection with the body was analyzed in Ref. 38. Because of the structure of the
near field, this hypothesis asserts that the intersection occurs at a zero of $”(z). Numer-
ical studies such as those discussed give partial but inconclusive evidence to support this
assertion*. More detailed fine grid studies are required to resolve the issue.

6] = (2 - 86b)

To appreciate the rate of decay of the solution and the subsonic nature of the far
field, Figs. 40 and 41 give three-dimensional reliefs of ¢¢ and ¢o,,. For pointed bodies,
the forcing term of the wall interference (variational equation) is proportional to the latter
quantity. The subsonic structure of the far field is consistent with the assumptions of the
formulation given in Ref. 29.

2.16  Further Remarks on Difference Schemes near Shock Notch

2.16.1 Bidiagonal Approach

In connection with (2 — 40a), and flow tangency, if

[vo] =0 (2 ~ 87)

* Some aspects that relate to this are discussed in the Appendix.
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is assumed to hold beyond the weaker condition, then Prandtl’s relation for normal shocks
is obtained in which
[¢1} (Uo,>

uy) = ——— 288
() = <5 (2 - 88)

where ( > signifies an average across the unperturbed shock. Equation (2 — 88) can be
used as a check on the numerical work.

In the bidiagonal scheme of treating (2 — 76a) embodied in Egs. (2 — 79), one-sided
differences were used to approximate the vertical perturbation velocities. This leads to the
recursion relation in (2 — 79a). It is clear that the solution of (2 — 76a) proceeds forward
from some initial condition associated wiik a specified j. Two options are available for this
purpose. Employing the tangency boundary conditions at the body constitutes Method 1,
and utilizing the top of the shock reprcsents Method 2. Method 2 was first selected due to
the seeming irability of originally assurned Neumann data at j = 2 to provide the needed
Dirichlet data for the starting point. One problem with Method 2 is the possibility of
inaccuracy in prescribing the location of the tip of the shock. Method 1 can be modified
to employ (2 —88) instead of Neumann data at the node closest to ¥ = 0, j = 2. This gives

e=1)  n) n s(n;
ol {m‘w o | '—m_u}

2 Azp Azry

o], = (2 - 89)

2.’;‘:[) + <u03>

A useful device in the implementation of the bidiagonal scheme (2 — 79} and (2 — 89) is
the relaxation

8] =w[d]™ + (1 ~-w)[g]" " . (2 - 90)
The quantity {vo,], in (2 — 89) is obtained from the zeroth order solution.

The stability of the recursion scheme based on (2 — 79a), (2 — 88), and (2 — 89) has
been investigated. A tool employed is an analytic solution which has been obtained by
variation of parameters. Letting X; = [é,]j, this is

=B

. T (=B = —Cx
‘X]-:H<T)?—> X1+Z—E:-(—'—) ) (2-91)
=1

where the products are unity when the upper limit index is unity. A necessary condition
for stability therefore is
By

) 2-92
D, <1 ( )

We have achieved global convergence with the bidiagonal scheme with marching away
from the body using Method 1, providing that we use a stabilized converged free field
solution and a fresh start for the interference flow.
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2.16.2 Tridiagonal Methodology

The thrust of this approach is to use second order accurate central difference approx-
imations for the vertical differences rather than the first order one-sided differences of the
previously described bidiagonal method. Employing half node points, the vertical velocity
v 1s given by
Yl T 0140

vy, = ¢y = 9
P14, = A1, ¢,y . (2" 93)
v",'+1—7-‘,’ r",'- 7_‘___:

2

An additional benefit of this approach is consistency with the treatment of the interior
nodes of the computational domain. Equation (2 — 93) leads to

[¢1],’+1 B [¢l]j N [¢1],' - [¢1]j—1

2ln| = — — — — . 2-9%
[ 1] Tj41—T; L B Y ( )
On the basis of (2 — 94) and (2 — 76a), it follows that
where
4= (2 — 96a)
77T 2AFj4
g S 1y 1 b _
Di=di-5 (Af,-ﬂ * Af,) Azp (“’ *3 (2 - 96b)
..
Bj = — = 2 - 96
! 2AR,; ( c)
i(n-1 in i(n i
P ) A R
’ ! Azp Azy
b, ($50) -8 8- o,
% o
+3 ( Aot Am +C (2 - 96d)
By (2 — 89)
Ay =By =0 (2 — 97a)
D: =1 (2 — 97b)
[1o] {%";:’—4’2"’ N ¢‘U"’—¢§,"_’1}
2 Azp Ary
' Cz = : (2 - 97¢)

Lol 4 ()
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At the top of the shock notch 7 = JSMAX, [¢A1] = [q.‘:l]l, where [451], 15

SNSPMAX — qASNsleN computing this difference as an interior point calculation. Then
Djsma.r =1 (2 — 98a)
Cismay = [¢], . (2 — 98b)

Equations (2—95)-(2—-98) constitute a tridiagonal system which can be cnlved by the same
Thomas method employed for the interior nodes. The scheme has been computationally
imp.ermented and its performance relative to the bidiagonal approach i au open question.
7

2.17 Definitions of Interference-Free Conditions in Wind Tunnels from Asymptotic

Slender Body Code

Rewriting (2 — 24a) slightly, the variational equaiion for he interferendc perturbation
potential ¢y is

) . , , 1 .
M[61] = (Ko = (v + 1)60,)é1.. = (1 + Dor,cu,. + 3(ré1,), = ~Fa F(z,7) (2 99)

with the boundary conditions
$1,(2,0) =0 (2 — 10Ca)
o, ~ b{,Rng(cosw) + 87bgBoRcosw + -+ - (2 — 10Cd)

as R — oo, and the shock relations, where £ = ¢;__, R and w are spherical coordinates, the
constants by, by have been defined previously and P;(cosw) denotes a Legendre Polynomial.
In shorthand notation, Eqs. (2 — 99) and (2 — 100) can be represented as the problem P,
in which

P:

M) = -K\F (2-99)
B[4:] = G(x) . (2 - 100"

where B is the boundary condition on the union of all boundaries including the free field
shock traces. With the decomposition

é1 = ¢n+ ¢p ’
the problems for ¢, and ¢, can be represented as

Pa:
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M[¢r] =K F
B[d’p] =0

Since M is a linear operator, ¢, = K, ¥, where ¥ is the solution of P, with K; = 1. Thus,

oy = o+ KLV
If
gz, K) = ¢1(2,0) ,
then
g1 = g1, + K1 ¥ (x,0)
so that for a specific shape, since the normalized interference drag AC?;; = ADES =
2

fol g;S'dr,
= ~ {(R=0)
ACH - ACH T (Ko, 4)
I,

_ 1
=—‘f(]\'o,-4)5/(; S'(z)¥,,(z,0)dzr

where A = a/6 in the notation of Ref. 29 is the angle of attack parameter, and S is the
nonnalized cross sectional arca.

With the universal relation above, the curves of Aé;; versus K are linear, as schemat-
ically depicted in Fig. 42a, and can be determined once and for all for arbitrary K, from
the solution of the Proolein P, for K} =1 for a given Ky and A.

Because of the linearity with K as indicated in the previous relations, the value of
K, = K} leading to an interference—free drag measurement can be determined explicitly
from the universal relation as

Kr = _Ecglzm(l"""” . (2 - 101)
! f(Ko. A)

Plots of K} are shown schematically in Fig. 42b. Here, K| represents the necessary
perturbation of the tunnel <imilarity parameter to simulate conditions leading to zero
interference drag.

2.18 Determination of Interference-Free Flows

In the preceding sections a formulation of the slender body wall interference prob-
lem in which the tunnel similarity parameter is allowed to vary to achieve minimum to
interference—free flow is formulated. During the contractual effort, a computational so-
lution has been obtained representing a proof of the feasibility of this concept and also
validating the mathematical demonstrations of linearity of the interference drag ACp and
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the tunnel similarity parameter K, given in Section 2.17. Figure 43 represents the result
of actual calculations corroborating the analysis of the previous section for the Mo, = .99
flow over a parabolic arc of revolution body of thickness ratio = .1. The calculations and
figure demonstrate that interference-free drag conditions can be achieved in this case at
a tunnel similarity parameter value K; = 0.14166. Additional studies concerning surface
pressure distributions can be performed in which Ry can be optimized to achieve a min-
imum, for example. in at least a mean square s<.se, of the interference pressure. To our
knowledge, these are the first results of this type to be obtained.

As an approximation of the numerical approash based on the bidiagonal and tridiag-
onal shock jump conditions, a simplified scheme as been investigated. It is based on the
approximation that for slightly subsonic free strearn Mach numbers the shock is normal to
the flow along its le _gth. This leads to the zeroth order Prandtl relations

(vo(go-,7) + uo(go+.7)) = —= (2 - 102)

(SR
-

+

—

(up) =

and Eq. (2 — 87).

For a transition occurring over zero mesh points, the geometric interpretation of
(2 — 87) 1s shown in Fig. 44.

2.19 Numerical Implementation

In accord with the previous formulation, a reduced interference perturbation potential
¢ 1s defined in which the far field is subtracted off. Witk the notation given herein and
assuming a closed body, this gives

pr=0+Cr (2 - 103a)
87:'b0B0 1594Bo
C = = 2 —103b
VR 3 ( )
uy = l‘:l. + C y

where by = .063409 from numerical evaluation of the Bessel function integral (Sect. 2.1.2).

Denoting r grid points on the pre-shock side of the shock notch with s subscripts and
those on the post-shock side by p, (2 — 103) can be used to obtain a discretized form of
(2 — 87) which is

_l_{fip-}-l_&p_*_(;a—q;a—l}_f_c:__ [d;]

5 — (w0, ) = —g1(uo,) , (2 - 104)

Tpy1 —Tp Ty —Tp-y [uo]

using (2 ~ 41b). The sum in the braces in (2 — 104) can be simplified using the definition
of [:15] which leads to

ép-}l"éo &l_él—l + 2C

n _ Zp41—2Zp Lyg—ZTs—1 _
(4] = e (2 - 105)

Zp+1—Tp {uo]
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Equation (2 — 105) represents an explicit relationship in which points on the downstream
side of the notch can be updated in each relaxation sweep of thie code. If the shock slope

is non—vanishing, [d;] is known only implicitly in the *ridiagonal scheme of Section 2.16.2.

2.20 Results

The results to be described were computed using the bidiagonal scheme formulated
in Section 2.16.1. Others were obtained with the homogeneous Prandtl relation using the
approach outlined in the last section. These will not be shown here and give similar relative
trends but discrepancies in the actual levels. Because the bidiagonal method contains the
effect of the shock shift as well as the variation of the interference vertical velocity v along
the shock, it is more accurate than the homogeneous Prandtl method.

In the actual running of the solvers for the 0'* order free field basic flow and the 1*
order interference component, convergence of both elements were monitored by studies of
the maximum error ERRMAX over the computational domain. This error is defined as
the difference between the value of the perturbation potential at the current and previous
relaxation sweep. Figure 45a shows the behavior of this error as a function of iteration
number for the 0** order solution. The iteration number is a counter for the relaxation
sweeps across the flow. Although the error decrease is rapid, a more reliable method of
establishing the convergence of the solution is the drag level. This is shown in Fig. 45b.
A pseudo-time asymptotic for the latter signifies stabilization of the shock location and
other flow features. Convergence to the drag for the 0" order solution usually followed the
monotonic pattern indicated with a zero initial iterate. The values of the relaxation and
other parameters for such behavior will be discussed in the user’s manuals. Convergence
of the 0** order solver RELAX1 takes about 3000 iterations for the higher subsonic Mach
numbers such as the .99 value of Fig. 45b. Approximately 1000 or less iterations are
required for supersonic or lower subsonic Mach numbers. Figures 46a and 46b demonstrate
the convergence of the interference (variational) solver RELAXV1. In marked contrast to
RELAX1, RELAXV1 is at least ten times faster. Both solvers have restart capability and
this can accelerate convergence from the performance indicated. One run strategy is to
march in Mach number space using solutions for a lower Mach number to initialize the
solution at a higher Mach number.

Both RELAX1 and RELAXV1 are scalar and unoptimized in keeping with their re-
search status. Further increases of performance can be achieved by vectorization and other
optimizing techniques, which we anticipate will lead to seconds of run-time on CRAY ma-
chines. The order of magnitude speed increase of the 1°* order interference flow code from
the 0" order solver is associated with the frozen cnefficients in the difference operators
during the sweeps. This is related to the linearization upon the basic flow embodied in the
description of the perturbation interference field.

As a baseline, Fig. 47 gives pressure distributions along a parabolic arc body of
thickness ratio § = .1 for different Mach numbers related to the transonic similarity pa-
rameter K = (1 - M2) /62. Although there appears to be some upstream movement of
the shock as the Mach number is reduced from .99, this may be illusory due to the need
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Fig. 45a. ERRMAX convergence history for 0'" order flow parabolic arc body § = .1,
My = .99.

0.05

0.04

Co..

0.01

PARABOLIC ARC BODY., 6=.1, M=.99

T T M T T ’ i ;
0 500 1000 1500 2000 2500 3000
NUMBER OF ITERATIONS

Fig. 45b. Cy4 convergence history for 0'* order flow, parabolic arc body 6 = .1, M., = .99.
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Fig. 46a. Variational solver convergence history, parabolic arc body, My, = 99, & = 1.
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to numerically resolve the fine structure of the layer near the logarithmically singular line
7 = 0. A vecent hypothesis proposed by C.C. Wu and analyzed in detail by J.D. Cole and
N. Malmuth in Ref. 38 indicates that the foot of the shock occurs at the zero of 5”(z) at
the rear of the body. This assertion is based on consistency arguments involving the inner
expansion of transonic slender body theory, Prandtl’s normal shock relations, and the flow
tangency condition at the body. Fine grid solutions are required to investigate this asser-
tion. In addition, there is prcbably a high z gradient deck nezr the shock impingement
pcint which asymptotes to the logarithmic layer behavior upstream aud downstream of
itself*. On the other hand, there is another scenario in which the shock does not strike
+he body but makes an abrupt turn above it. Evidence to supvo.i the first contention
is shown in Figs. 33-35 in which the location is very nearly a4 # downstrcam S"(z) = 0

point = % + )sé = .7887 for the fore and aft symmetric parabolic arc body exemplified
here. More detailed study is reyuired on the formation of the envelepe of the compressive
waves reflected downstream from the sonic line, since focussing and the structure of the
inner ¥ — 0 layer has a bearing on the use of an internal upright notch which encapsulates
the shock iransition in the calculation of the interference flow. Surface pressures for the
latter are shown in Fig. 48. The anticipated increase in suction over the forebody is in-
dicated and is associated with the constrictive effect of the walls giving an acceleration of
the flow over the model. However, there is a sharp compressive spike near the shock. It is
interesting to note that the upstream level is qualitatively and phenomenologically similar
to that exhibited by the incompressible flow analyzed in Ref. 37, whose transform solution
was used to validate the incompressible specialization of the 0'* order solver RELAX1
in Fig. 29. This agrees with the qualitative features of the subsonic flow away from the
sonic region. Clearly evident in that figure is the nearly constant level of the interference
pressures associated with the doublet reflection of the solid walls. This appears as the far
fieid singularity in the formulation of the problem. A rapid localized violent transition
spike at the shock interrupts this serene behavior. It is anticipated that the intensity of
this spike will be reduced by shock-boundary layer interactions in real flows.

For the case shown, the pressures have the proper antisymmetry about the dotted line
in the figure which represents the appropriate average levels from the perturbation form
of the Prandtl normal shock relations specialized at the foot of the shock. If the latter
strikes the body, the boundary condition of tangent flow implies [v]] = 0 implying that
the line of intersection is along the normal to the body. This trend is similarly exhibited
as shown in Figure 49 which gives an indication of the lumped normalized interference
pressure dependence on Mach number through the similarity parameter K. In accord with
expectations, the interference increases with increase in Mach number.

Returning to the M, = .99 case, Fig. 50 shows in exaggerated form the tunnel
pressure when the interference pressure is superimposed on the free field basic flow. Again,
the antisymmetry about the critical pressure level shown as the dotted line is evident as a
check on the computational implementation.

One issue that arose in the computations was the sensitivity of the convergence of

* See Appendix A regarding this issue.

85




AEDC-TR-91-24

0.2 - e -
0.1
O R
S
|
-0.1
~-0.2
PARABOLIC ARC
-0.3 =eil g T T T . T <>’;“~~-.;
0 0.25 0.5 0.75 1
X
Fig. 47. Free field 0*! order C, for various Mach numbers, é = .1 parabolic arc body.
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Fig. 48. Normalized interference C,, ACPH3/62, parabolic arc body for Mo, = .99, 68 = .1,
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Fig. 49. K dependence of reduced interference pressures — bidiagonal scheme for shock
jumps.

88




AEDC-TR-91-24

0.2
.
0.1 7
O —
4 _cr.
........... "(cr."'écp_)
-0.1 - -c
-0.2
PARABOLIC ARC BODY M=.99, 6=.
—0-3 “‘—-:——— I T ‘ T l ———=
0 0.25 0.5 0.75 1
X

Fig. 50. Comparison of 0'" order and total C, unscaled H = 10+, parabolic body,
STINT25, Moo = .99, é = .1, bidiagonal scheme, I’ = 1._v.

89




AEDC-TR-91.24

interference flow to notch dimensions. This was pronounced for the bidiagonal recursion
scheme for computing [q;] at the shock but much less evident in the tridiagonal approach

described previously. Fcr the calculations, the proper shock tip location and notch width
had to be used. An approximation for the upstream and downstream legs of the notch
was obtained by a detection scheme implemented in RELAX1 in which the most upstream
and downstream location of the downstream part of the so~ic line was determined. The
shock tip was defined as the subset of this locus for which the pressure grudient exceeded
a preassigned tolerance level. Some experimentation is required in adjusting the width
of the notch. This was accomplished most efficiently through the use in the cortrol file
LGGPARM®.RMS of indices NU, ND, JDEL which represent incremental chang-.s in the
upstream and downstream notch vertical boundaries at the z grid indices NSPMIN and
NSPMAX respectively and the 7 grid index JSMAX. Some adjustment of these parameters
was necessary to prevent divergence. This inconvenience of the bidiagonal scheme over
the tridiagonal method was tolerated because it was felt that divergence was a desirable
sensitive indicator of an inappropriate encapsulation of the shock. In particular, too narrow
a notch allowed artificial numerical fluctuations in the 0*P order shock layer to destabilize
the 1% order interference flow. Moreover, too large or too small a value of JSMAX was
associated with an improper location of the shock tip. In fact, for the M. = 96 case,
no shock occurs in this supercritical flow and a truly isentropic transition is obtained.
Logic in the code was developed to handle this degenerate situation. At the higher Mach
numbers, once a base level was obtained for convergence through proper selection of NU,
ND and JDEL, rather substantial parametric elasticity was exhibited. The broad band of
this tuning is indicated in Fig. 51 which shows that the main features of the interference
pressure distribution are retained with perturbations of these parameters. This tuning is
more delicate at the lower M., due to the diffusion of the shock and its deviation from
normality at its foot.

Corresponding to these pressures, Fig. 52 shows the Mach number dependence of the
interference drag. In spite of the generally increased test section Mach number due to the
constrictive effect of the walls, there appears to be an interference thrust at the higher
tunnel Mach numbers which increases with Mach number as the latter approaches unity
from below. This is presumably due to the increasing net suction force on the forebody.
A similar trend occurs for all the bodies tested in Ref. 36. The thrust aiso increases with
blockage ratio, again in agreement with Ref. 29. However, before a quantitative com-
parison with experiment is attempted, sting effects should be incorporated. In addition,
the database of Ref. 36 is for slotted rather than solid walls. It also represents values of
H < 0.3 in contrast to the large H results given herein. The sting effect will add the
additional term to the far field given in Ref. 29.
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Fig. 51. Sensitivity of interference pressures to notch size parameters, parabolic arc body,

=.1, M = .99, (K = 1.99).
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3. LARGE ASPECT RATIO CONFIGURATIONS

In this section, transonic wall interference of configurations having high aspect ratio
wings will be treated. The main emphasis of the theoretical and computational effort is the
treatment of wing-alone cases. There is evidence to support the belief that the wing inter-
ference dominates many high aspect ratio wing—body shapes of practical importance. In
spite of this, some discussion will in fact be given to wing-body arrangements. Rather than
being concerned with the development of a production code, the exposition that follows
will emphasize structural and mathematical features of the flow field and the description
of a research code that provides information on these aspects.

3.1 Theory of Far Field Boundary Conditions

A basic feature of the asymptotic theory of wind tunnel wall corrections on high as-
pect ratio wings to be presented is that it systematically accounts for the influence of
the wall modification of the far field induced downwash on the nearly two—dimensional
near field flow over the wing. In Section 3.1.1, this coriection is obtained for free jet and
solid walls. For convenience and without great loss of generality and utility, the analysis
is limited to circular test sections, although the initial setup had been made for rectan-
gular test sections in Ref. 29. Section 3.1.2 generalizes the analysis of Section 3.1.1 to
account for pressure distributions described on a cylindrical control surface. This part of
the effort is motivated by wall interference-assessment-correction (WIAC) methods which
use additional pressure measurements on such a control surface to account for factors not
present in classical boundary condition simulations such as that of Section 3.1.1 and the
usual perforated and slotted wall “radiation” and “oblique derivative” boundary condi-
tions. The additional measurements combined with large-scale computational simulations
such as that discussed in Ref. 39 can be used to determine if a wall correction is feasible
and evaluate it quantitatively.

