AN ADDRESSLESS CODING SCHEME BASED ON MATHEMATICAL NOTATION
by

C.L. Hamblin 3
N.S.W. University of Technology

1. INTRODUCTION

I suppose everyone would agree that programming a modern digital computer
is a laborious and sometimes extremely complicated task. But not everyone
would agree what, if anything, should be done about it. Some programmers
seem to be just plain defeatist, to accept the situation as a consequence of
the laws of nature. Others place a great deal of reliance on so-called
"interpretive" schemes and use secondary instruction codes which are simpler,
or do more per instruction, than the primary codes of current