3.1.1 Solid Wall and Free Jet Corrections

3.1.1.1 Discussion

An outline of the treatment of closed (solid wall) rectangular cross section test sections
is given in Ref. 29. The treatment of pressure specified boundary condition has similarities
to the solid wall case and important differences. For a large span wing in a tunnel of
comparably large lateral dimensions* both the solid wall and pressure specified case have
an asymptotic flow structure similar to an unconfined large aspect ratio case. The near
field flow is essentially two dimensional at each span station (strip theory) but with an
incidence field modified by downwash associated with the trailing vortex system related to
the large but finite aspect ratio. These ideas were the basis of Prandtl’s lifting line theory
and have been formalized for transonic speeds as a systematic asymptotic approximation
by Cook and Cole in Ref. 32. To our knowledge, no one has treated the confined case,
even at incompressible speeds using matched asymptotic procedures.

* Other limits are possible such as the span tending to oo at a slower rate than the
tunnel’s lateral dimensions.
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Both the solid wall and pressure specified situations have nearly two—dimensional near
fields which in the asymptotic formulation reduce to the previously outlined strip theory.
The finite aspect ratio downwash correction is evaluated from matching with a vortex sheet
emanating from a lifting line modeling the far field (outer flow) behavior of the finite span
wing. What is different in the three cases is the nature of this downwash correction and
the structure of the far field flow. For the free field case, the near field incidence correction
is obtained from vortex and divortex representations of the lifting line. These can be also
1clated to a doublet sheet representation as well as Biot Savart’s law. For the confined
cases, the vortex and divortex elements on the doublet sheet must be properly imaged in
oraer i¢ satisfy the wall conditions. This imaging is obviously different for the solid and

pressure specified cases and will thus produce differing incidence corrections in the near
(inner flow) field.

In accord with the formulation of Ref. 29, the dominant order equation for the far
fiexd flow is the Prandtl-Glauert equation. This is true providing that the far field relaxes
to subsonic flow, and is usually associated with high subsonic freestream Mach numbers.
Slightly supersonic upstream flows which were not treated in the contract require a different
far field treatment, involving the interaction of the characteristics or Mach waves with the
coatrol surface or walls.

The Prandtl-Glauert outer flow problem can be rescaled by a stretching in the free-
stram direction to give a problem mathematically equivalent to the incompressible prob-
lem (Prandtl-Glauert/Goethert rules). This problem reduces to the determination of the
near field potential of a doublet sheet accounting for interactions with a control surface
boundary on which pressures are specified. These features are shown schematically in
Fig. 53 for a rectangular cross section control surface Sy + Sy enclosed within a rectan-
gular cross section tunnel. According to the preceding discussion, pressure distributions
obtained from measurements are assumed given on the control surface. An integral rep-
resentation for the perturbation potential ¢ of the doublet sheet Sy can be obtained by
using Green'’s formula. Introducing the Green'’s function G corresponding to a point source
satisfying homogeneous Dirichlet conditions on the wall allows the wall effect to be char-
acterized in terms of the control surface specified pressure distributions and removes a
redundant term involving the normal velocity.

Since C), is proportional to ¢;, where z is the streamwise coordinate, an integration
with respect to z converts the problem of specifying ¢, to one in which inhomogeneous
Dirichlet (¢) data are given on the control surface.

31.1.2 Analysis

As has been indicated in Ref. 29, the appropriate asymptotic expansion for the velocity
potential ® governing transonic small disturbance flow over the high aspect ratio wing
shown in Fig. 54 is

g—=z+62/3¢(:r,§,:?;H,B,K)+--- 3-1)
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Fig. 53. Lifting line in rectangular cross sectior wind tunnel.

where U is the freestream velocity, Moo is the freestream Mach number, b is the span,
kL is the tunnel dimensionless radius, § = wing thickness ratio, (z,y,2) are Cartesian
coordinates, r, 6,z cylindrical coordinates shown in Fig. 54, § = 63y, £ = 6%z, H =
§13h,B=AH =687b K =(1~- M2)) 6%/ are fixed as § — 0, where A is a fixed span to
height parameter making the aspect ratio effect the same size as the wall interference. On
substitution of (3 — 1) into the exact equations, the following small disturbance equation

for the perturbation potential ¢ results
(K'(7+1)¢z)¢zz+¢§j+¢2§=0 y (3—2)
or in cylindrical coordinates:
1 1 ,
(K—(7+1)¢z)¢z:+ %‘(T¢F);+;§¢00=0 . (3——?.)

In the strained (tilde) coordinate system, the tunnel wall boundary is at = H. Since the
pressure coefficient Cp is given by

Cp = ~26¢, (3-3)

prescribing the pressure at the wall is equivalent to specifying ¢ there. In fact, measured
C,’s on the wall or some control surface can be regarded as a known left hand side of (3—3)
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WING

VORTEX SHEET

Fig. 54. High aspect ratio wing within cylindrical pressure specified contiol surface.

from which ¢ can be obtained by an integration with respect to x from some convenient
downstream station such as —oo up tc the current x value. Anticipating the z scaling in
an outer limit, the resulting Dirichlet boundary coandition for ¢ can be written as

é(z, H,6) =W(7‘;—,e) : (3-4)

In accord wvith previous remarks, an outer expansion which gives a lifting line struct-:ic to
the high aspect ratio wing as H — oo is

~ = % _® log H 1
e(z,§, % H) = po(z”, 9", 2) 4 off o1+ gt (3-5)
which holds in an outer limit
z‘:% , y‘=~yﬁ , z"=% fixed as H = 00 . (3-6)

The transverse straining embodied in the starred variables keeps the walls fixed in the
starred coordinate systerr. in the limit (3 — 6). The outer boundary value problem for the
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dominant term ¢, of the lifting line expansion is

1 1
Koo, +vo,... + P, + P00 = 0 (8 -7a)
wo(z*,1.8) = W(z*,6) (3 —17b)
lpo] =T(2") onthewakez® >0,y*=0,-A<2*<A (3-"T¢)

where the [ ] signifies the jump across the vortex sheet shown in Fig. 55 and is propor-
tional to the local circulation at the span station z*.

A

A
\
y* S
! re ‘P /' w
]
! .
X
I >l r &
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S _. s LINE \ s
) z VORTEX -
/ SHEET  Sc

Fig. 55. Far field flow configuration showing lifting line and vortex sheet.

The main result to be obtained in what follows will be the downwash at the loaded
line, i.e., the value of @o . (2%, y%,2*) as 2%, y* — 0, 2" fixed.

If W(z*,0) = 0 in (3 — 7b), then the boundary condition on the cylindrical control
surface »* = 1 shown in Fig. 55 corresponds to a free jet. The corresponding solid wall
condition is 5

90 - -

ar.(x,l,())_o : (3-8)
An integral representation for ¢g can be obtained by scaling out the K factor in Eq. (3—7a)
as in Refs. 30 and 32 with

y=y"/K,z=:"/K (3 - 9a)

and )
tanf = 3 /y (3 -99b)
7= g% 4 3° (3 - 9¢)
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so that the Prandtl-Glauert equation (3 — 7a) transforms to Laplace’s equation in three
dimensions. Application of Green's theorein to the boundary value problem for this equa-
tion with boundary conditions (3 — 7b,c) in the cylindrical region enclosed by the surfaces
Socy -0y Sw, and Sc leads to the following integral representation

¢ = Iy + Lwans (3 ~10a)

where
I, = //Sw[gﬁ] (%% ds (3 108)
Twans = /[v ¢Z—fd5 (3 — 10¢)

where G denotes the Green's function, n is the outward drawn normal, S, is the vortex
sheet surface, and Syays is the wall surface.

In the coordinates shown in Fig. 56, and assuming for convenience that the transonic
similarity parameter of the free field, Ky, appearing in Eqs. (54) of Ref. 29* is unity,
Egs. (3 — 10) imply that

B o0 XY
fe= _/ V(C)JC/ {’O“G(-'r',y‘.:';&m(* ds (3 -1la)
-B 0 on J

SC-0480-CS

Fig. 56. Angular variables for Green's function associated with cylindrical walls.

* The results that follow can be easily generalized to arbitrary Ky by the scale trans-
formation X = z*/\/Ry used in Ref. 29.
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where h = the tunnel radius in units of the root chord, b is the span in the same units,
and B = 8'/3b, H = §"/*h, u = H/B = h/b. In addition, ¥(¢) = spanwise loading
= [¢] = ¢(§10+7<) - ¢(£70—7C)1 r* = .’L‘/B, Yyt = 61/33//3, z* = 61/32/3, 6 = wing
maximum thickness, z, y, and z are the Cartesian coordinates normalized to the root
chord. In what follows, the star subscripts will be dropped.

As previously discussed, the open jet wind tunnel wall boundary condition
¢(‘Ta#)9) =0 (3 - 12)

corresponding to constant pressure on the jet was assumed. For this case, G(z,p.0) =
Ians = 0. The Green’s function for this problem is applicable to the generalization involving
pressure-specified bovndary conditions on e control surface surrounding the test article.

The appropriate Green's function satisfying a homogeneous Dirichlei condition such
as kq. (3 —12) on the walls is

o0

- _An |I_E|
G = ! 5 Z cosn(6 —6') Z e J"(Ankr)J"y\nkp) (3-13)

where
/\nkl‘ = jnk ’

Jnk are the zeros of the J, Bessel function given by

and Yoo ()= o p€n(--+), where g = 1, €, =2, n > 0.

An alternate representation for G is given by

G = _ Z cosn(f — 9')Axcos§(x ~ Y, (&r") {K,,({r) - ﬁg%@}df

n=-—oo

(3-15)
Equation (3 — 15) is in a particularly advantageous form in which the free field com-
ponent can be separated out in the determination of the wall interference effect. In fact,
the first term in the braces leads to the singular part of G, which is a point source in the
free field. When this is integrated from z = 0 to oo and across the span, it gives the free
field potential of a loaded line, that is, the dominant approximation of lifting line theory,

which is

i . v
¢LL_47T‘/;,7(C){1+ \/x2+y2+(z—C)2}{y2+(Z—C)2}dC

This can be shown from the Addition Theorem for the modified Bessel functions

[= o]

> cosn(8 — 0 (Er)Ka(ér') = Ko(€R) (3 — 16a)

n=-—oc
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R =r%+r" —or cos(8 — 8") (3 —16b)
and the cosine transform
1 b 1

~307 ), .Ko(fR)cos (z —2')dE = —4”m

Thus, the free field potential of a unit intensity isolated source is the right hand side or
(3 — 17) which by Eqgs. (3 — 16) is represented by the first integral in (3 — 15).

(3-17)

Returning to (3 — 11a). the inner integral represents the potential ¢¢ of a line doublet
parallel to the z-axis in the n = 0 plane and at the span location (. Performing the
indicated operations,

<0G
= —— d
bo /(; B o '3
R = n (2 — e *nk?)
= nsinn (6 — — T k) In (An :
27p?( nzz_:oo ( 2) ; AZ, {J:.(/\nku)]z (Ankr) In (AnkC)
¢>0 (3-18)
1 — . n (2 — e7Anem)
= — nsinn (0 4+ — In (Ankr) Jn (A ,
2mp?( nzz_:oo ( 2) zk: A:rllk [J,ﬁ()‘nkll)]Q ( k ) ( k()
(<0 . (3 - 19)

Of key interest is the behavior of ¢¢ and I, as z,y — 0. This is the essential result sought
in determining the downwash on the loaded line and matching with the inner solution. To
determine this behavior, ¢y can be further decomposed as follows:

B

bo=S1-S , I= / +(C)dodC (3 - 20)

B

where, without loss of generality, only ¢ > 0 will be considered*, and

S, = 12 Z nsinng 2Jn (Ank7) I (/\nl;C) (3 —21a)
2”/‘ C n=-—o0c k Aik [Jtl'l(’\"kp)]
1 > _ e kI T (Ankr) In (Ank()
Sy = —— nsinnf , 3 —21b)
D N AL (

where § = 6 — = /2.

Two primary steps are employed to obtain the desired result. These are:

* Extension to ( < 0 is trivial.
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1. Recognize that S; represents a two-dimensional vortex in the Trefftz plane (and math-
ematically prove it using the properties of Fourier-Bessel series).

2. Separate out the free field line doublet from S, by using a process resembling Kum-
mer’s transformation to accelerate the convergence of the series. It consists of sub-
tracting and adding the “tail” of the series which represents the singular part of the
Green’s function associated with the free field.

Evaluation of S,

Consider the line source

G‘ = / G(I»O,Z;fﬂlv@d{ ’
0

then

G*(0,r,6;p,6') = — - 2 Z cosn(§ — 0')2 In (Ankr) Jn (’\nk2p)
2rpt o = A2, (T4 (Ankn)] (3 - 22)

= 5G"(o0,m,8:0,8')

From (3.13.4), p. 134 of Ref. 40, the inner sum can be evalaated as a limit of a Fourier
Bessel series. Noting that
5 (5)

b m S o () () oo

and using the asymptotic properties of the Bessel functions as 7 — 0, from Ref. 41, 9.17
and 9.19, Eq. (3 — 22) becomes

® I~

G*(0,7,68;p,68") = 4% {lng— Z %{p_" —p "} cosn(f —9’)} ,

n=1
0<r<p<l1 (3 — 244a)
- L lnr—ip=n " —r"}cosn(§d - 6')
4 T - ’
0<p<r<1 (3 —24b)

where r = r/p and p = p/p. Introducing the complex variables Z = z + iy, Z' = ( +1n,
Eqgs. (3 — 24) can be represented as a geometric series which can be summed. This gives
for p =1,

. 1
G (0,7‘,9;7",0’):~4—ﬁ{log|Z—Z’|—log 7

z_ 4 —1n|'z"|} : (3 — 25)
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Equations (3 — 22) and (3 — 25) demonstrate that the line source appears as a two-
dimensional source reflected in the walls in the Trefftz or z = 0 plane. The first term of
Eq. (3 — 25) is a free-field source at the point Z’'. The second and third terms are the
image of this singularity in the walls using the inversion point 1/2Z’. Equation (3 ~ 25)
represents the classical formula for the Green’s function of the first kind for a unit circle.

To evaluate Sy, it can be shown that

oG*

51 = aT]

and therefore from Eq. (3 — 25), with Z' = ( on the reals,

y 1 pu?
Sy =— +

2 _ '2+ 2 .2 2 1
T (Z C) y <2[(2_l?) +y2J

(3 - 26)

In accord with the previous discussion, the first term in Eq. (3 — 26) represents a two-
dimensional doublet in a free field, and the second its image in the circular projection of
the wails. The plus sign in (3 — 26) corresponds to a free jet, a negative sign is associated
with solid walls.

Evaluation of S,

To implement Step 2, some preliminary processing of S, is required. Accordingly, let

_ 0S5,
Sy = 3 = 21”‘2( n_z—oonsmnﬁz dkn(z,7;() (3 —27a)
—AnkT
bin = € Jn (Ank7) Jn (;\nkC) 3 — 270)
Ak [T (Ank)]
and .
S — 55(0) = / Syde . (3 — 28)
0
Also, let
5= (3-29)
Then, using Kummer’s transformation
=U+ Y cosnf ) (6kn— Yin) (3 — 30)
=—00 k:
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r=5% (3-31)

Ty = TH ~krz/u o n8J., (Eﬂ) Jn (ET_C) . (3-32)
2 K I

The ¥, defined in Eq. (3 — 32) represent the asymptotic behavior of ¢, in the limit
k/iw — oo as k — o0o. Also, the interchange of sums in Eq. (3 - 31} 1s assumed to be
legitimate.

The quantity U is evaluated as follows: Noting from Eq. {3 — 31)

U= % Z e—knz/n Z cosnéJ, (ﬁl) Jn (%’;ﬁ) , (3-33)
- H
k=1 n=oo

from the Addition Theorem,

Z cosnJ, ("—'") Jn (“—kﬁ) =Jo (k—’rR>
[z [

n=—oo u

R= 22 +y? +(z - ()
and the Schléemilch series referred to in Refs. 40 and 41,

I T B O S X
Q_ 2 + 9 {2+§[2n] ( 1) B2nR P2n—l -R ’ (3 34)
where —

R=R/p

X =z/p

B3, = Bernoulli number
P, = Legendre polynomial
Noting that
S0 =35

and performing the integrations and differentiations of Egs. (3 —28) and (3 — 29), it follows
that

2
S2 = = CE— £ '
-t
ya (3-35)

Qe Py + O(zy)

%)
+ r2y Z (ln(Z _ 6)2(271—3)
n=2
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where the O(xry) terms arise from the second sum in Eq. (3—30) and the term proportional
to r’y comes from the last sum in Eq. (3 — 34). Both of these are assumed to be negligible
regular functions compared to the singular contributions shown. Because the singular part
has been subtracted off, the convergence of the second sum is anticipated to be rapid. The
last term in Eq. (3 — 35} is the dominant term of the suni in Eq. (3 — 34) evaluated by use
of the expansion of P, (v) as a finite series in v, and summing by rows instead of columns,

From Eqs. (3 — 11}, (3 —20), (3 — 26), and (3 — 35)*, the desired expression for I, is:

B 1 ] I
L= [ 2 |—=—| 1+
ar Jop /(4){ [(2—6)2 +y? [ Vai+yt 4 (z - ()?

d¢ + O(xy)

(3 - 36)

2

H
~2 A
G (: S ) +y
Equation (3 — 36) provides the dominant inner behavior of the outer solution for the

open wall (frec jet) case. It contains terms @ which correspond to the free field and @
which are associated with the wall effect. For a solid wall, the sign of @ is negative.

The implication of Eq. (3 — 36) on the matching of the transonic lifting line theory
of unconfined high aspect ratio wings given in Ref. 30 is that the horseshoe vortex system
because of its imaging in the walls modifies the near field downwash by an amount asso-
ciated with the term @ . Structurally, the matching elements between the outer and
inner solution are otherwise unchanged.

3.1.2 Pressure Specified Boundary Conditions

In the previous section, the modification of the downwash on the loaded line to free
jet and solid wall boundary conditions for high aspect ratio wings was considered. In this
section, the effect of specification of arbitrary boundary conditions on a cylindrical control
surface enclosing a high aspect ratio wing will be derived.

Referring to Eq. (3 — 7b), a decisive step in achieving this result is to split o as
follows:

Yo =@PJ+pc - (3~-37)

In (3 — 37), s is the potential associated with free jet boundary conditions, i.e.,

pr(r,1,0) =0

* An alternate analysis was performed leading to the same results which used asymptotic
treatment of Fourier transform representations of the far field flow based on Tauberian
theorems.
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The quantity ¢ satisfies the jump condition (3 — 7¢). Since the outer problem is linear,
we can satisfy the remaining boundary condition by setting

pc(z%,1,0) = W(z",0) (3 -38)

and [c,oo] = 0 on the wake. Note also by linearity that ¢ and ¢, both satisfy (3 — 7a).

The problem for the cerrectivn potential can be solved by Fourier transforms and
eigenfunction expansions. The approprate exponential Fourier transform pair is

Pc = /'_Z ** 5k, ", 0)dk (3 — 39a)
R T A .
w:;[wc e(z*,r*,8)dz™ . (3 —39b)
Also, W can be represented as
W = /oo e W (O, k)dk . (3 — 40)

Accordingly, the subsidiary equation for ¢ is

~ 1 . 1
Crere + "_“Pr' 4+
r

Voo — Kk*3 =0 . (3 —41)

2

Equation (3 — 41) can be soived by eigenfunction expansions. By separation of variables
the Sturm Liouville problems for the eigenfunctions R,(r*) and T,(6) are

T+ \T, =0 (3 — 42a)
r*Rin+r°R, — (Kk*r** + X2)R, =0 . (3 — 42b)
The T, and A, can be obtained from the conditions
99(7", 0) = (,9(7", "'0)
o(r* 6+ 27) = o(*.5)

and are T,, = cosnf, A\, = n = 0,1,2,3,---. Equation (3 — 42b) is the modified Bessel
equation, whose solutions are
oo In(kVET*)
Ra(r )= .. =
Ko(kvKr*)
The K, solutions are discarded since they violate an additional condition that ¢, is

bounded as r* — 0. The resulting eigenfunction expansion for ¢ can thus be written
as

7= Ado(kVEr*) + > Anln(kVKr*)cosné . (3 - 43)
n=]
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Writing the transform of (3 — 7b) as

(1,8) = W(k,0) (3 - 44)
¢ can be obtained as
5 — Wik gy REVET) L(kVEr) _
@ = (W(k,8)) VT +2:1w (k)2 VB osnb (3 — 45)
where
(W (k,8)) / W (k,6)do (3 — 46a)
—~ 2 —
Wa(k) = —/ W(k,8)cosnbdf . (3 —46b)
T Jo

The desired results can be obtained by examining (3 — 45) in the limit y* — 0. Since
cosf = 7;‘%;7 ~ 4, this corresponds to § — 7. Some useful asymptotic expansions in

this limit are

cos(2n —1)8 = (=1)""1(2n — 1) cos § + O(y*?) (3 —47a)
cos2nf = (—=1)*"! 4 O(y*?) (3 —47b)
forn=1,2,3,--- fixed.
Letting
( Kr*)
G, =W, )
OB L(kVK)

then splitting the sum into odd and even components as follows,

i( . ) = i Gan cos2n6 + i Gan—1 COS(ZTI - 1)0 ;
n=1

n=1 n=1

and noting that

Ln(kVEr*) = La(kvVEKz*) + O(y*?)

gives

- ~ _ 1 v n-1 w. h_n_ﬂ_f{z_‘)
By (k,0,27) = 22 D (1) (20 = D)Wana (W)= 5

n=1
or

) Jan= l(k\/‘ )

~ . -_Lm_n— n— ooik::'
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so that
1] & oo
y(0,0,2") = o— > (=) en - 1)/ Wan_1(k) dk
7rz n=1 —00 ..
By virtue of (3 — 46),
oo
W (k,8) = Wolk) + > Wa(k)cosnf (3 — 48a)
k=1
o0
W(z*,0) = Wo(z") + Y _ Wa(z*)cosnf . (3 — 48b)
k=1
Also,
o~ roo . .
Wan-1 =/ Wan-1(z")e™** dz*
Thus
1 & oo
Peye(0,0,27) = 5 Y (-1 (2n - 1)/ Wan-1(z*)dz*
—_ —00
n=t (3 — 49)
—oo Ln-1(kVK)
Here,

Wana(2*) = 72_r/ W{(z"*,8)cos(2n — 1)0d8
0

If it is assumed that all higher harmonics such as n = 2,3, - - are zero in (3 — 48b), then
(3 — 49) simplifies to

1 o0 © e L(kvVKz*)
.(0,0,2%) = Wi(z*)dz* et AT " Jdk . 3-50
oo @007 = oz [ Wit [ SO (850

The inner integral in (3 — 49) can be evaluated by residues. The poles are pure imaginaries
given by
k=ijn,a , $=1,23,-

where the jn, are the zeros of J,,, i.e.,
Jn(jna) =0

which are all real and simple.

The higher order pole at k = 0 is negligible since the integrand is bounded at the
origin. If k = £ + in, then the asymptotic behavior of the integrand is

—ike In(kVE2")
I.(kVK)

=0 (e'(ﬁlz‘_ll"'l"l".)) as |k]—o00,9<0,2">0,]|2"| <1
(3-51)
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which implies that the inversion integral can be evaluated by summing residues inside a
semuicircle (Jky = R, 5 < 0) in the lower half plane as shown in Fig. 57. Equation (3 — 51)
insures that the integral will converge. Summing the residues g.ves finally after some
interchange of the orders of integration

1 = ]nsz o _' 12°
e .(0,0,2%) = AW (2*)dr* (3 — 52
Peye )= T =Z( }; a0 (z*)dz* ( )

e ®

-lins

Fig. 57. Contour for inversion of the inner integral in Eq. (3 ~ 51)

where the continuation of the inversion for z* < 0 has been made. Now the integral in
{3 — 49) can be expressed as

/:o e Ml f(z)dx

/oooe-" {£(0) + O(A1)} du

M > 0

5 {£(0 +007h)

I

if the integrand is expanded assuming that A is large. This can be a useful approximation
since Jns > 3.83171. It implies finally that

. 2 — (=1)*(n) J1(Jn12")
0 (0,0,27) = 2 w0y dn . 3-53
Poye | ) VRK:z* ":LZH‘W Jni © Jy (Gn1) ( )
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If the higher harmonics are neglected, due to the rapidity of convergence of the series,
(3 — 53) reduces to
2 Wi(0) J1 (Gn2*)

-(0,0,2%) = - v
¢y( ) \/_Isz‘ Ju J;(Ju)

(3 - 53)

where

9 T
W,(0) = ;:-'/0‘ W (0, 6) cos n8dé

Thus, to obtain the wull interference associated with a series of pressure measurements on
a control cylinder, only those at the location of the wing are important. Equations (§ - 53)
give the effect of non-zero wali pressure on the downwash at the loaded line.

3.2 Numerical Procedures and Qutline of Code

A formulation of the high aspect ratio problem is given in Ref. 29. As indicated in
Section 3.1.1.2, the asymptotic expansion for the velocity potential @ is

® .
o=+ (@, g, 5 K A HB) + (3-1)
which is valid in the Karman Guderley (KG) limit
_ M2
z,gzéllsy, 2:61/32, K = 1—62]/‘3400 y A= E,B =61/3b, H=h51/3 ﬁxedas&——»O,
(3 —54)

where § = thickness ratio, b = semispan in units of wing root chord, Mo, = Mach number,
h = open jet, closed wall, pressure specified control surface radius in units of wing root
chord, and @ = wing geometric angle of attack.

Within the KG limit (3 —54), a secondary (confined lifting line) limit is considered for
a high aspect ratio wing in which the wall interference is of the same order as the three-
dimensional effect associated with finite aspect ratio. Accordingly, in an “inner limit” near
the wing, the flow field is almost two dimensional with

- . , 1 —
¢($»y,Z;AsK,I‘)=¢0($ay5Ao,I\o,#)+“B'¢1(1'ay72 ;AOaAlvusKOaKl)+"' (3—550)

K =Kot £Ki+-- (3 — 550)
A=A0+—1§A,+--- (3 — 55¢)
in the inner limit
. Z . H h .
S=gingu=pg=7g fixed as B — oo, 6 — 0 independently. (3 —56)

As indicated in Ref. 29, the far field for the inner problem for the finite aspect ratio,
wall interference correction ¢; is governed by a far field associated with an outer problem
corresponding to a bound vortex shedding a trailing vortex sheet.

In what follows, the formulation and description of the pilot lifting line code accounting
for wind tunnel wall interference will be given. The analyses will assume without excessive
loss of generality that K, = A; = 0.
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3.2.1 Boundary Value Problem for ¢

3.2.1.1 Analytic Formulation

Input Parameters

The airfoil shape shown in Fig. 58 is given by y,: = 6F,(z),]z] < 1,
max|F| = 1,u ~ upper surface, £ ~ lower surface
Angle of attack: «
Ratio of specific heats: v = 1.4
Transonic similarity parameter: K = “75* ;
(or, for Krupp scaling, K = mi%:fg)

Boundary Value Problem

(K = (v +1)¢0.) 0., + d0;; =0 {3 — 57a)

g a
by (2,08) = —Fydz) -4 , A=2 | |of<1 (3 - 576)

’ Oz $
[¢0]g=0 =Tforz>1 [Kutta — Joukowski condition] (3 — 57¢)

ré (y+1)I?lnr
LM — <
o — 5 62k > cosé + asr—00,0<80<2r

(r = \/m) (3 - 57d)
(9 = tan™! %2)

3.2.1.2 Numerical Formulation

A rectangular computational grid sciiematically indicated in Fig. 59 is employed which
is approximately uniform on and near ihe wing, with geometric stretching in the far Jeld.
(There is a capability to adapt the grid spacing on the wing to the airfoil shape, as indicated
subsequently.) The grid is displaced from § = 0 and from the singularities at (—1,0) and
(1,0).

Solution values are stored in PHI(1:IMAX 1:JMAX), with an extra row/column for
the boundary values.

The airfoil ordinates are input in a table, then interpolated and differentiated (using
smoothed cubic splines) to get the Neumann body boundary conditions. A parabolic arc
airfoil and the NACA 00nn series are available analy tically.

Equation (3 — 57a) is solved by successive line overrelaxation (SLOR), based on tech-
niques developed in Refs. 31, 33-35, and 42, solving the finite difference equations a line
at a time, from i=1 to i=IMAX.
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$C37645
AIRFOIL GEOMETRY

tlf——- >~

e L=2 - d=A/L

Fig. 58. Airfoil geometry.
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Fig. 59. Computational grid.
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Basically, 3-point centered differences are used. The grid can be nonuniform. The
differentiation formulas employed are:

/ll }Lg —-hg hz - hl hl 2
*r—r = M = —— R R )
T e e T RO ek T Tk O R  hy e O
2 2 2
= i o+ i, + O(R
Pous hy(hy ‘Hl:z)(ZS ' hlhz%' ha(hy +hz)¢o'+ (%)

Set pi; = K — (v + 1)¢o,,; using this central difference. Then u; ; controls the type of
the equation at (z,7). There are four cases which are tabulated in Table 1:

Table 1. Type Sensitive Switches Employed by ¢¢ Modules

pi-1,j | #ij | Typeof Point | Representation of (K — (v + 1)¢, ) 0.,

(1) >0 >0 elliptic i j%0,..; [central differencing]

(ii) <0 <0 hyperbolic Bi-1,j%0,.:,; [backward differencing]
(1i1) >0 <0 parabolic 0 [p~ 0 any way]
(iv) <0 >0 shock (i) + (i)

The representations for Cases (i)-(iii) shown in the table keep the equations stable
and the marching direction toward positive z. In (iv), Murman’s shock point operator is
applied. This is consistent with the Rankine-Hugoniot weak solutions at the shock. For
d0;;, central differences are employed, giving a tridiagonal system.

(1) In |z| €1, ie., leade < ¢ < traile, the Neumann boundary conditions are satisfied by
the following discretization method:

Above the wing, at j = fup:

bo;lj+172 — bo;li—1/2 2
b5 = —= —~ +0((d
03 Yi+1/2 =~ Yj-1/2 (@)
$0; 41 ~%0; — o
= dy y Flr=0 specified in B.C.
Y

(Similarly below the wing.)

(i1) In z > 1, i.e., © > traile, there is a branch cut with constant jump I' in ¢o. However,
#o, and o, are continuous across the cut. Accordingly,

at j = fup, use (¢0u-1 + F) for ¢o,;_, (above cut)
at j = fdn, use (¢o,;,, — I') for ¢o,,, (below cut).

Once the line ¢ = traile(z = 1) has been solved, the circulation I is reset to [¢)TE =
Straite fup — Piraile.fdn and the far field is updated with this new value. The whole process
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is repeated until ¢p and I' have converged. In practice, Jameson overrelaxation is used,
together with cyclic acceleration.

A flow chart of the main program that computes ¢y is given in Fig. 60. Descriptions
of the subroutines indicated therein follow. Additional information is given in Figs. 61-64.

Principal Subroutines

SOLVE: This calls SLOR, and manages the sweeps across the flow field including conver-
gence accelerators and is depicted in Fig. 63.

SLOR: This is the successive line overrelaxation module which solves for the solutina
columu vector on !=constant lines (see Fig. 64).
GRID - This sets up the grid data from the user’s description (see the file 2D.DOC).
Output: imax,jmax ~ size of grid
z(0:imax+1), y(0:jmax+1) (grid points)
dz(0:imax+1), dy(0:jmax+1) (grid spacings)
fdn,fup (lines above and below wing)
leade,traile (position of leading and trailing edges)
There is an option to adapt the grid spacing on the wing to the local slope gradients
of the airfoil. This is implemented by letting dz = ﬁm. Here, b is a constant which

controls the extent of the grid stretching; 2.0 is the defauit, while b < 2.0 will cause greater
variations in the spacing and 6 > 2.0 will cause less. The user can control this by modifying
the variable “expand” in the control file. The parameter a is adjusted iteratively until the
grid just fits nicely onto the wing, i.e., z(leade) = —1 + 1 - z(leade).

The user gets a summary of the grid and can decide if the computational domain is
big enough. (With adaptive gridding, it is difficult to tell beforehand.)

This IMSL routine fits smoothed cubic splines. ICSSCU is used with a user-specified
smoothing constant.

ANGLES - Calculates two arrays needed for computing the far field value of ¢ at the

boundary.
angle = ~on 6 =tan™! l/——i_{g

FARFLD - Updates the far tield using the current value of T'.
¢ = I'.angle + I'? .fAd2

OUTPUT - Builds two files of results, one formatted (FOR011.DAT) and one unformatted
(FORO012.DAT) for graphing.

The data output are Cp, and Mach, the local pressure and Mach number distributions,
where:

Cp= —28P M2 ¢,
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8C37666

2D$MAIN

v

READ CONTROL FILE
READ OLD DATA (4.} IF AVAILABLE

IS A NEW
GRID
REQUIRED?

YES

— CALL GRID

j {SET UP THE NEUMANN B.C.)
CALL MKFOIL fnr
ANGLES (CALCULATES 6,7 COS 6 FOR THE FAR FIELD
FARFLD
SETCOF {PUT IN INITIAL FAR FIELD)
(CALC. COEFFICIENTS FOR THE FINITE DIFFERENCE OPERATORS)
\
CALL SOLVE (SOLVE EQUATIONS TO USER’'S SATISFACTION)
Y
CALL OUTPUT (REPORT ON RUN AND WRITE GRAPH DATA)

¢

Fig. 60. Flow chart for MAIN program computing ¢o.
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MKFOIL - BUILDS AN ARRAY CONTAINING THE NEUMANKN B C VALUES Fu Jm-A

CASE 1 FOR AN NACA OOnn AIRF
SUBROUTINE FOIL

CASE 2 THE AIRFOIL HEIGHTS ARE GIVEN IN A TABLE

READ 1, =¢f,,
COMPUTE ¢ = MAXU,} — MIN tf

:

CALLICSSCY
tOR ICSSCY:

i

COMPUTE THE SPLINE S
DERIVATIVES ON THE GRID

.

BUILD THEB C .
et f(x)—A)

THIS IMSL ROUTINE FITS
SMOCTHED CUBIC SPLINES

AEDC-TR-91-24

$CI78983

OIL OR A PARABOLIC ARC AIRFOIL THE F VALUES ARE COMPUTED ANALYTICALLY BY

ICSSCU 18 USED WITH A USER SPECIFIED

SMOOTHING CONSTANT

Fig. 61. Flowchart of subroutine MKFOIL.

Fig. 62. Angular relations for far field.
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r—
SOLVE J
v

8C37674
SOLVES THE TRANSONIC EQUATION BY REPEATEDLY

CALLING SLOR UNTIL ¢ AND " HAVE CONVERGED
TO THE USERS SATISFACTION

FROM USER

GET ITERATION COUNT

y

v

CALL SLOR.
PRINTOUT MADE iA¢! AND T

A

(THIS IS NEEDED FOR THE CYCLIC

ACCELERATE ¢

IF NOT

WHERE d, = $-¢n.k

F AT ITERATION n-k ACCELERATION |
OR n-2k THROUGH A CYCLE
SAVE ¢
y
{F AT ITERATION n, IF AT n
}———3! ESTIMATE THE LARGEST EIGENVALUE

A = dThdn/dTnidn

!

ACCELERATE ¢: 4 — ¢, | +— (4,

'¢n~k)
1

:

RECOMPUTE I

CALL FARFLD

COUNT ITERATIONS
LOOP If MORE TO DO

0 IS ENTERED

STOP WHEN COUNT OF O RETURN

Fig.

63. Flowchart for subroutine SOLVE.
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$C37663

SUCCESSIVE LINE OVER-RELAXATION
L SLOR | “(ONE ITERATION PERFORMED HERE)

[Save ‘PHI IN "OLD' | (NEEDED BY JAMESON OPERATORS)

v

FOR EACH COLUMN o
° fi=1, iIMAX) —>1 FOR EACH ROW R REMEMBER ,; , j
=1, MAX) T > COMPUTE 4 j
> (= K= 7+ 1145)
WHEN DONE
WHEN DONE L
RETURN IBUILD FINITE DIFFERENCE]

TERMS FOR
‘K - (7+ 1 )¢x)$xx
BASED ON SIGNS OF
Hi-1,j AND 4

¢

BUILD F.D. TERMS FOR
byy

YES

INCLUDE NEUMANN B.C.|

NO

s NO

RECOMPUTE T
CALL FARFLD

4

INCLUDE JUMP OF I YES

—3 NO

o] SOLVE TRIDIAGONAL SYSTEM
"} BY GAUSSIAN ELIMINATION

CHECK FOR MAX ia¢; —J

F.D. = FINITE DIFFERENCE

Fig. 64. Flowchart for subroutine SLOR.
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Mach =1-6*°*M™ (K — (v 4+ 1)¢:)  (This is actually M2.)

Here, n and m are the Krupp scaling factors, as used by Krupp, n = ——% im = %. For no
scaling, n =m = 0.

The graph dat. also contains the critical pressure,

K
t:_262/3____ n
c; M

above which tihe flow is supersonic.

Since C} is only known off the wing, the graphing program extrapolates linearly to
find Cply=02:

- 3 1
Cply=o+ = 50p|g=1/zdy - 50p|g=3/24y-

Other subroutines are shown in Figs. 63 and 64.

3.2.2 The Three-Dimensional and Wall Interference Correction ¢,

3.2.2.1 Analytic Formulation

Input Parameters

The relevant program modules .reat similar and nonsimilar airfoil section wings and
obtain interference corrections for these shapes. A similar planform wing is defined as
one having the same airfoil section along its span but with its chord varying with span.
The numerical methods employed here are a generalization of those used in Ref. 43 for
unconfined similar section wings. Remarks on various geometrical aspects are:

(i) The wing is normalized by b so that it lies in |z| < 1. The half-chord ¢(z2) is input.
For an elliptic wing, shown in Fig. 65, ¢(z) = 1 ~ 22.

(ii) As previously indicated, the small parameter for the expansion is 1/B, where if
AR = aspect ratio,

R=6873.p
1

= §1/3 .=
81 AR 4/

, where / = area of planform
w w

1
=6‘/3AR-%/ o(z)dz

-1

(iii) The wing may be in a circular wind tunnel as indicated in Fig. 66. The parameter
u= % is input as the reciprocal of the fraction of the tunnel spanned by the wing.
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x
b
CHORD -
z
Fig. 65. Elliptic planform.
Boundary Value Problem for ¢;
This is:
Lig]=(K-(v+1)¢0.)¢1,, — (Y +1)¢0, b1, + ¢1,;, =0 (3 — 58a)
-0 ~( 3. I'(z)

¢1,;(2.0) = 0; 1 = —§(d(2) + w(z)) - —2r—9+ cee o asT — 00 (3 — 58b)
[(151]“]‘c =T (z)= [¢1]T.E. , T.E.~ TRAILING EDGE . (3 - 58¢)

Here, d(z) and w(z) are crucial functions controlling the size of the aspect ratio and wind
tunnel corrections, respectively. They are given by the integrals

1 '
d(z) = 4_1;][_] ;"f—fgdg (3 - 59a)
(f = principal value integral)
A |
w(z):ii—”[_l (z—ff’_—(%df . (3 - 590)

The quantity w(z) in (3—59b) has been obtained from the far field analysis of Sections 3.1.1
and 3.1.2, and the (+) and (—) apply to free jet and closed wall test sections, respectively.
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5C37648
WING IN OPEN JET TUNNEL

-+ 1HAALAALALAAREEAR AU T LR R R R S L e

S AUMANNNANANNNNNANNNNNANNNNNNN NN R S

Fig. 66. Front view of wing confined in circular wind tunnel.

Now, taking advantage of the assumption of similar sections*, let

o = c(2)Po(X,Y); X = —(—) Y = % Fuu(z,2) — Az = o(2)G e(X)

which gives the reduced problem for ¢
(K—'(7+1)1‘*”0x)¢0xx +¢0YY 20 ) ¢0Y=Y=O;GX(X) N ['l/)OX]TE:O . (3—60)

The problem (3 — 60) has no explicit dependence on 2. From ) = ¢¢(0), its solution is
obtained as

$o(2) = c(2)¢0(0) ; To(z) = c(2)T'o(0)
Use of a similar scaling for ¢; for which ¢, = (d + w)e(2)¥1(X,Y), gives

(K~ (7 + Dox)¥1xx = (7 + Dogx¥ix + Y1y =0 (3 - 61a)
1y =0in (X[ <1 ; [dix]x=y =0 ; ¢,—+-Y—-21:7‘79+--- . (3 — 61b)

* Nonsimilar sections will be treated in Section 3.7.
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A modified form of (3 — 58) is useful to regularize the far field. For this purpose, part of
the known far ficld is subtracted off and ¢* = ¢, +Y is solved for. The resulting boundary
value problem for ¢* is

(K = (74 1)¢0x(0)) ¢ x — (7 + Doy x 8% + ¢35y =0 (3 —62a)
$tly—o=1 in |X|<1 (3 - 62b)
¢‘-+—%0 as T — 00 (3 — 62¢)
(6" wate =07 = [¢"] 1. - (3 - 62d)

The actual solution ¢ is then obtained from
$1(2) = (d(2) + w(2)) (c(2)¢* + ) (3 — 63a)
['(z) = (d(z) + w(z))e(2)T" (3 — 63b)

where now

_To(0) 1O ) _ To(0)p® [ <(§)
d(=) = 4m .7{1 z - §d€ Powle) = 4w —1 (2§ — p?)? @ (3~ 63¢)

Within the protlem given by (3 — 62), the position of the shock is known, having been
captured by the ¢ solution. It is therefore natural to fit its perturbation into the ¢;
problem by using the shock jump relations to provide a set of internal boundary conditions
as in Section 2. These are:

[62] - B°(42) + 26 (6} = -A% (3 — 64a)
where
g =K~ (v+1)po, (3 — 64b)
B = [bo;]/do.] (3 — 64c)
and
A = B [¢o..] — [pdo..] — 28 [4o,;] (3 - 64d)

are known from the ¢¢ solution.

3.2.2.2  Numerical Formulation

In the solution for ¢*, all of the other scalings are applied only at the output stage.
The various elements are calculated as follows:

(i) d(2)

_ L [T, _Te®) [ ) )
d(z)_47r][_]z_£d§ e _lz_'gdg . (3 - 65)
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The simplest case is for an elliptical planform, ¢(z) = V1 = z%. Then,
d(z) =T.(0)/4 . (2 —66)
Otherwise, the trigonometric substitution
z=—cosf (3 -67)

is used and the planform shape is represented by the sine series
o0
c(z) = Z Apsinné
n=1

The integral (3 — 65) then becomes

d(z) = FO(O) ! ZnA,.smnB . (3—68)

sin@

In practice, ¢(z) is given at a series of span stations. The transformation (3 — 67) is used
and a cubic spline is fitted to c(z). It is evaluated at § = 22, where m = 0,---n (say),
and the A, arc then computed with a discrete Fourier transform.

This works well for smooth, near—elliptical planforms, but for others (e.g., sharp cor-
nered wings such as rectangular and delta planforms), d(z) may have singularities which
need further treatment.

(1) w(z)

‘2 1
w(z) = ][ (z?(i)z)zdg . (3 — 69)

Here, u > 1. Therefore, the integrand is finite everywhere, and a straightforward quadra-
ture using the trapezoidal rule seems perfectly adequate.

(iii) Solution for ¢* (Shock-Free Case)

In the solution of (3—62), the grid and ¢ are input from some previous run which used
an identical computational grid. The coefficients (K —(v+1)do, ), (Y+1)do,, are computed
using central differences in elliptic regions, and backward differences in hyperbolic zones.
The parabolic value zero is used for K — (v + 1)¢q, at a subsonic to supersonic transition.
This keeps the system stable. The subsonic and supersonic regions are already known from
the ¢¢. Apart from this, the solution proceeds in the same way as for ¢,.

The initial guess for ¢* can be ¢* = 0, an old solution, or an analytic solution to the
Prandtl-Glauert equation. Since ¢o_ and ¢q,, — 0 as r — o0,

K¢zz + ¢"' -
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will be a reasonable approximation, at least in the subsonic case, with tlie boundary
conditions (3 — 62b)-(3 — 62d). This “flat plate” problem can be solved analytically with
the following rescaling

. 1 1
Y =VKj= ¢z +yy =0 ly=0 = — ; =2¢(z,9)= —= z,VKY
Y ¢Z d)Y} ¢Y Y=0 \/—R ¢ (z y) \/1?11}( )
to give
— 4
¥(z, %) ::Re{—iZ-f—\/1—Z"’-+—2ta,n'l 1—+E+1r}
\ 1- (3 - 70)
(Z =z+iVK 17)
To evaluate (3 — 70), the fcllowing branch cuts may be used:
0<hi<2r , arg(Z+1)=6_ (3 - 71a)
arg(Z —1) =64 (3 —171b)
where 64 and 0_ are shown in Fig. 67. This solution has I'* = -—l’;?, which is not too far
from the value obtained from a numerical solution of (3 — 62).
$C37638
ARGUMENTS FOR
"FLAT PLATE" SOLUTION z

- 6t
5 1
-1 0 1
Fig. 67. Arguments used in Eq. (3 — 70).
(iv) Treatment of Shock Conditions
From Refs. 29 and 32, the shock equations are:
[60] =0 (3-72a)

Zeroth order{ [K%: 3 1}1%:] [¢0=] + [¢0,_]2 =0 (3-72b)

Pirst order { [162] - (8] +26[83] = 01 {B*[do...] - (o] —28[b0.s]} (3-732)
[6*] = ~g1(do.] (5-73b)
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where pp = K — (v + 1)¢o,, B = l[?‘%, and r = g,(¥) is the cosrrection to the shock locus.
oz

Eliminating ¢; and using the zeroth order equations yields

(us2] - 861 +26(g3] = ~a L] (3-74)

where A = 8%[¢%.] [E%u] -2p [¢0¢,~]- This is the governing equation for the ¢* shocks.

The shock is fitted over three mesh spacings — empirically, the numerical width of the
captured shocks. If p;_, ; <0 and p;—;; > 0, then the two sides of the shock notch are at
(3,7) and (2 — 3, ), respectively, downstream and upstream as shown in Fig. 68. The case
when not all shock points lie between the same two grid points will be considered later.

The coefficients pr, pr—3, B, and A are all evaluated by taking differences of the
quantities evaluated at I and I — 3.

The solution proceeds normally up to and including : = I — 3. At that line, all the
points on the notch will be either hyperbolic or parabolic. Accordingly, the difference
equations will be numerically explicit.

Lines I — 2 and I — 1 are solved normally above the notch; values for (I — £, jsmaz)
and (I — 1,jsmaxz) are extrapolated linearly from either side. under the assumption that
the jump falls entirely between I —2 aind J — 1. This is indicated .chematically in Fig. 69.
The shock strength is assumed to vanish at jsmaxz.

At line I, (3—T74) is used to provide equations for points fup to jsmaz; j = jsmaz+1
to jmaz are treated normally as interior points in the usual manner. In (3—74) the jumps
are computed from

] =Cr=C-s - (3~ 175)
In the treatment of the jumps of the derivatives,

¢% uses a two point forward difference, %ﬂ;—"bﬂ
¢35 uses a three point backward difference,
e.g., Wzl)",__:(3¢1—3 —4¢dy_4 + ¢$1_5) (for a uniform grid).
¢} uses a three point centered difference, 5(%5(451,,-“ - ¢1,j_1) (for a uniform grid)

At j = fup, the known Neuinann boundary condition on the 1/2 node of tangent flow
on the wing is used with the following average of point values, recognizing that the body
is at a 1/2 node point.

1
¢§ = ’2‘(¢§j+1/2 + ¢;7|§=0) (3 -176)

Because ¢; = 1 everywhere on the wing, it cancels out in [05;7]- Thus

(65),27up =0 (3-177)
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Fig. 68. Orientation of shock notch.

8C37635
EXTRAPOLATION OF ¢* FOR JUMPS

-1
”
¢ -7 | EXTRAPOLATED VALUES
|
l _0__—0/
Ler——
-4 3 12 1 ' 1+

Fig. 69. Linear extrapolation at shock.

This approach gives a full tridiagonal system of equations for line I. Once solved, the
solution proceeds normally at line I + 1.

The shocks captured in the ¢ solution are not always vertical. It is unlikely that the
sonic line v:ii! stay between the same two [ values for the entire shock. There seem to be

Jlree options when this occurs:

(1) Use a wide notch so as to cover the whole shock (see Fig. 70a). For strongly inclined
shocks (not typical of the transonic case or coarse grids), some of the information on

125




AEDC-TR-91-24

the computational grid will be lost. Also, differences (i.e., [¢']) would include more
than just the shock. This has the advantage of logical simplicity and is incorporated
in the slender body code.

(ii) Use a one point notch which follows the shock (see Fig. 70b). Here we would use
direction-sensitive differences for 4} and stencils that look like ( #orl ). To get the

correct coeflicients, however, ([éoz] etc.) they would need to be still calculated across

three mesh spacings. This could be somewhat inconsistent for some points (such as
Column I) which would be using coefficients from the middle of the nun -rical shock.

(i1i) Use a three point notch which follows the shock (see Fig. 70c). This avoids sciae of

the problems of (ii), but has some of its own, e.g., how to calculate ¢; at points like

and . Central differences (as currently used) would require ¢* values from

inside the notch. These could be obtained by linear extrapolation in z, as explained
earlier, but this introduces errors of at least O(h), and possible inconsistencies.

This is the method currently implemented. Perhaps a better way to calculate ¢
would be direction—sensitive one-point difference as in (ii). Here, one point forward on
the right (downstream) side and one point backward on the left for backwardly inclined
shocks and the reverse for forward inclinations.

(v) Output
The total lift L is given by
(52 /3
L= onoan / ['(z)dz , where b= semispan (3-178)
and I'(z) = total circulation
1
=To(2) + -E(d(z) +w(2))T*(z) . (3-19)
Then,
L 1
C. = E&T (Sw = area of wing = 2b[—1 c(z)dz)
62/3
(/ I(z )dz) — (3—80)
( )dz
2/3 14 L(d+w)r*
_9 f" QI B( O)r)dz for the similar sections case(3 — 81)
M f_l c(z)dz
where d = i‘r%l = 1 for an elliptic planform. For the free field case,
§2/3 I’ 1 [
CL=—’-‘-I‘0(0)(1+ ) , B=61/3-AR-—-/ c(z)dz
Mpn 4B 2 J_, (3 —82)

=63 AR. Z— for an elliptic planform.

126




AEDC-TR-91-24

sc37642
WIDE NOTCH

l
I
|
i Fig. 70a. Wide shock rotch.

5C37643
ONE POINT NOTCH

Fig. 70b. One point shock notch.

$C3784a

THREE POINT NOTCH

Fig. 70c. Three point shock notch.
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Other quantities, such as the corrected pressure on the wing at a particular span station,
can be similarly calculated using

6 = do +;1;-¢1 (3 — 83a)

Cp = —262%¢, . (3 —83b)

3.2.2.3 Program Operation and Flow Chart

Many of the modules in PHI1 have the same function and implementation as in 2D. (In
fact, SOLVE, ANGLES, and FARFLD are used directly by both programs.) Accordingly,
only the substantial changes are discussed here.

Principal Subroutines

PHI1
Functions:

Read control file.
Read zeroth order results.
Read ¢*,['* if available.
Initialize ¢* (method controlled by user).
(i) to0,¢*=T"=0.
(ii) to the solution of K¢7, + ¢3, = 0, by calling PHILAPL.
(iii) to an old solution.
Call WINGSC to compute the span scaling function d(z).
If u # 0, call TUNLSC to compute w(z).
Call SETUP to compute partial differential coefficients, and the shock relations.
Call SOLVE to solve the ¢; boundary value problem.
Call OUTPUT to write graphics and informative results.
Write ¢* and I'* to OUT_FILE, if requested.
Stop.

WINGSC — Computes d(z); see Section 3.2.2.2 (i).

The wing profile is read from WING_FILE, which should consist of (z,¢(z)) pairs, one
per line. This is extended, first to form a symmetrical wing, and then a periodic function,
as shown in Fig. 71.

z is mapped into 8 via z = —cos§; 0 < § < 2x. A periodic cubic spline is fitted in 6.
The idea is that wings may often look like /1 — 22 near the tips; the transformation will
remove the singularity in ¢'(z) which will help to provide a more accurate spline fit in this
neighborhood.
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The spline is evaluated at m equally spaced points in [0,27) where m = 2n, n =
number of input and extended points. (Too many would start to fit wiggles in the splines;
too few will not give enough Fourier coefficients.)

These values are used to compute a discrete Fourier transform of ¢(#).

The downwash integral ;- _‘_1 c;l_(_gfldf (Eq (3 — 65)) is then evaluated.

f_ll d(2)e(z)dz

These values of d(z) are then used to compute weffect = —f-r-(—)d——
crz)az
-1

by trapezoidal
quadrature.

“weffect” is the relative lift contribution due to aspect ratio (see Section 3.2.2.2 (v)).

TUNLSC — Computes w(z); see Section 3.2.2.2 {ii).

The wind tunnel ratio p is an argument (variable um); the integral is calculated by
the trapezoidal rule on a 51-point grid on [-1, 1].

fl w(z)c(z)dz o . .
_j oa S calculated similarly to weffect. It is the relative
c\z)az
-1

lift contribution due to wall interference (see Section 3.2.2.2 (v)).

The integral teffect =

SETJP — Calculates various coefficients used in the ¢; boundary valite problem and shock
relations (see Fig. 72).

Principal Variables
CX(1:IMAX,1:3) Computational molecule for first z derivative (centered).

—h2 hg - hx hl
hi(h1+h2) ~ hihz  ’ ha(hi+h2)

CXX(1:IMAX,1 :3) Molecule for second z derivative (centered).

CX(I,1:3)=

2 -2 2
hi(h1 +h2) * hiha 7 ha(hyi+ ha)

PX(1: IMAX,1: JMAX) Values of K — (y + 1)¢o,, calculated with

— central differences in elliptic regions

CXX(I,1:3)=

— backward differences in hyperbolic regions
— parabolic (i.e., PX = 0) at the elliptic to hyperbolic transition

No shock operator is used at the hyperbolic to elliptic transition; since it is handled
by the fitted shock).

PXX(1:IMAX,1: JMAX) Values of (y + 1)¢o,,, using central/backward differences.
SHK(1: JMAX) Relates to the fitted shock.
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SHK(J) = I Denotes the position of the downwind side of the shock notch at line J as
indicated in Fig. 73 and = 0 if there is no shock at that line.

JSMIN,JSMAX denote the j-limits of the shock. If the shock is only above the
wing say, JSMIN = FUP. If there is no shock at all, JSMAX < JSMIN.

The second part of SETUP evaluates various jumps and coefficients across the shock;,
and prepares them for the treatment of the numerical shock jump equation. Suppose
SHK(J) = 1. Then:

a= [(f)o,] = ¢,7 — ¢-1-3 (central differences)

For this quantity, ¢ is calculated using central differences away from the wing. On

it, the known boundary condition, i.e., ¢y, = % 22-%1 4 ] with $,, given is employed.
n =2 | Ay vo| vo &

¢ = 8%[¢o..] — [udo..] — 2B[¢o,,] & A, where p = K — (v +1)¢o, = PX.

From these quantities, eight cocfficients are stored in a common block for SLOR to
access later. These are:

CJIJMP(J,1:3)=283-CY(J,1:3) The molecule for 264,

CIMP(J,4) = &/ [¢o.] = &

CJMP!(]5) =

Tr41—-1g1

CJMP(],6:8) The computational molecule for pr_3é1,,_, + F‘:—Iq&l,_a

The differencing used here for ¢, is backwards and has error O(h?), not O(h).

I-5 I—-4 I-3
h2 h]
The coefficients of ¢;_s 4,3 are:
hy —(h1 + h2) 2hy +he
ho(hg + he) ' hih, " hy(hi + h2)

With these eight coefficients, the shock relation

. 20 1 » = [¢‘]
[n6:] - 5 (42] + 28(63) = A 17

is represented as

CIMP1d1, -y + CIMPyys_5¢1,5+ CIMPséy g1 = CIMPs 18- b(1-54,3),5
-~ CIMPs¢r41,j+ CIMPy 23 - d1-3,Uu
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$CI764%

clz)
O — INPUT DATA FOR - 1<2<0

O — EXTENDED DATA

2 -1
C]
Fig. 71. Periodic extension of planform.
"‘ §C37637
l
I(z:
|
|
| G
| /
Fig. 72. Computational e o 1 _____
molecule used in SETUP. h i e
I
|
I
kq l
#C37830 |
I
HYPERBOLIC ELLIPTIC |
x

.

Fig. 73. Pre and post shock
sides of shock notch.
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where U can equal J -1, J,or J + 1.

As before, ¢3 at J = FDN or FUP is computed using the Neumann boundary
condition ¢3[3=0 = L (see Section 3.2.2.2 (iv)).

PHILAPL (z,§, VK) calculates the analytic solution to the Prandtl Glauert “Hat plate”
problem (PG1) K¢.; + ¢35 =9; 65 =1at §=0,0<z<1;¢ » -L€ asr — oo at the
point (z,3), with 8 = tan™! VK§/z and r? = z? + K§2.

If Z=z+1:Y, with Y = -/K7, then the solution is obtained from the incompressible
map (IPG1) of PG1l: ¢,; + éyy = 0 with ¢ — ;—,I;tan“l Y; as 22 +Y? — oo and
¢oy(z,0) = _\/1—7\‘ ,0<z <1. this is:

/
n=ReF(Z)= %Re i—-iZ +v1—22+ 2tan™! 1—% + n} , (see 3.2.2.2 (iii))
1 1-2
= —=Re{ ~iZ +/1-22+2tan™"/ —>
{54 T 2

(3-84)
Equation (3 — 84) is obtained from integration (Ref. 44 195.04) of the complex velocity

for IPG1, F’(Z). Thus,
F(Z)=u—1v=1 ,/Z—_—1—1
Z+1 : (3 - 85)

u=4¢:(2,Y) , v=9dy(z,Y)

The real and imaginary parts of (3 — 85) give

u:—‘/%sin(a";o—) (3 —86a)
v:—‘/:—t—cos<o+;0—>, (3 — 86b)

where
Oy =arg(ZF¥1) , O<arg(---)<2r (3 — 87a)
r+ =mod(Z F1) . (3 —87h)
Fquation (3 — 84) indicates that I' = —27 for the Neumann boundary conditions assumed.

Equation (3 — 86a) exhibits the square root infinity in the perturbation pressure u near
the leading edge (r— = 0), and the fulfillment of the Kutta condition [u] = 0 at the trailing
edge r4 = 0. These features as well as the satisfaction of the boundary conditionon Y = 0,
0 < z <1, can be ascertained from (3 — 87a).
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In the notation of the subroutine,

argl «» arg(Z +1) = tan™! (-—X——)

\z+1
af Y
arg2 o arg(l — Z) = tan —_—
z-1
1 , _ 1+ 2
THETA « 2(a,rgl —arg2) (-— argy/ 7 —Z)

Quantities used to compute Re tan™! | /3% where tan™'Z = L 1n —'_*_"—Z = Re(tan™1) =

o (1) e

Z+1' ( 1+2 i-THETA)

a & ‘—_

7 -1 1.e.,\ 1——Z = ae
. [1+ 2 . .
b 1—7-"¢ sin(THETA) +idcos(THETA),
. 145
Pere

S
c e |1 =22,
THETAI « -;—(arg 1+ arg?2) (So that \/ITZ_Q = ce" THETAIL)
These results give,

\/_ {Y +c-cos(THETAI)+2-atan 4~}

Figure 74 outlines the post processing operations and Fig. 75 indicates the subroutine

SLOR.

3.2.3 Convergence Acceleration

Slow convergence can occui foi Lifting cases. This is marked by the error
ek = max |$k — k-1

becoming small although the solution is far from its limit value.

One possible acceleration technique developed in Ref. 45 uses estimates of the largest
eigenvalue(s) of the error matrix to guess the limit. If these eigenvalues are A; > Ay > -+,

then
Pk+1 — bk

Y + b

¢=¢r+ ——
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OUTPUT — WRITES 2 FILES OF RESULTS FORO14.DAT WHICH REPORTS
ON THE RUN AND FORO15.DAT WHICH 1S UNFORMATTED
AND CONTAINS GRAPHICS DATA

COMPUTE SCALING FACTORS FOR KRUPP SCALING, n ==, m =%
SCALCP = -243M~—n a 3
SCALM = ¢% mm FOR "NORMAL" S8CALING, m=n = 0.

| 4

SECOND ORDER EXTRAPOLATION IS
EXTRAPOLATE 4 AND 4* ON TO | pOSSIBLE USING SOLUTION VALUES OF

y = O. LINEARLY $yly = O BUT IS NONUNIFORMLY VALID AT
LEADING AND TRAILING EDGES.

\ 4
COMPUTE Cp,, AND Cp,

{= SCALCP o,)
ATy =0
Y
LINEARLY INTERPOLATE ANOTHER POSSIBILITY IS TO PUT THE
FOR Cp1 AT THE NOTCH JUMP ALL IN ONE PLACE AS IN 2(iv)

I

FOR ) = jsmin TO jsmax
GET glij)= ~ [¢*)égy]

v

COMPUTE LIFT COEFFICIENTS: | ¢ .423rg

OTH ORDER, AND ADJUSTED FOR | "7 « (1 L(EFFECT *+ 'EFFECT) rey
AR AND WING TUNNEL EFFECTS L1-“o \ B
compuTE 0TH ORDER AND MACHO = ~ 823 (K - fy+ 14g,)
CORRECTION MACH AMACH1 = d2/3 y+14°
NUMBERS x

WRITE DATA TO FILES

RETURN

Fig. 74. Flowchart of postprocessing elements, (repeated as Fig. 89 )
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SLOR — PERFORMS ONE LINE OVERRELAXATION ITERATION ON THE FIRST ORDER CORRECTION"C> 670
TO THE TRANSONIC SMALL DISTURBANCE EQUATION.

(K=ly+ Vg W =l + Ty #°, +4°, =0

SAVE CURRENT SOLUTION

OLD - PHi
FOR EACH COLUMN; - FOR EACH ROW: ‘ COMPARE THIS POINT
(i=1,i MAX) v i=1. j MAX) TO SHOCK NOTCH
AWAY FROM NOTCH :{,,ﬁ;‘“"
! ¢ INSIDE NOTCH
SET UP REGULAR JAMESON SET UP DUMMY EQUATION SET UP SHOCK JUMP
QUATION (ELL/PARB/HYP) TO (LINEAR EXTRAPOLATION EQUATION. [¢°y] TERMS
PXAY G PXX4S +4° =0 FROM NEAREST SIDE) DEPEND ON IF ON THE WING

WHEN ALL ROWS DONE

ARE WE ON THE WING, | YES
ARE WE ON THE WING. ADJUST EC:U:‘:K)‘NS FOR B.C.
NOTCH? v
T ]
o <
ARE WE DOWNSTREAM | YES
R on THe WG D : AoJusLs.clxxAnouer.on cut
THE NOTCH? AKE =
NO — ]
SOLVE THE TRIDIAGONAL
SYSTEM
AT TRAILING EDGE? | veS -
{OR. IF NOTCH OVERLAPS, p—b RECOMPUTE I' = I4ivg
EDGE + 1?) CALL FARFLD
L 1
—e
¥
CONTINUE SOLUTION
OF COLUMNS

Fig. 75. Flowchart of subroutine SLOR.
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is the formal limit, where 6 is at most of order A}.

There are several ways of esti’mating A. Three of these are given below as A, A1, and

—/\:1, where

L= l¢;+1 - ¢:|
|¢Z ~- o ;|

Xl = Z |¢'k+1 - ‘i’kl/z |¢k - ¢k—1|

Xy = 6F6r41/67 6 , where & = ¢i — dx—y

A (where ¢* is ¢ evaluated at some fixed reference point)

In our experiments, Xl seemed to be best: ); is sensitive to roundoff and the choice of ¢*,
wiile A; seemed to be frequently greater than 1.

Implementation: We use cyclic acceleration with cycle length k (typically 12-16)
based on iterates m apart (typically 2 or 4). k iterations are performed normally, then an
acceleration performed via:

Ay = bF k)6 bkem i bk = bk — Pkom
Sk — Pk—m

¢k — ¢k—m +

Then the cycle is repeated.
Advantages of Method

|
\ — As indicated in the Results section, the acceleration method in the long run helps
’ convergence greatly.

|

\

— By giving the solution a “kick” every k iterations, it stops it from being trapped
in a local near-solution well.

Disadvantages of Method

| — As ihe mesh spacing — 0, A; — 1. In practice, :\1 > 1 can occur. In this case,
we set A} = .985 (say) which upset the solution in some cases.

— The accelerated ¢ does not satisfy the difference equations. The process may
move ¢ and I' as a whole closer to their limits, but then most of the next cycle is
wasted getting back to a near-solution of the difference equations. This can be
inefficient and frustrating.

Improvements of the process seem feasible, using a higher order method, i.e., estimat-
ing Az, A3, etc., which could conceivably eliminate both the above disadvantages.

However, since the underlying equation for ¢, is nonlinear, there are some limitations
of the method. Convergence could require moving the shock, straining the applicability of
the linear method.
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3.3 Results for Subcritical Interference Flows

Figure 76 indicates the power of the convergence acceleration method for calculation
of a supercritical Mo, = .75, a = 2° flow over a NACA 0012 airfoil on a relatively fine grid.
Without acceleration, the circulation has not converged at 500 iterations. By contrast, the
acceleration method provides impulsive corrections to achieve almost the asymptotic value
of the circulation within the same number of sweeps. The relaxation parameter w was set
equal to 1.7 for these calculations.

Computational studies of the wall interference effect were made on similar section
wings. Figure 77 indicates chordwise pressure distributions associated with the dominant
two—dimensional term ¢ at My, = .63 and a = 2° (solid curve) for a NACA 0012 airfoil
wing. This variation has the characteristic leading edge singularity. At higher Mach num-
bers, clustering the grid ncar the leading edge was important in achieving convergence.
The relative corrections associated with finite aspect ratio and wall interference (1) are
also shown for the same set of flight conditions for an aspect ratio (AR) = 8 elliptic plan-
form. The dotted curves indicate the free field finite aspect ratio chordwise distributions
on upper and lower surfaces and the dashed lines denote the additional wall interference
effect for a circular open jet test section using the far field correction worked out in Sec-
tion 3.1, given as Eq. (3 —59b) herein. In the figure, C; denotes the critical pressure level.
A mean value C is shown for Cp in which

Pmean

_ I1, e(2)Cpdz
Prmesn f_l_l c(z)dz

The parameter p is the reciprocal of the semispan in units of the tunnel radius.
Accordingly, the case indicated in Fig. 77 corresponds to a semispan of 95% of the tunnel
test section radius. In agreement with the assumptions of the asymptotic method, the
wall interference correction for this case is numerically of the same order as the free ficld
three-dimensional correction associated with finite aspect ratio and the induced angle of
attack correction of the trailing vortex system. The correction appears to peak near the
leading edge and is greater on the upper surface of the wing than the lower at this positive
incidence.

The associated isoMachs for this case are shown in Figs. 78-80. Figure 78 indicates
these lines for the zeroth order two—dimensional solution. Figure 79 shows those corre-
sponding to the incremental effect of aspect ratio and wall interference associated with ¢;.
The resultant field is shown in Fig. 80. In Fig. 79, it is interesting to note the persistence
of the leading edge singularity of the ¢, field in the isoMach pattern.

For the elliptic planform of Fig. 77 at M, = .63, and a = 2°, Fig. 81 shows the
variation of the chordwise pressure distribution along the span due to the combined effects
of wind tunnel wall interference and finite aspect ratio. Analytical evaluation of (3 — 59b)
specialized to the case of the elliptic planform fully spanning the tunnel (¢ = 1) indicates
that there is a square root infinity in the span load distribution at the blocked wing tips
at their intersection with the open jet or solid wind tunnel walls. This trend persists for
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Fig. 77. Mean wing chordwise pressures, circular open jet test section wind tunnel,
Mo, = 63, a = 2°, NACA 0012 airfoil, 100 x 60 grid, elliptic planform.
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Fig. 78. IsoMachs for zeroth order flow for wing of Fig. 77.
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Fig. 79. Perturbation (#,) isoMachs for wing of Fig. 77.
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the p = 1.05 case, since the wing almost spans the tunnel. Accordingly, the chordwise
pressures are almost identical ai stations over most of the span, but change drastically at
the tips as shown in Fig. 81. Studies of this type for the supercritical case could guide the
twist of the wing to achieve effective free field conditions in the tunnel.

Associated with these pressures are the spanwise load distributions shown in Fig. 82.
The ordinate is the sectional lift coefficient along the span normalized to the two-
dimensional value for M, = .63 and @ = 2. Also shown is C/Cy,, the total wing
lift coefficient corresponding to the separate and combined effects of finite aspect ratio and
wall interference normalized to the two-dimensional value. Here, the forementioned exag-
gerated tip effect is evident and is connected to the wall interference. For this 95% spanning
of the test section, both effects combine to give a reduction of the two-dimensional lift

by 42%.

The effect of planform shape on these sectional lift distributions is shown ia Fig. 83,
where the chord variation "
e(z) = (1-2%)

is considered at the same conditions as the elliptic one of Fig. 77. In contrast to the
constant downwash effect of the trailing vortex system for the elliptic planform, the free
field finite aspect ratio correction now also shows a variable twist effect along the span.
For the elliptic wing, this was associated only with the wall interference. It is interesting to
note that in spite of this, the magnitude of the total lift reduction due to combined finite
aspect ratio and wall interference is still approximately the same as that for the elliptic
planform.

Supercritical shock capturing will be described in what follows. Of interest in con-
nection with the shock fitting required for the ¢; solution is the “crispness” of the shocks
captured by the ¢q solution. Figures 84 and 85 show pressure distributions along various
lines j = 1,2,3,---,jMAX for coarse and fine grids, respectively. Figure 85 indicates that
our algorithm captures the shock over 2 to 3 mesh points. In Fig. 86, the relationship of
the jumps to the Rankine Hugoniot shock polar is shown. If u; and v, represent preshock
reference states, the abscissa and ordinate used for the figure are respectively

(v +1)(u —u1)

2|
i

(y+1u - K
5o (D =w) { 3 }“’2
4 (v+1u - K ’

where u = ¢o,, v = ¢, and K is the transonic similarity parameter defined previously.
The various curves progressing from the u axis upwards each represent the variation of u
with ¥ along § = constant lines, starting with a g level closest to the airfoil and moving
upwards in unit increments of j. The sharp break in the curves near the non-diffused part
of the shock occurs at its downstream side. The proximity of the kink location to the polar
is a validation of our algorithm to capture the proper Rankine Hugoniot jumps.

As indication of the effectiveness of the grid clustering employed, Fig. 87 shows iso-
Machs for the more supercritical NACA 0012 flow corresponding to Mo, = .8 and a = 2°.
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Fig. 82. Spanwise loading for wing of Fig. 77.
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Fig. 83. Spanwise loading for nonelliptic wing. All other parameters identical to those
associated with Fig. 77.
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Fig. 84. Pressure distributions over NACA 0012 airfoil, My =.75,a = 2°, 50 x 50 grid,
Ay =.05 A = 1.
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Fig. 85. Pressure distributions over NACA 0012 airfoil, M, = .75, a = 2°, 98 x 60 grid.
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Fig. 86. Variation of perturbation downwash with pressure in relation to shock hodo-
graph, My, = .75, a = 2°, NACA 0012 airfoil.
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Formation of the recompression shock on the rear of the airfoil is evident in these patterns.
The horizontal and vertical grid clustering employed are shown near the frame of this plot.

3.4 Supercritical Interference Flows

In Fig. 88, a result is shown for a supercritical interference flow. This calculation
represents the chordwise pressures over an aspect ratio 8 elliptic planform which spans
90% of a circular wind tunnel. The wing is at 2° angle of attack, at a tunnel Mach number
of 0.7, and has similar NACA 0012 airfoil sections along its span. The effect of the open
jet and aspect ratio is to weaken the shock as anticipated.

In the treatment of these supercritical flows, the numerical methods were refined so
that the shock fitting methods can adequately handle stronger supercritical cases associated
with Fig. 88. Two issues dealt with in this connection are the ¢* shock fitting procedures
and the treatment of the surface boundary conditions.

In connection with the shock issue, it is useful to note that in practically interesting
cases, the shock is almost vertical and the region about it can be contained with a vertically
oriented boundary ABCD as shown in Fig. 68. The zone inside the “shock notch” ABCD
is a “hole” for which it is not necessary to compute the interference potential ¢*. On the
other hand, a staggered boundary of a mesh width of three points shown in Fig. 70c can
also be used to satisfy the appropriate jump conditions across the shock. The configuration
of Fig. 68 is advantageous from the standpoint of programming logic, particularly in the
treatment of jumps in ¢} ([¢ ]) so that differentiation inside the notch is avoided. The
disadvantage is that the shock region may be unnecessarily widened. However, for nearly
vertical shocks associated with Mach numbers close to unity and fine grids, this disadvan-
tage can be offset. The three point staggered notch has the advantage of following the
shock contours.

Subroutines SETUP and SLOR have been optimized so that numerical treatment of
the staggered and upright notch can be built into these modules. SETUP is a subroutine
that calculates the coefficients needed in the variational (1** order) equation from the
zeroth order basic flow solution. It is used in subroutine SLOR and also detects the shock
as well as finding the coefficients for the 1** order jumps. SLOR is depicted in Fig. 75.

Other capabilities that are included in the code are adjustment of notch width and
batch capability. In regard to the former, the adjustment can be made asymmetrically in
the streamwise direction to model the shock layer adequately.

In regard to the boundary conditions, boundary points are handled by averaging the
slope information on the boundary with that at the immediately adjacent vertical node
point. The resulting discretization is given as Eq. (3 — 76) which is used to numerically
evaluate the 583; terms in the equations of motion. Referring to Fig. 59, additional accuracy
and consistency with the locally second order accurate discretization for interior points can
be achieved based on a Taylor series method. These use the first three vertical nodes points
shown in the aforementioned figure. In the upper half plane, noting these by indices 1, 2,
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Fig. 87. IsoMachs for NACA 0012 airfoil, M, = .8, a = 2°, grid adapted to leading
edge bluntness.
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and 3 corresponding to fup, fup + 1, and fup + 2 and letting

hi=y2 -0
hs =y3 —y2

it is possible to obtain a locally second order accurate expression for ¢, at y2 in terms of
é, at y = 0, which is not a node point. The Taylor series gives simuitaneous equations
with information which allows ¢ at y = 0 to be eliminated so that the following expression
can be obtained:

2h? —2h; h% — hg b2+ h, (3h1 + hz) h2

hihz(h1 + h2)(2h2 + ha) ha(hy + ha)(2h1 + ha) ¢3 — Shy + g by |,=0 )
(3 — 88)

by |2=

where ¢, |y=0 is specified in the boundary conditions.

With the PHI1 code modules charted in Figs. 75 and 89 and other figures, an
My = 0.75, a = 2° case was computed for an elliptic planform, aspect ratio 8 wing.
The wing was assumed confined by a circular cross section free jet wind tunnel, with the
wing spanning 95% of the tunnel diameter.

To accelerate the convergence of the iterative scheme, the special method described in
Section 3.2.3 involving the eigenvalues of the error matrices was used. This is particularly
important for transonic lifting cases involving supersonic bubbles whose dimensions are a
substantial fraction of the airfoil chord such as this one considered here. In Fig. 90, the
convergence history of the tunnel wall perturbation of the circulation is shown. Rapid
convergence is achieved after only 200 iterations for this grid which had 50 points on the
airfoil and 60 vertical nodes. An important factor controlling this behavior was the proper
treatment of the shock notch. Referring to Eqs. (3 — 73), particularly, the factors {¢o,,],
[40.,], [¢0.], and [¢0,], it is imperative in this stronger supercritical case that no differen-
tiation is performed inside the rapidly varying and possibly numerically dispersive shock
layer which computationally models its physically discontinuous counterpart. In addition,
the width of the notch should be adjusted so that the full Rankine Hugoniot transition
is achieved. This is based on the weak solutions associated with the divergence form of
the small disturbance equation. As discussed in Section 2.20, the streamwise pressure
variations at various heights above the airfoil depicted in Fig. 85 and the isoMachs chown
in Figs. 91 and 92 have been considered in establishing the upstream and downstream
boundaries for the shock notch.

The basic wind tunnel wall effect of this NACA 0012 similar wing gives rise to corrected
isoMach patterns shown in Fig. 93. Clearly evident in this figure is the shock notch.

3.4.1 Refinements of Shock Fitting Procedures

As indicated in Ref. 29 and Section 3.2.2.2 in the numerical implementation of tran-
sonic lifting line theory for wind tunnel wall interference, the shock is captured for the 0
order approximation to the flow, while the 1! order perturbation is fitted.
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Fig. 93. Free jet wind tunnel corrected isoMachs for My = 0.75, a = 2°, AR = 8,
u = 1.05, elliptic planform, NACA 0012 airfoil section.
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On the wing, because of the tangent flow condition, [¢o,], = [¢1,]. = 0, the shock
conditions (3 — 73) and (3 — 74) specialize to

[Km—ﬁgﬂﬁ 0 (3- 89)
where ¢ is the perturbat‘on potential defined in Eq. (3 — 1) and ¢¢ and ¢; are compor:ents
of the inner expansion given in Egs. (3 — 55), and thus (¢;), = 17%1) with (¢.), defined

_ (+()s00))

3 . Siwmilarly, the 0** order shock condition on the wing is

K
T (v+1)

(¢0. a0 (3 — 20)

and the 1*! order shock condition becomes

($1.)50 = —91(P0,0)s0 - (3-91)

Equation (3 — 90) is Prandtl’s relation for normal shocks and (3 — 91) corresponds to
a perturbation of it. Both (3 — 90) and (3 — 91) can be used as checks on the numerical
codes. Our experience is that (3 — 90) can be satisfied to within 10% in the 0** order
code with a mesh of 100 points in the strearnwise direction and 50 points transverse to the
flow. This inaccuracy is important in satisfying (3 —91) in the 1** order code. Since in the
derivation of (3 — 91), (3 — 90) is used, an error in its satisfaction in the 0** order code,
corrupts the satisfaction of (3 — 91).

To alleviate this problem, we have modified the 1** order shock condition (3 — 73a) by
replacing p with p — (u) f(y), where f(y) is a function that has been defined with special
properties for this application. The quantity (u) is the average of the u upstream and
downstream of the shock sy and is 0 when (3 — 90) is exactly satisfied. The function f(y),
whose value is 1 on the wing and decays to 0 away from the wing, is introduced to avoid
discontinuous behavior from the shocked region to the unshocked region across the shock
notch boundary. With this modification, (3 — 91) can be satisfied even when (3 — 90) has
numerical errors as has been shown by its recent implementation in the 1! order code.

With ¢¢ and ¢;, ¢, ¢ and the pressures on the wing can be obtained.
The post—processing steps are as follows:

(a) Calculate the shock position on the wing by the relation

2= 90() + 5O(®) - (3-92)

Let zo denote the shock position from the 0** order result and z,, the shock position
for ¢, then (3—-92) gives 2, = zo+ -lggl (Ywing) = xo +6z. For the following procedure,
we assume I, is less than zy. (A similar procedure holds for the case in which z, is
greater than z,.)
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(b) For z in the range zp4 = z > -1, ¢, = ¢o, + %4&1,. (Subscripts + and — signify
upstream and downstream, respectively.)

(c) At & =zny, ¢z = o, (To+) + 591.(20+) + 82d0,.(T04)-

(d) At 2 =2n_, 4z = do,(20-) + 51.(20-) + 620, (20-)-

() Forzinl >z > 20—, ¢ = o, + %qh,.

(f) Linear interpolation is used for z between z,_ and z¢_.

(g) Finally, for graphing purposes, linear interpolation is used for z between z,4 and z,_.

The post-processing implies that (¢.)s = {¢o, )s,, 80 that the shock condition on the
wing is satisfied to the accuracy of the 0** order code.

Figure 94 gives pressure distributions for an unconfined finite aspect ratio wing
(AR = 8) and infinite wing for Mach number M., = 0.75 and angle of attack of 2°
over a NACA 0012 airfoil. Since Cp = —262/3¢,, (Cp) = —26°PK /(¥ + 1) = Cper. As
shown in the figure, this condition is satisfied for the infinite wing within 13% based on
the 0** order result. The condition is also satisfied with the same accuracy for the AR =8
finite wing. The effect associated with free jet wall interference is shown in the span av-
eraged chordwise pressure of Fig. 95. Both the aspect ratio effect and the free jet wall
interference agree with qualitative reasoning of the downwash field induced by the trailing
vortex system and by the two—dimensional image vortex system in the Trefftz plane. For
an elliptic planform, the aspect ratio effect is constant along the wing span due to the uni-
form downwash induced on the loaded line by the trailing vortex system. By contrast, the
wall interference is variable as shown in Fig. 96. The sense of the free jet imaging vortex
is the same as the tip and trailing vortices associated with finite span. These reduce the
incidence and lift, moving the shock forward.

In summary, Steps (a)-(g) comprising the shock fitting procedure above provide a
numerical mechanism to ensure that proper shock conditions are satisfied.

3.5 Computational Implementation of Pressure Specified Boundary Conditions

In addition to development of the strong supercritical capability, the high aspect ratio
(HIAR) codes have been generalized to account for pressure boundary conditions on a
tunnel interface, which for convenience and without loss of generality have been assumed
to be cylindrical.

If the interfacial pressure distribution is Cy,(z, ), where z is the flow direction and the
subscript I hereinafter refers to the interface, the corresponding transonic small disturbance
perturbation backwash on the interface is ¢1, = —C,/262/3, where § is the wing thickness
ratio. Also from analyses given earlier in this report, the outer representation of ¢ in the
large height (H) span limit defined before Eq. (3 — 2), it is clear that g, = ¢7. Letting
wo, = W(z,8), then
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Fig. 94. Chordwise pressures along span in free field, Mo, = .75, a = 2°, elliptic plan-

form, NACA 0012 airfoil section.
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NACA 0012 airfoil section.
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Fig. 96. Chordwise pressures along span within free jet wall boundary, M, = .75,
a = 2° u = 1.05, elliptic planform, NACA 0012 airfoil section.
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W= [ C’ : 3-9

/ 2 52 /3 ( - 3)
where o, at £ = —o0 is assumed to vanish. If lateral symmetry W(z*,8) = W(z*,-9)
is assumed, where 0 is measured from the intersection of the vertical plane of symmetry
and the interface, W can be represented as the Fourier series (3 — 48b) where the W, are
given after Eq. (3 — 49). On the basis of the analysis given in Section 3.1.2 the additional
downwash W on the loaded line due to the interaction of the trailing vortex system with the
walls or interface can be rcpresented by a superposition of two effects. If wg corresponds
to the downwash increment associated with a free jet and w; is an increment associated
with a pressure specification, then

w = wp 4 w1 = ¢y(0,0,2*), ~B < 2* < B. (3-94)
In terms of notation used in the code modules related to PHI1, w « tint. Based on the
analysis described in Section 3.1.2

[e o]

m=e Y n- 1)"ZJ"(J(;'z)) eI IW(s")dat, (3 -95)
n=1,3,5,- ne

where K is the transonic similarity parameter, and j,, are the zeros of the Bessel functions
Jn-

In Section 3.1.2, approximations for the inner integral have been used that suggest
that the downstream features of the interface pressure do not contribute strongly to wj.
Because of the substantial exponential factor in the integrand, (3—95) can be approximated
by including only the first term in the inner sum to give

o0

wr = 1 nJl(Jnlz) e~ intlz®| . . _
=R, T Gy Jl T e @-99)

Equation (3 —96) has been used to evaluate a special interface pressure distribution which
has some features of those discussed in summaries of Calspan AEDC WIAC related effort
contained in Refs. 46 and 47. The model interface pressure distribution used with the
generalized HIAR code is

Cp, = e2¢ 1 lsgn(z*) {1 + €1 cos8} , —00 < 2* < 0 (83-97)

where ¢; and €; are constants, and sgn(z) = 1 for z > 0, —1 for z < 0. Equation (3 — 97)
implies that

W(z*) = 262/3 (14 ¢ cos@)e =71 (3-~98)
. €1€2 .
Wi(z*) = 26‘2/23 Pl (3 —99a)
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Wa(z*)=0,n>1. (3 —99b)
Substitution in (3 — 96) gives
. —€1€2 N1(j112*)
z7)= : 3 - 100
) = GRTRG+ e TG (8 = 100a)
and )
w;(0) = _“1€2Ju (3 — 100b)

282AVK(1 + ju)Jj (i)
A numerical evaluation of Egs. (3 — 100) recuces them to the following relations:

wi(e*) = 1.855¢€; €2 J1(3.8322*)
1 TYENG 4 2*
.98461 €2
52 /3\/1_('
Equations (3 — 101) were utilized in computing the effect of interfacial pressure boundary
conditions in the HIAR code. Figure 97 shows the effect of the interfacial dis‘ribution
of (3 —10) on the prediction of the midspan chordwise pressure distribution for the NACA
0012 elliptic wing case mentioned previously for ¢; = €2 = .2. With all other parameters
the same, the streamwise and angular pressure dependence results in a loss of lift from
the free jet and unconfined flow distributions. Associated Zierep singularity behavior is
discussed in Appendix B. This example demonstrates a capability which will be useful
in testing and exploiting concepts for integrating asymptotic methods with experimental
measurements, (AIM) is a new class of WIAC techniques. AIM concepts will be discussed
in Section 4. Here, the HIAR code can be a useru! means of testing various concepts.

3.6 Viscous Effects

Viscous effects play an important role in wall interference estimates. In connection
with this observation, recent complementary Rockwell IR&D effort indicates that viscous
effects on a NACA 0012 airfoil for a free field case close to that of Fig. 94 can produce a
substantial movement in the shock from its trailing edge position predicted by a purely
inviscid full potential solver. This is shown in Figs. 98-100, where an interacted boundary
layer solution moves the shock system to the midchord position. On the basis of this
experience and other related activity reported in Refs. 48-51, another contemplated future
development related to the AIM activity is a viscous version of the HIAR code.

(3 — 101a)

w1(0) = (3 — 101d)

3.7 Nonsimilar Section Wings and Lockheed Database

The primary emphasis of this phase of the contractual effort was focused on relating
the high aspect ratio code to an experimental database. Accomplishments were:

o The code was generalized to handle nonsimilar section wings in which the airfoil
sections are not the same shape.

e One of the wings tested in Ref. 52 was analyzed with the interference-free code
(0%} order) as well as the software for assessing wall interference (1% order).

o The 0** order code was used to establish the correctibility of the Ref. 52 data.
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Fig. 97. Chordwise pressures at midspan with pressure boundary condition, elliptic
planform wing NACA 0012 airfoil, M, = 075, a = 2°, u = 1.05,
AR=8,€1 =€2=.2.
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Fig. 98. Comparison of predictions from viscous interacted full potential equation solver

and experiment.
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Fig. 99. Density level lines for inviscid flow — shock at trailing edge, NACA 0012 airfoil,
M., =0.799, a = 2.26°, 1650 iterations.
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Fig. 100. Density level lines for viscous interacted full potential code. Viscous effect

moves inviscid trailing edge shock to midchord, NACA 0012 airfoil,
My = 0.799, o = 2.26°, 1650 iterations.
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3.7.1 Swept Wing Comparison Database

In Ref. 53, databases were reviewed as candidates for interaction with the contractual
effort described herein. One of these (Ref. 52), although having sparse pressure data in the
far field, was selected to provide an assessment of how the methods of this contract might
be applied. In this experiment, three swept wings were iested in the Lockheed tunnel,
isolated from, and in combination with, a fuselage at transonic Mach numbers.

3.7.2 Code Generalization to Nonsimilar Section Wings

Table 2 (Table 1 from Ref. 52) gives the geometric parameters of the wings tested and
Fig. 101 gives a sketch of their planforms. In Fig. 102, the root, midspan, and tip sections
are indicated. This wing has thickness, twist, and camber distributions that vary linearly
along the span and is therefore non-similar. Accordingly, the similarity formulation used
in Section 3.2.2 must be generalized.

This can be accomplished by simplifying the problem described by Eqs. (3 — 58)
and (3 — 59) with the transformation

8= _1 (3 — 102a)
¢FF
with
¢rF = y(d+w) , (3 — 102b)
Equation (3 — 58a) implies
Li®¢l=0 , (3 —102¢)
Equation (3 — 58b) leads to
d~— O 0 asr — o0 (3 —1024)
T 2m¢rr ’
and
®,(z,00=1 (0<z<1) . (3 —102¢)
From Eq. (3 — 58¢),
r
(8] = — (3 - 102)
PFF

Thus, the use of (3 — 102a) and (3 — 102b) reduces the calculation to solution of equations
identical to the similar-section-wing equations, (3 — 61), with the exception that the
nonlinear term has ¢, evaluated not at z = 0. In addition, the quantities d and w are
used parametrically at each span station from a knowledge of I'y(z), the spanwise loading
of the 0t* order problem. This corresponds to a kind of strip theory. In order to obtain I'y,
the semispan wing is divided into n span stations, and the zeroth order problem (3 — 57) is
solved at each. For the results to be presented, n was selected to be 5. Depending on the
planform, some investigation is required to determine if this value provides a good enough
approximation of the spanwise loading to obtain the ¢; variational solution accurately.
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Table 2. Wing Model Geometry (from Ref. 52)

WING
A B c

AR 8.0 3.8 2.6

! c.b 0.4 0.3
hey,» deg. 25.0 30.0 38.4
€, deg. 2.76 2.50 2.38
8y, deg. -2.04 -4.00 -5.79
(t/e),, % 12.0 6.0 7.0
(t/e) s 12.0 6.0 11.0
$/2, cm? (in?) 528.0 (81.8) 530.0 (B2.1) 523.0 (81.0)
b/2, em (in.) bs.7 (18.0) 31.8 (12.5) 26.1 (10.36)
Cr, em (in.) 16.51 (6.50) 23.88 (9.40) 30.83 (12.14)
C.v ocm (in.) 6.60 (2.60) .55 (3.76) 9.25 (3.6%)
MAC, cm (in.) 12.26 (4.825) 17.71 (6.974) 21.95 (8.642)
Yuac. om (in.) 19.39 (7.714) 12.60 (5.353) 10.68 (h.2C¢;
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Figure 101. Planforms of tested wings (from Ref. 52).
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Figure 102. Wing A airfoil sections (from Ref. £2).
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3.7.3 _Results

Chordwise pressure distributions on the swept wing (Wing A) configuration of Ref. 52
were computed at various angles of attack «, and Mach number M. To achieve rapid con-
vergence, the streamwise grid was clustered near the blunt leading edge. To demonstrate
a typical calculation, Figs. 103 and 104 show the cffect of wall interference and finite span
corrections on the chordwise pressures of Wing A at nearly midspan, and at two angles of
attack. The largest corrections appear to he near the shock at a = 0°. By contrast, the
more supercritical case corresponding to a = 1° shows a greater extent of the corrections.
For both incidences, they are most prorounced on the upper wing surface.

In Ref. 30, modifications to the boundary value problem (3 — 57) are discussed for a
yawed wing. The analysis shows that these changes occur in the far field for the three-
dimensional 1** order perturbation flow and in both the far field and equations of motion
for the 279 order flow.

The HIAR code is based on a theory not designed for swept wings. This is because
the dominant approximation of the inner flow assumes that all spanwise stations are ap-
proximately two dimensional. If a discontinuity occurs in the slope of the leading edge, a
local three-dimensional flow occurs, nullifying this assumption. Such discontinuities occur
at the root apex and tips of swept and other kinds of planforms. More general cases are
cranked shapes. Asymptotic procedures are under consideration to treat these corner flows
and involve “canonical” numerical problems for the nonlinear flow near the corner. These
canonical problems remain the same for planform changes away from the corner.

In spite of this limitation, it was of interest to assess the correctability of the Wing A
results using the 0t* order code. Figures 105 and 106 indicate chordwise pressure compar-
isons of our 0** order code with data from Ref. 52. In both figures, the effective tunnel
Mach number and angle of attack were modified to match the data. The similarity of the
pressure distributions suggests the correctability of the test data. In Fig. 105, the influence
of shock-boundary layer interaction is not as great as in Fig. 106. For treating viscous
effects more effectively, under complementary IR&D funding, the contractor has developed
an interactive boundary layer code based on Green’s Lag Entrainment model that would
presumably reduce the effective increment in K associated with the combined Mach, angle
of attack corrections used in Figs. 105 and 106. This was used to obtain the previously
discussed results indicated in Figs. 98-100.

3.7.4 Discussion

In comparisons such as Figs. 105 and 106, what needs to be analyzed are the combined
effects of sweepback and viscous interactions on the interference. In Ref. 29, the similarity
parameter K was allowed to vary from the 0'* order flow to the 1°* order wall interference
flow. This flexibility should be investigated with the aim of systemizing the corrections
that can be obtained through studies of the type associated with Figs. 105 and 106. The
variation of K is expressed in a perturbation form related to the asymptotic expansion of
the perturbation potential ¢. This perturbation gives the flexibility of varying the tunnel
Mach number and geometric angle of attack to correct or simulate free field conditions.
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Figure 103. 0'* and 1** order chordwise pressure distributions on Wing A, n = 0.45,
M =.76, a = 0°.
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Figure 104. 0'" and 1** order pressure distributions on Wing A, = 0.5, M = .76, a = 1°.
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*+ UPPER SURFACE } EXPERIMENT
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Figure 105. Comparison of theoretical and experimental chordwise pressures for Wing A,
n = 0.5, tested at M =0.76, a = 2.95°.
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Figure 106. Comparison of theoretical and experimental chordwise pressures for Wing A,
n = .9, tested at M = 0.82, a = 2.9°.
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3.8 Fuselage Effects

A high aspect ratio wing—body configuration is shown inside a wind tunne) in Fig. 107.

In what follows, the effect of the fuselage on the theory for wing-alone transonic wall

interference will be considered. For this purpose, the fuselage will be considered slender

and axisymmetric. Within the coordinate system shown in Fig. 107, the equation of the
body is

B=r—0F(z)=0 . (3-103)

The analyses in the previous sections and Ref. 29 indicate that the transonic high aspect
ratio wing flow in a wind tunnel could be treated Ly an extension of the lifting line theory
for the unconfined case discussed in Ref. 30. The principai ideas are that:

1) The near field (inner expansion) in the vicinity of the wing is two dimensional in the
sense that the span stations are independent.

2) The finite span effect is felt through the effective downwash of the trailing vortex
system on a bound vortex or lifting line simulating the wing. The trailing vortex
system corresponds to the outer (far field) expansion.

3) The effective “twist” of Item 2 is computed by a form of Biot Savart’s law which was
systematically derived from an integral representation based on Green’s formula. This
twist represents matching of the inner and outer expansions.

4) The wall interference problem can be solved by using an appropriate redefinition of the
Grecn'’s function used in the Green’s formula of Item 3 which satisfies the appropriate
wall boundary conditions in contrast to the free field definition.

Based on the findings of Section 3.1.1.2, the Green’s function amounts to imaging
the streamwise projection in the Trefftz plane of the wing trailing vortex system into the
projection of the wind tunnel wall boundary. This theory is an outgrowth of a systematic
asymptotic treatment of the transonic case. It gives a Green’s function which has the
same form as for incompressible flow derived by a different method in Ref. 54. The basic
features of the lifting line idealization of the flow are shown in Fig. 55 for a circular wind
tunnel.

If the tunnel Mach number is such that the far field is subsonic, then Green’s for-
mula can be used to solve the Prandtl Glauert equation of motion which can be recast as
Laplace’s equation if the transonic similarity parameter K is scaled out in the usual way.
Green'’s formula can then be used to give an integral representation of the flow. Charac-
terizing the field by a perturbation potential ¢ which has been defined in Seciion 3.1.1.2,
the integral representation (3 — 10a) with addition of the body is now

¢ = Ipopy + Iwarrs + I (3 — 104a)

oG
Igopy = ,/;o[)y / (¢5r-l-) ds (3 — 104d)
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Fig. 107. Confined high aspect ratio wing-body model.
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and IwapLs and I, are defined in (3 — 10b) and (3 — 10c) and G = 0 on the walls as
in Section 3.1.1.2. Therefore, if a free jet wall boundary condition ¢ = 0 is considered,
Iwarrs == 0. For convenience, the thickness effect of the wing will be neglected in what
follows. The analysis can be easily extended to include it.

it will be seen that the principal effect of the body is to modify the integral I, in
(3 — 11a). This causes a change in the finite~aspect-ratio downwash all along the loaded
line. A morz local effect occurs in the near field at the wing-body junction in the case of the
flow near the tips or a kink at the center of a planform. In these regions, the assumption cf
independence of spanwise sections is invalid. The resulting fully three-dimensioral flows
are assum-.d to lead to only a secondary influence on wall interference and wiil therefore
not te considered in what follows. The main focus will be the calculation of 1,. Prior to
its caleulation, we note that Igpopy is given by

to
Igopy = ;ig}) / a_ﬁ -27pGpopydf . (3 —105)
0 .

By linearity of the outer flow field, the body is assumed to be characterized by a line source
which is superinipcsed on the trailing vortex sheet flow shown in Fig. 55. Hcre,

9 _ A

p_.opap = om0 (3 -106)

where A is the local cross sectional area. Because of the superposition property, a more
general fuselage shape can be considered. For such a configuration, (3 —105) and (3 — 106)
would still be valid.

In a free field,
_ 1 1

S -+ -+ (0P
where for y, 7, z, ¢ will hereinafter signify scaled coordinates.

(3 - 107)

For free jet boundary conditions on a circular wall, it was shown in Section 3.1.1.2
vhat

- “Anlz =€l ], (Aakr) Jn (An
G = L Z cosnaz c In(Ansr)J 2( &) , (83-13"
n=-—o00 k '\"k [Jt,t(A"k”)]

where the J, are Bessel functions and Anx their zeros in accord with definitions given
earlier, and by symmetry the §' argument given in (3 — 13) is omitted. Because of axial
symmetry, the effect of Igopy on the finite aspect ratio downwash effect will be zero.

To treat I, the result obtained from a systematic approximation procedure for the
wing-alone case will be generalized. The generalization will be obtained by modifying the
imaging solely in the Trefftz plane. Accordingly, the doublet sheet interaction with the free
jet tunnel boundaries will be considered as depicted in Fig. 108. As in Section 3.1.1.2, the
effect of the line doublet is obtained by superposition of individual elements. A circular
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cross section body is analyzed herein. More general cross sections can be handled by the
techniques described in Refs. 49 and 51.

To expedite the solution, only slender bodies in the sense that the maximum body
diameter is small compared to the wing span will be treated. In fact, in the outer limit
certain stretched coordinates were introduced in Ref. 29. Denoting the span in units of
the chord as b, these are

* *

z =% L oyr=L zt=% , B=6/% fixedas6—0 .  (3-—108)

o=

Accordingly, € = 4_543/_8. Obviously, other choices are possible besides using é as the body
maximum thickness in (3 — 1). This option gives a region of transonic flow around the

body ihat has lateral dimensions of O(67!).
To obtain the image of a doublet in the annular region ¢ < r* < u shown in Fig. 108,

perturbation methods are used. Here, r* = /y** + 2*’. Two cases can be identified:
i) ¢=0Q)
(i) ¢(=0()

Case (i)

Denoting the complex potential as F(Z) = ¢(z,y) + iy(z,y) with Z = z + iy, where
the stars on y and z will be dropped, the appropriate expression for F is

. 1 € 1 1 1)\ é
2’"”=z——7+z;(zt‘g)-(zf+<—z)z
@ @ &) (3 - 109)
+

@hlr—t

In (3 — 109), D represents the doublet, @its “reflection” in the tunnel boundary r = y,
®is a compensation term to make the body a stream surface, and @is a constant added to
match the Case (ii) expression for ¢ in an overlap domain of mutual validity. This feature
will be used to obtain a uniformly valid representation in (. Term @)is associated with the
behavior

(1 1
®+@=(;‘2‘+‘;§>Z as Z—0

and the circle theorem for homogeneous Dirichlet conditions. Thus if A = % + %,

®+@+©=A(Z—EZZ-)
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Fig. 108. Projection of doublet sheet in Trefftz plane.
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. - 2
and since Z = $ on r = ¢, then

D+Q+@=4(2-2)
so that
Re(Q+Q+ @) =0
which is the desired property.

It is important to note that the reflection term @) does not spoil the boundary con-
dition on the tunnel boundary |Z| = u.

Case (ii)

For this case,

1 €? 1 Z 52)
miF=—— [ —— - Z (1=
mE=7zZ- 2( _%) ;ﬂ( ) . (3 — 110)
@I @I @I
In (3 — 110), Term @’ plays the same role at |Z| = u that @did in (3 — 109) at |Z| =e.

Eqnuations (3 — 109) and (3 — 110) can be used for separate ranges of a convolution
integral representing the perturbation potential of the doublet sheet in the Trefttz plane. To
remove arbitrariness associated with the cutoff between Case (i) and Case (ii), a combined
uniformly valid expression in ( is preferred. This is obtained for the function

— : 1 —
U(Z;()=21rtF~——Z_C . (3-111)

An intermediate limit is considered in which

$p = fixedas € —0

= |y

where € << (€) << 1.
Thus, for both Case (i) and Case (ii),

2
U=—£+O(-:;;) . (3 - 112)

The uniformly valid representation is therefore the sum of the representations for Case (i)
and Case (i) minus the common part given by (3 — 112). Tae resulting expression is

o1 1 u? € 1 1 1\ €2
2mF_Z—C+<2{Z—L:-_ —%}+E—(#2+C2)Z+C#2 . (3-113)
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Taking the real part in (3 — 113), the resulting expression for I, is:

+.l.[ “2 _ €2 ] l
ey Goayeel _—

3.8.1 Discussion

kquation (3 — 114) represents the downwash expression associated with finite span
for a high aspect ratio wing-body combination in which the body maximum thickness is
a small fraction of the span. This expression is the generalization of that being used for
the inner solution far field for the wing-alone code. It contains interactions between the
tunnel boundaries and the body. It is clear that the most important contribution is when

¢ = O(e).
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4. ASYMPTOTICS INTEGRATED WITH MEASUREMENT (AIM)
INTERFERENCE ESTIMATION METHODS

Analytical and computational techniques were described in the previous sections to
predict transonic wind tunnel interference over slender and high aspect ratio models. These
methods are oriented to interference prediction strict’ from a knowledge of the tunnel and
model geometry as well as the flow parameters such as test section Mach numbher. They
are based on an inviscid approximation of the flow. However, by allowing the boundary
conditions on ar outer wall or cylindrical interface to correspond to the specification of
pressure, viscous xnd other phenomena may be indirectly incorporated into the anal:-sis
in accord with methodology developed by workers at AEDC, NAE Ottawa, NASA, and
elsewhere. For purposes of the following discussion, such techniques will be grouped under
the category of Wind Tunnel Interference Assessment/Correction (WIAC) methods. By
contrast to the methodology in Sections 2 and 3, these approaches combine the analysis and
computation with experimental methods to determine the magnitude of the interference as
well as the feasibility of accounting for the interference either by simulating an interference—
free condition corresponding to the test environment or providing some sort of post-test
correction to the data.

In what follows, procedures are described that can augment the effectiveness of WIAC
concepts. They exploit the theoretical knowledge developed under this contract described
earlier in this report as well as experimental measurements in the determination of wall
interference. The scope of the discussion is to outline the basic concepts. A more detailed
feasibility study as well as proof of concept is intended as future effort.

4.1 Interference on Moderate and Low Aspect Ratio Configurations

As described in Ref. 29 and elsewhere, the two variable method (TVM) provides a
basis for simulating the effective body shapes in the tunnel which may differ from the
“hard” physical geometry of the model due to viscous interactions and other effects. If
this representation is assumed to be the same in the free field, then its knowledge from
measurement and computation can be utilized with further computation to obtain the free
field aerodynamics or the interference. Existing transonic TVM’s such as those described
in Ref. 13 typically employ a second measurement on the interface to establish the effective
body shape with an iterative computational inverse procedure. In the inverse method, a
first guess is successively refined in a feedback loop to satisfy the second interface condi-
tion. A concept has been developed in the contract to avoid this loop or accelerate its
convergence. Application to nonaxisymmetric compact configurations that satisfy a class
of requirements which may be of considerable practical WIAC utility has been investigated.

The method is motivated by slender body theory. Using previous notation in which
a = angle of attack, § = maximum thickness ratio, b = semispan, h = characteristic wall
lateral dimension, the flow over a test article shown in Figs. 109 and 110, and given by

r = 6F(z,6) (4-1)
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is considered, where the normalized cylindrical coordinates

o |8
o |

T = y Y= y 2 y T ’ (4_2)

I
o | Ny
i
a1

are employed and c is a characteristic body length. In the inner near field, close to the
model as described in Refs. 29 and 30, the following asymptotic expansion is assumed to

be valid for H = hé fixed*

5 =2+ 267 10g851(2) + Fpa(e.u”, 2% A) + 6 logipn (2,47, 2% 4) + 6z, v", 2% 4)

(4-3)
which is valid in the inner limit

— M2
z,y =% , K=l 612\/100 , A=-(;- fixedas 6§ -0 . 4-49)

The “far field” of this inner expansion worked out in Ref. 30 isif r* =r/§ — oo

D 6 FE 26
@1 = Si(z)logr* + g1(z) + l(xr)_cos + ’(zr)ffs +oe (4 — 5a)
Y1 = 251 S; lOg r* + ggl(:l:) + 252($) + - (4 - 5b)
@2 = 515 log? r* + Sy(z)log r* + ga(z) + - -+ (4 — 5¢)

[ 1]

where if A*(z) = normalized cross sectional area, 51 = A—hE) and S; can be found from
integral theorems based on the inner boundary value problems but will not be considered
further here. This approximation is nonuniform with respect to r*. Two other approxi-
mate representations are required to overcome this nonuniformity. For H = fixed, and a
cylindrical wall, there is an outer region in which the asymmetries relax to nonlinear axial
symmetry in a manner that has been discussed in Refs. 29, 30 and elsewhere**. Prelimi-
nary studies based on integral equation asymptotics and particular solutions indicate that
the wall reflections are regular functions of r* which do not perturb the singular behavior
that controls matching with another representation needed in an intermediate domain to
obtain consistent approximations in the higher orders. This fact has implications on the
magnitude of the lift interference.

From Ref. 30, the outer expansion of ® is:

®
7=° + 82¢:1(2,5,%, K, A, H) + 6* log6day + 6% + - -- (4 — 6a)

* The H — oo approximation made in Ref. 29 will be suppressed.
** This property can be extended to mildly noncircular test sections such as octagonal
shapes or measurement interfaces that are sufficiently distant so that the angular pertur-
bations are weak. This can be formalized asymptotically.
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Fig. 109. Slender vehicle confined inside cylindrical wind tunnel walls.
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Fig. 110. Front view of wind tunnel model confined by cylindrical walls, showing important
regions.
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for

z,9%,2,K,A H fixedas § - 0 . (4 —6b)
The equation for ¢, is the Karman Guderley (KG) equation,

(K= (v+ 1)¢1,)d1.. +%(f‘¢1,); =0 4-7

where no tunnel perturbation in K is assumed.

In contrast to a large H far field or a subsonic line source free field asympttic, an
axisymmetiic pressure-specified interface condition for (4 — 7) is

#1(z,H) = F(z) (4-8)

which in accord with previous remarks is assumed to leave the free field ¥ — 0 asymptotics
of (4 — 6&) unaffected to dominant order. These are:

= Si(z)log 7 + gi1(z) + ( S].S' )F2 log? # + T(z)7* log# + V(z)F2 + --- (4 —9a)

¢21 = —25,S) logF + ga1 + - - (4 ~9b)

Dy(z)cos 6
$2 = —

The intermediate expansions are

+ 518 log?F+ g2+ . (4~9c)

% =z + 6 log 5i1£z) + 6%, (=, f_ 2) + 8¢5 + 6* log? 68a3(z, y, 2) (4 - 10a)
+ 6*log ¢31(z,y,2) + 6*3(z,y,2) + -

for
z,y,z,7, K fixedas 6 - 0 , (4 —10b)

where for matching with the inner expansions the following representations Lold:

61 = Si(z)logr + g1(z) + - (4 - 11a)
7,5‘2=D‘:°30+ (4 - 11b)
_ 1
o1 = ga1(z) + Sa(z) + 1= + (52)r2 log r
-2 (4 - 11¢)
+ [(r + 1)(9151)' - KSy - (v+1)(S?)] 7+
Fon = 5.5, + "“s's" 2 (4 - 11d)
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— 24
3 = E%ZS— + 515; log? r + Sy(x)logr + g2(z) (4 —11e)
Y+laionz, 2 2 2
+—Z—SISIr log®r + T(z)r logr + V(z)r* . (4 - 11f)

For purposes of assessing drag interference, the key 1dea in one possible AIM TVM concept
being evaluated is that Fqs. (4 - 11) can be used to determine the “effective body” inter-
action with nonlinear outer flow field For example, it is envisioned that (4 — 11a) can
be used to determine the effective source strength Si(z) by a simple radial differentiation,
ie.,

¢ _— 628
2 53+ o) = 220 (4-12)
U T
and a measurement of the radial velocity ¢, on an interface surface r = O(1) at each =
staticn. The function S;(z) can be used with the boundary condition associated with the

dominant term of (4 — 9a) to obtain the solution of (4 — 7) subject to (4 —8), where F can
be obtained from pressure measurements as

2 4
F= ‘5_2/_00 Cp(z,H)dz . (4—13)

The solution of the outer KG problem will give the free field drag and the interference.
For example, under mild restrictions on the equivalent body of revolution source strength
distribution S1(z), the free field wave drag D is

1
PE = 21r6"‘/o S1(z)g1(z; K)dz (4-14)

based on a momentum theorem given in Ref. 30. In (4 — 14), the function g, is computed
from the numerical solution of the free field KG problem.

In accord with previous remarks, it is envisioned that this approach may be generalized
to weak deviations about axial symmetry on a measurement interface in the outer region

7 =0(1).

Analyses of the free field structure for the highly and intermediately loaded cases
have been given in Refs. 48 and 55, respectively. Reference 48 describes the case where
K = 1—'%':“-, with ¢ = o%ln 7’:, and Ref. 21 considers the thickness £ = O(e;). For
Ref. 48, in contrast to the case described in detail above, the first order term in the near
field is approximately a dipole. No intermediate expansion is needed to match with the
outer representation which still relaxes to KG axial symmetry to dominant order. However,
the effective source strength 57, rather than being controlled by the rate of change of cross-
sectional area A*(z) as in the weakly loaded case, is given by:

_ 4 14@) (=)
) (27)?

S, (4 — 15)
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where £;(z) is the cumulative free field lift up to a station z, which can be computed by
Jones’ theory. For a cambered, zero-thickness wing on (0 < z < 1, —zLg £ z < zpE),
for which y = af(z), £1(z) = —7f'(z)z} g(z). Studies are in progress of the matching to
assess what is the role of the wall reflections on the inner flow field structure and their
importance relative to the interference lift. For drag of a zero thickness configuration, the
effective source strength distribution may be inferred from the measurement procedure
previously described, since the outer solution has the same dominant bebavior giver by
(4 — 11a), in spite of the different interpretation in (4 — 15).

The relaxation to the structure giver by (4 —9a) in about the r = O (é) scale of the

lift dominated theory has been corroborated with zonal gridding procedures and free field
Euler calculations of K. Szema which were funded under another program using codes and
algorithms developed by S. Chakravarthy. The F-14 configuration shown in Fig. 111 was
analyzed with simulated flow—through inlets at M., = .8, and a = 13.5°. The isobars are
shown in Fig. 112. There is also a suggestion of near field £2¢ behavior in the contours
which are however skewed by strong tip vortices.

The relaxation shown in Fig. 112 is a suggestion of the feasibility of the radial velocity
unfolding concept previously indicated to obtain the effective source strength S;. One

possible application of the methoa could be the cruise missile configuration discussed in
Ref. 47.

4.2 High Aspect Ratio Configuration WIAC Method

Considering the high aspect ratio arrangement shown schematically in Fig. 113, at a
wake station PQ associated with a near field limit of the outer solution, downwash due to
the vortex sheet reflected in the tunnel walls has been derived and discussed in connection
with the lifting line theory of transonic wall interference in Section 3.1.1.2. Suppressing the
additional fuselage upwash effect and its interaction with the walls, which can be handled
by conforinal mapping procedures, the net downwash in a y = 0 downstream plane of the
wing alone is ~

P
¢ 2(z(—p)
where using previously defined notation y = H/B = % H = §'/3h, B = §'/3, v is
proportional to the free field infinite aspect ratio sectional lift coefficient and w; is the

downwash effect associated with deviation of the pressure field on the interface from zero
perturbation pressure, where from Section 3.1.2, if the interface pressure is Cp,

B

w=—— 7'((){21

4 -B

} d¢ + wy(2) (4 - 16)

* Cp,(z*,H,8) £a®

W(z*,0) = 5523

= Wy(z) + i Wha(z) cosnf

n=1

c=Hz* , §=6Py=Hy* , :=6Pz=Hz
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$C45487

Fig. 111. F-14 configuration.

193




AEDC-TR-91-24

-auejd moy-ssor p1-J Ul s1eqos] ‘11 ‘91

N ves3L01" Yoe30cT” +003061° ‘108 “o0e 0" 1
I i ! i " —= w 043001 -
001 - ,
TR
- ‘100~
TR .
"
201
; ‘peg-
101 ..\
" /
m “w ;
|
_ ) L ; e
. 988 __ A
| e’ ; !
' ,.. i
_ 188" ’
m b Y5y
o8
626 i
m |
B |
_ INWVA 4 40109 h S~ “
, SYNOLINOD d0100 FANSSIAd T eeaner ~
0:0:0 0/0 /0 ar =f |

194




AEDC-TR-81-24

SCe58=

Ty INNER LIMIT
REGION OF OUTER

WAKE

INTERFACE

Fig. 113. High aspect ratio wing model.
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with -
Wo= - / W(z*,6)d6
® Jo
W = 2/ W(z",8)cos n8db
® Jo
and
1 ¢ J1(jn12") /°° e
Wy ~ ——— n(—1 n—-—_—— e Jnilz ‘Wn z* dz*
] \/I?Z n=1,z3,5,.. ( ) Jyl:(]nl) —00 ( )

where K is the transonic similarity parameter and the j,, are the zeros of the Bessel
functions J,(2*).

Equation (4 — 16) can be used to determine the free field lift and span loading as follows:

1. Measure the left hand side w at PQ. A generalized form of (4 — 16) applies at y #0
and the measurement could be made above or below y = 0, if this is more practical.

2. Equation (4 — 16) can be inverted once and for all numerically and presumably also
analytically with a Green’s function based on conformal mapping.

3. An analytic inversion of (4 — 16) can be used to compute 4'(¢) by a quadrature. This
could be interpreted as the “effective” span loading associated with viscous effects.

4. The function 74'(¢) in Item 3 can be used to compute the free-field finite aspect ratio
downwash correction we, on the loaded line given by

oo = -1—][8 7€) 4 4—17)

T 4r -p2—¢

where the principal value of the integral is to be taken.
5. The HIAR code can be used with w., to compute the free field span loading and lift.

4.2.1 Discussion

Steps 1-5 in the high aspect ratio AIM method sidestep the need for computationally
intensive three-dimensional simulations as well as time-consuming gridding preparation.
It however requires a knowledge of the downwash field behind the model. This can be
done by a rake or other instrumentation. Once this is obtained, (4 — 16) can be inverted
using Fourier series or collocation methods. The approach indicated is by no means limited
to a downwash measurement. Other derivatives of the scheme can be conceived such as
using pressure measurements. Since the approach depends on the application of lifting line
theory, its elasticity with respect to moderate aspect ratio shapes needs to be assessed.
This can be achieved by comparisons with three-dimensional numerical simulations and
experiment.
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5. CONCLUSIONS, HIGHLIGHTS AND SUMMARY OF FINDINGS

Transonic wall interference asymptotic formulations developed under a previous
AEDC contract, “Study of Asymptotic Theory of Transonic Wind Tunnel Wall Interfer-
ence,” {Coutract F40600-82-C-0005) have been computationally implemented. This ac-
tivity motivated additional asymptotic studies and the development of AIM (Asymptotics
Integrated with Measurement) techniques that are designed to extend the applicability of
the computational and analytical methods.

Key findings and highlights of the effort are:

1. The “Area Rule” for transonic wall interference of slender airplane test articles
discovered in the previous contract, applies for pressure boundary conditions in
the large height limit, H — oo. Its validity tor pressure interface boundary
conditions needs to be assessed for H = O(1).*

2. The scalings associated with the gauge functions appearing in the formal asymp-
totic expansions for the interference potential in the slender body limit agrees
with that deduced by Goethert in Ref. 56 using non-asymptotic methods and
validated against experiment.

3. Pressure specified interface boundary conditions over confined, slightly subsonic
slender bodies give an asymptotic triple deck structure resembling that arising
from free jet and and solid-wall, classical conditions, providing that the interface
circumferential variations are mild. Such angular distributions are anticipated in
the sensible far field with circular or octagonal test sections, even for realistic,
compact fighter configurations having appreciably asymmetric cross sections, but
at moderate angles of attack. This occurs because of the strong three-dimensional
flow relief associated with this small average effective thickness ratio or charac-
teristic flow deflection (§) regime and the associated rapid relaxation to axial
symmetry in the radial direction transverse to the freestream.

4. The inner deck has the usual Oswatitsch Equivalence Rule cross—flow harmonic
structure. For large height, the intermediate layer is a weak perturbation about
free field conditions, where the strength of the perturbation is o(H) as
H — oo. In this region, matching with the outer deck shows that the effect
of the pressure boundary conditions is felt in an average sense, i.e., only the first
few harmonics of the circumferential variation are important. The outer or “wall”
deck is an effective tube vortex reflection of the multipole representation of the
test article. Higher order approximations of the intermediate or central deck lead
to —6‘% terms in the equation of motion. However, the significant computational
overhead of the resulting three dimensional formulation can be avoided since the
6 variation is simple and can be factored out due to linearity. This leads to a

* The asymptotic treatment of these pressure conditions was undertaken over and above the
Work Statement of the current contract.
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two dimensional (axisymmetric) formulation similar to that encountered in the
FJISWCI (free-jet or solid wall cylindrical interface) problem, except with forcing
terms (in the higher approximations). These can be readily treated with superpo-
sition procedures that are allowable due to linearity of the variational interference
equations.

5. With pressure interface boundary conditions, the H scaling of the similarity laws
for ACp and ACp, respectively, the interference pressures and drag, are un-
changed from the FJSWCI case. Again, in contrast to the H = O(1) problem,
but as in the FISWCI case, the H scaling is known, eliminating the need to solve
for new H's associated with different test facilities when all other paraineters are
unchanged.

6. For solid walls, and for the H = O(1) numerics, the structure of the upstream
and downstream far fields was determined. For a blunt or stinged base, a uniform
source flow at infinity results, in which ¢ ~ +Cz as z — to00, where C ~
body base area. For a closed body, ¢ ~ +D as ¢ — too, where D=doublet
strength which consists of a linear part, proportional to the body volume, and a
nonlinear portion proportional to the average kinetic energy of the interference
perturbation of the streamwise velocity component. It was expedient to avoid
this term in computational implementations for closed bodies. Homogeneous
Neumann conditions were used at the inflow and outflow boundaries z = oo
rather than the doublet condition. This step was justified due to the exponentially
small higher order terms in the z — oo far field expansion. This structure is
similar to two—dimensional flow solutions worked out in Ref. 57, in which the wall
condition “drives” a faster decay than the algebraic one associated with the free
field. The exponential rate of decay for the axisymmetric case of slender body
theory differs from the two—dimensional airfoil case since these are eigenvalues
arising from the Sturm-Liouville problem for the Green’s function and these
differ in both situations.

7. Consistent with the contractual Statement of Work (SOW), Task 1.0, a code
solving only the FJSWCI case was developed. (Pressure boundary conditions
however can be treated by the high aspect ratio code developed under Task 3.0.)
Two solver modules (RELAX1 and RELAXV1) were developed to model the
Oth order free field basic flow and its 1st order wall interference perturbation,
respectively. An excellent experimental validation of RELAX1 was achieved for
a blunt nosed axisymmetric body tested by Couch et al. It is believed that an
intrinsic element in obtaining this validation was the special procedure developed
to discretize the boundary points near the logarithmically singular line ¥ = 0 in
the inner Axis deck of the flow. In keeping with the thrust of the contractual effort
that combines the best features of asymptotics and numerics, these discretizations
used the inner expansion instead of a one term Taylor expansion with a remainder
to characterize the nodes near 7 = 0.

8. Special techniques extending those originally developed by Small and Cole were
utilized to fit the shock in the numerical treatment of the interference perturba-
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tion flow. Schemes were worked out to surround the shock by an “upright” notch
having vertical and horizontal sides. This scheme which is easier to program
and avoids subtle issues associated with an alternative method which actually
follows the shock curve with a “staggered notch” was computationally imple-
mented. More effort is required to compare the effectiveness and accuracy of
both approaches. An important issue is the accuracy of the discretizatior of the
vertical velocity component v; of the variational flow and the avoidance of ur-
necessary smearing out of the shock region beyond the normal Rankine-Hugouiot
transition zone if an upright notch is used. For slender bodies, this concern seems
to be relieved by the fact that the shocks are almost normal, since the freestream:
Mach number needs to be very close to unity to obtain a supersonic bubble of
any significant size. A study of the relative criticality of this issue for the high
aspect ratio problem is also needed.

. Other sensitivities of the numerical treatment of the interference field are the

proper dimensions of the notch and the definition of the tip of the shock. Fer
the two-dimensional airfoil case, Murman numerically investigated the formation
of the shock as the envelope of the characteristics of the second family reflecting
from the sonic line. Because of its steepness, this envelope is poorly defined. The
calculations showed some sensitivity to this definition as well as the location of
the position of the upstream and downstream vertical legs of the notch. More
work is needed to improve this part of the method. From experimentation and an
examination of the pressure profiics as well as the z discretizations, a four point
transition seemed appropriate for the width of the notch for slightly subsonic
tunnel Mach numbers.

In a separately funded AFOSR effort, the structure of the triple point singularity
at the foot of the shock was examined in connection with handling the pertur-
bation Rankine-Hugoniot shock conditions at the notch, particularly at the foot.
As a part of this, Cole and Malmuth in Ref. 38 analyzed a shock position invari-
ance with Mach number discovered by the latter in calculations of the flow over a
parabolic arc body. More work is needed to understand this phenomenon in free
and confined flows in connection with generalized Lavrentef-Bitsadze models.

Calculations for flow over a parabolic arc body at a freestream Mach number of
.99 indicate that the wall perturbation flow has a very dominant spike localized
about the shock region. The preshock influence is very weak compared to the
postshock influence. The shock spike phenomenon seems to control the entire
structure of the interference flow and there is rapid decay away from this region.

Allowing for a perturbation K in the similarity parameter K in the asymptotic
expansions for the perturbation potential provides flexibility in defining minimum
interference or interference-free conditions. A proof of concept has been obtained
in which interference-free conditions for the drag have been been defined for a
parabolic arc body through alteration of the tunnel Mach number or its thickness
ratio using methodology discussed in Section 2.18.
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13.

14.

15.

16.

Lift interference is negligible compared to drag interference for the thickness dom-
inant distinguished limit of the free field slender body basic flow.

Pressure specified boundary conditions include the same mechanism governing
wall interference for high aspect wings as with free jet and solid wall boundary
conditions. Namely, the interaction is still primarily associated with the alteration
of the downwash field on the loaded line (bound vortex) due to the interference of
the walls or interface with the trailing vortex system. The effect of the variable
interface pressures can be handled by a superposition of a tube vortex and a
free jet solution. The tube vortex corresponds to the interfacial pressure data
and is continuous across the wing wake. The sum of both solutions satisfies the
boundary conditions of the complete problem. The tube vortex modifies the
downwash on the loaded line, i.e., the effective angle of attack along the span of
the wing.

The interference downwash on the loaded line due to the imaging of the trailing
vortex sheet into the walls or interface was analyzed to successfully accomplish
Task 2.0 of the contractual effort. A Green’s function method was developed to
provide an extremely powerful means of obtaining an asymptotically consistent
approximating sequence for the imaging. Properties of the Bessel functions ap-
pearing in the integral or eigenfunction representation of this Green’s function
indicate that even for the transonic case, the downwash field is essentially the
same as that for incompressible flow. In particular, it is the solution of a two-
dimensional problem in the Trefftz plane infinitely far downstream. This problem
reduces to the interaction of a two-dimensional vortex sheet distributed along the
projection of the wake in the Trefftz plane with the circular projection of the
walls or interface in this plane. Another Green’s function which can be obtained
by the Method of Reflection involving inversion in a circle solves this problem.
However, the expansions of the Bessel functions in the expression for the first
Green’s function give this interpretation directly. Corresponding information is
needed for choked and slightly supersonic tunnel flows.

Under Task 3.0, a code capable of handling high aspect ratio configurations was
developed. As in the slender body code written under Task 1.0, an upright notch
was used to treat the shock in the interference flow. The downwash boundary
conditions developed in Task 2.0 were used for the solver module which deter-
mines the interference field. The code can handle wings with spanwise nonsimilar
sections by use of a normalizing “trick” which reduces the computational problem
to one resembling that for similar sections. Pressure interface boundary condi-
tions can be treated in many situations through the post-processing rather than
the solving step. This feature is another saving in computational overhead. The
code is quite inexpensive, with practical results readily accessible on VAX6000-
410 type mainframes and clusters. It is ideally suited for use on workstations
such as SUNs and VAXstations. For more utility and geometric applicability, the
effect of sharp kinks in the planform shape needs to be analyzed. A special issue
not present in the slender body code needed attention in the development of this
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code. It concerned the improvement of the efficiency of the algorithm by use of
convergence acceleration methods. Application produced significant speedup in
the attainment in the pseudotime asymptotic for the interference circulation I';.
To improve the numerical conditioning as for the slender body code, the far field
singularity was regularized by subtracting it out from the dependent variable ¢,,
converting the homogeneous boundary conditions on the body to inhomogeneous
ones. For the slender body case, a forcing term was added to the equation of
motion with this method. Another change in the formulation under this trans-
formation is a slight modification of the shock jump conditions. Regarding grids,
the main issue relates to adequate clustering at blunt leading edges, shocks and
trailing edges. From the previous discussion, those related to embedding the
wind tunnel or interface boundaries into the grid are vastly simpler than those
encountered in large-scale Navier Stokes simulations.

17. Calculations with the high aspect ratio code indicate that the effect of free jet
boundary conditions on slightly subsonic wings is to reduce the lift and make the
wing less supercritical. The shock is weakened and moved upstream. For many
cases, it is envisioned that the change of the spanwise loading tends to follow
the inner solution “strip theory” scaling with the local chord variations as in
incompressible flow. More work is required to help define the role of interference
on the nonlinear interaction between vortex and wave drag which differentiates
transonic flows over these high aspect ratio wings from their low Mach number
counterparts.

18. Preliminary analytical work has been done on the effect of a fuselage on high
aspect ratio wings. It is envisioned that the most important change in this regard
is the interruption of the projection of the trailing vortex system in the Trefftz
plane by the body, providing that the body size is small compared to the wing
span. For such configurations, the interaction of the body thickness with the far
field near the interface and the inner solution does not appear to be significant
in determining the lift interference. However, the effect on drag needs to be
investigated.

19. Two techniques were developed to extend the applicability of tke asymptotic
approaches developed to more realistic viscous environments. These AIM meth-
ods integrate asymptotic techniques with experimental approaches and have the
potential of making WIAC approaches such as the TVM more economical, prac-
tical, fast-response and accurate. For missile configurations and typical compact
fighter arrangements such as ATF blended wing shapes, the cross-flow gradient
dominant inner deck and the Area Rule for wall interference developed in this
effort indicate that a measurement of the radial variation across the flow of the
pressure or the velocity field can be used to define the effective viscous “soft
body”, as contrasted to the “hard” geometry of the test article. One of the AIM
methods employs this viewpoint to bypass iterative sequences in previous TVM
schemes such as that discussed in Ref. 13 for axisymmetric bodies.

20. In addition to the low to moderate aspect ratio approach of the previous item,
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another AIM method exploiting the role of the Trefftz plane imaging in high
aspect ratio transonic wing wall interference has been developed. Since the 1st
order interference effect is the modification of the incidence of the airfoil sections
along the span, the “soft” circulation distribution can be determined from a
solution of an integral equation, once the downwash or other suitable observable is
measured in the wake behind the wing or on some other convenient control surface.
The deconvolution of the integral equation can be done c1. a microcomputer with
simple collocation or other methods. From the soft circulation distribution, an
extrapolation to free field conditions can be obtained by a quadrature as shown
in Section 4.2.

Many of the previous items enhance our knowledge of the physics of transonic wall
interference and ran be used in its efficient pre-test or post-test estimation. In the next
section, specific recommendations are made for sharpening the tools to provide the wind
tunnel test community with quick response techniques to complement large-scale CFD
approaches.
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6. RECOMMENDATIONS

Section 5 summarizes progress toward applying combined asymptotic and numerical
methods to transonic wind tunnel interference prediction. Within the contractual effort
reported herein, two computer codes were developed to handle small and large aspect
ratio configurations in an inviscid flow context. Other theoretical developments have been
described that provide new insights into our understanding of the physics and structure
of interference at near sonic Mach numbers, To extend the applicablity of the methods to
viscous and more realistic environments, AIM techniques were conceptualized that augment
the theoretica: approaches by interacting them with experimental data.

From the observations in the previous section, it appears that it is beneficial to further
develop the tools described. Opportunities exist for further theoretical progress as well as
“tuning” the methodology to actual databases. In this connection, other pessibilities
involve further experimentation that could be performed in parallel with the methods
development. In contrast to the preponderance of tests that have been performed thus far,
emphasis should be placed on integrating flow field measurements with surface pressure
and force evaluations. Such a procedure would provide an excellent opportunity to validate
the AIM concepts in this report and provide a means to develop others that caw strengthen
WIAC methods.

Specific analytical items that should receive further attention are:
1. Treatment of slightly supersonic flow.
2. Choked and nearly choked cases for slender bodies.

3. Incorporate the asymptotic and numerical methodologies developed herein intc
large—scale computational procedures such as Navier-Stokes, and thin layer
Navier-Stokes codes. Various options in this context are:

3.1 Use combined asymptotic-numerical (CAN) methods to initialize large
scale computational solutions to accelerate convergence to pseudo-time
asymptotics.

3.2 Use structure of CAN flow to reduce gridding preprocessing effort for
large scale implementation from knowledge of solution curvature it

affords.

3.3 Employ “defect” approximation to develop a corrector to first guess by
expressing large scale solution as an increment on CAN result. Solve for
the defect dependent variable instead of usual primitive variables.

In addition to speeding up the large-scale simulations, these items could result
in reduction of computational costs.

4. Validate the two AIM methods developed under this contract against other solu-
tions and experiment.
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4.1 For hoth techniques, set up experimental programs in suitable facilities
in which the requisite How measurements can be made at the same time
pressures and forces are measured. Specific recommendations for such

tests have been made in relation to a survey of existing databases in
Ref. 53.

4.2 Compare the assumed CAN variations in both AIM methods with large
scale computational simulations as another validation and proof of
concept.

4.3 As part of the AIM work for slender bodies, computationally implement
the pressure specified interface theory described in this report.

5. Extend the slender and high aspect ratio codes to handle viscous interaction
effects. The motivation for this approach is to make the simulations developed
under this contract more comparable with the test data. Integral methods such as
Green’s Lag Entrainment Technique could be used to facilitate the introduction
of viscous effects in the CAN simulations. Viscous phenomena can be impor-
tant in transonic interference as shown by recent Calspan studies at AEDC. The
effectiveness and accuracy of the Science Center’s viscous interaction code has
been demonstrated earlier in this report in comparisons with experiment for two—
dimensional flow over a NACA 0012 airfoil. These procedures can be extended to
a three—dimensional context accounting for wind tunnel effects by generalizing the
theories and codes developed in this contract to account for viscous interactions.

6. Computationally implement and more thoroughly develop the theory generalizing
the wing-alone high aspect ratio models to wing-bodies and kinked planforms.

7. Develop adaptive wall concepts based on AIM technology. In this item, the AIM
advantage of reducing computer overhead would be exploited in developing on-
line closed-loop feedback systems for streamlining the walls. As discussed in
previous sections of this report, the application of the inner expansion avoids
the need for iterative determination of the “soft body” in the application of the
TVM for axisymmetric bodies. This savings could also occur for more realistically
shaped compact fighter and missile test articles.

8. Determine range of applicability of models by comparison with experiment. Par-
ticular items of interest under this heading are:

8.1 Validity of wall height scaling law from asymptotic slender body theory
for interference wave drag and pressures.

8.2 Range of applicability of Area Rule for wall interference — It would be
of interest to determine what constraints exist on section and test article
geometry for validity of the interference Area Rule.

9. The asymptotic models developed in this contract should be integrated with local
asymptotic multideck descriptions of slot and porous wall flows.
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In addition to the foregoing, more theoretical work is required concerning the effect
on interference of bluntness as well as lift—-dominated flows for the slender body case. For
the high aspect ratio limit, effort is required to study the influence of displacement of the
vortex sheet on results obtained with the planar assumptions of the theory.
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ap
A

1
4;,B,,C;, D;

NOMENCLATURE

constant in Central Layer expression Eq. (2-31)

reduced angle of attack = a/é

coeflicients appearing in discretized partial differential equations of
perturbation potential in Eqg. (2-58a)

Fourier coefficient

reduced angle of attack of free field

wall perturbation of similarity parameter

wing semispan

far field constant derived in Ref. 29

far field constant derived in Ref 29

body function, and body boundary operator in Eq. (2-100')
scaled span = 61/3b = aspect ratio

Fourier coefficient

far field constant derived in Ref. 29 and defined before Eq. (2-47a)

characteristic length scale, local chord

undetermined constant in Eq. (2-18a)

pressure coefficient

defined in Eq. (2-57c)

undetermined constants in Eqs (2-18a,b)

function related to aspect ratio correction in lifting line theory

drag

undetermined constant in Eqs. (2-18a,b)

doublet strength in Eq. (4-11b)

Eq (2_1)a ¢0¢=

shock perturbation function

Green’s function

shock shape perturbation function introduced before Eq. (2—43)

dimensional wall height or radius

scaled wall height or radius = §h/c, 6!/3h

integral defined in Eq. (3-10b)

integral defined in Eq. (3-10c)

refers to downstream boundary of computational domain

modified Bessel function of first kind

zero satisfying Jp, (jnk) =0

refers to top of computational domain

Bessel functions of first kind

transform variable

transonic similarity parameter

modified Bessel functions of third kind

free field similarity parameter

wall perturbation of similarity parameter
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For

length of body, TSD operator Eq. (2-32)

linear operator of interference flow

surface normal

Fourier coefficient in Eq. (2-26a)

Legendre polynomial

Fourier coefficient in Eq. (2-26a)

functions to be determined by matching in Egs. {2-26)
transverse radius

scaled transverse radius

polar radius defined in Figs. 2 and 9

right hand side defined in Eq. (2-57b)

dimensionless area distribution

dimensional area distribution

intermediate quantities defined in Eqgs. (3-21)

¢z

horizontal and vertical velocity components

do,1,

freestream velocity

b7

$0,1,

interface pressure function Eq. (3-4)

function related to wall correction in high aspect ratio theory
outer variables for lifting line theory defined in Eq. (3-6)
dummy variables for z,y,2

streamwise coordinate

AEDC-TR-91-24

z/ /K¢, and reduced streamwise coordinate defined after Eq. (248)

scaled variables for small disturbance theory for large aspect
ratio formulation

scaled variables introduced in Eq. (3-9a)

Bessel functions of second kind

241y

¢+1n

constants introduced in Egs. (2-27)-(2-29) to Le determined by
matching in Fig. 5 (:1=0,1,2,3,4)

(i =0—4) constants determined by matching in Fig. 5

constants introduced in Eqgs. (2-27)-(2-29) to be determined by
matching in Fig. 5 (1=0,1,2,3,4)

same as above

same as above

same as above

same as above

same as above

same as above

same as above
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€1,12
7

9’,7‘,
6,7
J,p
k1(H)

-xnk
Hij

Hi,2
l/l(H)

Iy
=
~

€ 099 elee 3
]

w
N12)

Subscripts

In various locations in the manuscript, subscripts denote differentiation.

same as above

angle of attack

constants determined by matching in Eqgs. (2-24)

specific heat ratio, circulation

circulation

zeroth order flow circulation of high aspect ratio wing flow

interference flow circulation

characteristic thickness ratio of body

Laplacian

interference increment of pressure coefficient

jump sum index, where ¢g =0, ¢, =2, n >0

gauge functions appearing in Eq. (2-20)

dummy variables for z and y

azimuthal angle in Fig. 2

dummy variables for 6 and r

polar coordinates based on scaled variables

dummy variables for § and r

gauge function used in Eq. (2-6¢)

zero of secular equation Jy (A, H) =0

scaled zero = jn/u

H/B reciprocal of semispan to tunnel height ratio

switch parameter defined in Eq. (2-57d)

gauge functions appearing in Eq. (2-19)

gauge functions used in Eq. (2-6b)

dummy variables for z,y, z

body thickness ratio

perturbation potential

regularized potential

intermediate representation of perturbation potential in Eq. (4-10a)

far field asymptotic for interference potential in Eq. (2-44); also in Eq. (3-102b)

interference perturbation potential

velocity potential

perturbation potential in wall deck, also outer representation of
perturbation potential in confined lifting line theory

polar angle shown in Fig. 2, relaxation parameter in Eqgs. (2-57)

special functions introduced in Eqgs. (28)

homogeneous

212




AEDC-TR-91-24

p particular

0,1 denotes order of approximation

. denotes freestream quantity
Superscripts

v immediately upstream of shock

b imniediately downstream of shock

t Eq. (2-8b)

+

immediately downstream of shock
immediately upstream of shock

Special Symbols

overbar refers to dimensional quantity or Fourier transform

vector cross product

gradient operator

divergence
] jump across shock introduced after Eq. (2-32) or operator dependence
) average across shock introduced before Egs. (2-76)

vector dot product

cross flow operator in Eq. (2-62)

bar across integral refers to principal value

C~— g 4 x

3
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APPENDIX A — MODELS FOR INTERFERENCE FLOW NEAR SHOCKS

04 SC- 1360 *
-~ — Expansion Wave
Compression Wave

03
F 0.2 |

0.1 |- r

0 > -

0.2 x* A 0 x B

Region Near impingement Point

Fig. Al. Detail of shock region.

To obtain a qualitative understanding of the spikelike nature of the interference near
the shock of the basic flow, certain model problems are of interest. Figure Al is a schematic
of the region near the shock wave in the wall interference flow for a slender body. The
equation for the interference perturbation potential $; given earlier in this report is

(K= (vy+1)do..) 1,0, — (Y + 1)do,e,. b1 + %(f.;sl,)F =0 . (A1)

In (Al), z* refers to an origin displaced from the virtual intersection of the shock and
z axis (body). For convenience in what follows, the translation

z=z"-1zj% (A2)

is performed where z% refers to the virtual intersection point O. Assuming that the shock
is normal to the body at z%, then the coefficient of the first term in (A1) changes sign in the
small neighborhood of O. Approximate model equations for weak shock layer transitions
near O are

(sgn(2)1,), + 3 (Fdu,)y = 0 (A3)

(e61.), + 2 () =0 (A9)

Equations (A3) and (A4) are generalizations of the Lavrentef-Bitsatze and Tricomi equa-
tions, respectively, for axisymmetric flow. These are, respectively

sgn(2)d1,. + 3 (7é1,); = 0 (AS)
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2B + 3 (F61,), =0 (46)

Expanding the first term in (A3) yields a 6(z)¢;_ term. One possible set of conditions for
a boundary value problem modeling the flow structure near the foot of the shock is

¢1 bounded as [z] - 00 . (AT)

Other suitable matching conditions as # — oo and 0 with 7 fixed are required for a properly
posed formulation.

A full discussion of the appropriate boundary value problem for (A3) or (A5) is not
intended here. However, the behavior of one class of soiutions of (A3) will be discussed.

If separation of variables is used in (A3) by letting
¢1 = X(z)R(F)

then X
Gen(@)X') _ 1(FRY
X =~ r (A8)
or
sgn(z)X" +26(z)X' + A’ X =0 (A9)
(FR") =) %R=0 . (A10)
Equation (A10) has
R = Ko(A\7) (A11)

as one possible solution. Equation (A9) models the motion of a linear oscillator with
impulsive positive damping for z > 0 and similar negative damping for ¢ < 0. The delta
function can be simulated by the square pulse

@ =7 . -5

=0 , |z|>

<z< (Al2a)

N o

€
2
Exponentially damped solutions can be used to match with the ¢, field governed by (Al)
as ¥ — 0o. The logarithmic behavior of (A11) as ¥ — 0 corresponds to a special singularity
at the root of the shock at point O. Equation (A9) has been studied for the model delta
function (A12). The second term in (A9) leads to spikes similar to that discussed earlier
in this report.

(A12b)

Another simple plausibility argument for the spike behavior of ¢,, near O is associated
with the assumption that
do, = sgn(z) asz —0

If the interference perturbs ¢o_ to become

do, = (1+e)sgn (z—¢)
then the dominant interference term behaves like

sgn (z — €) — sgn z ~ 2¢é(z)

which resembles our computed solutions.
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APPENDIX B - REEXPANSION SINGULARITY DETAILS

Figure 97 shows an increase in the rate of reexpansion immediately downstream of
the shock when the latter is weakened. This somewhat counterintuitive behavior can be
understood in terms of the singularity of Transonic Small Disturbance Theory discussed in
Ref. 30. The trends in Fig. 97 are supported by Figs. B1-B4. They represent experiments
and other calculations. The relevance of the experiments is that if the Reynolds number
is sufficiently high, the post-shock expansion resembles that obtained from inviscid pre-
dictions like ours. (Smaller Reynolds numbers will result in post-shock boundary layer
separation and are not germane to this discussion.)

Figure Bl shows experimental data of Blackwell on a 12 percent thick airfoil. Here, a
change in the Reynolds number gives an upstream shock displacement with an attendant
weakening of the shock. Note the increased reexpansion tendency downstream of the
weaker shock. Figure B2 shows so much increase in the reexpansion that a second shock
forms. Figure B3 taken from E. Kraft’s Ph.D. thesis*, further confirms that weakening
the shock exaggerates the reexpansion Cp blip.

_ Gadd, Oswatitsch, Zierep, and Cole have analyzed this behavior. Inviscidly, the reex-
pansion detail represents a logarithmic singularity immediately downstream of the point
where the shock strikes the airfoil. If z denotes the distance in the freestream direction
measured from the shock impingement point, b subscript represents conditions immediately
behind the shock on the airfoil, My, = freestream Mach number, § = airfoil thickness ratio,

K = ‘-},97451, and u is the perturbation velocity in the z direction, then if
w=((y+1lu-K, (B1)

the local behavior of the pressure coefficient Cp immediately downstream of the impinge-
ment point is given by
Cp =Cp, + Azln(z)..., (B2)

where A is the strength of the singularity given by

BF"(%)8%/3

A=
n/—wh

(B3)

In Eq. (B3), F""(Z¢) is proportional to the curvature and Z, represents the z coordi-
nate of the impingement point, measured from the nose. The quantity w, is proportional
to the Mach number jump across the shock. Weakening the shock reduces w;, increasing
the reexpansion singularity strength A. For a NACA-0012 airfoil as well as other pro-
files, the weakened shock moves upstream and the magnitude of F"(Zo) increases from its

* Kraft, EXM., “An Integral Equation Method for Boundary Interference in Perforated-
Wall Wind Tunnels at Transonic Speeds,” Ph.D. Thesis, U. of Tennessee, December, 1975.
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downstream value. This has a compounding effect on the increscc in A. Data from other
profiles confirm this, but obviously it is an airfoil shape dependent phenomenon.

As an additional verification of these trends, Fig. B4 indicates a comparison of the
singularity intensity A from our Mach .75 elliptic wing case for free field and pressure
boundary conditions (circled points). Also shown are results from Kraft’s thesis (square
points derived from Fig. B3). They correspond to a NACA-0012 airfoil 2-D flow in the
free field as well as between solid walls for the height to chord ratios shown in Fig. B3.
The quantity A was determined from the numerical solution by a least squares fit of the
solution using Eq. (B2) as the model to fit the solutions. Kraft’s integral equation method
simulates the shock as an instantaneous discontinuity, whereas the finite difference solution
needs a few points to resolve the shock. These aspects as well as the shock fitting process
used in the wall interference perturbation solution are factors affecting the comparison
shown. Another is errors committed in digitizing the data near the impingement point.
In chis connection, at least four points were used for the least squares fit. Although these
considerations lead to £~ .e minor discrepancies, there is a good correspondence between
the numerically d .- .ned acceleration of the flow and the local asymptotic estimate.

\ woot. "e”

3

RIS
Fig. B1l. Reynolds number effect on Fig. B2. Reynolds number effect on
pressure distribution — pressure distribution —
example of upstream shock example of change from
displacement. single to double shock system.
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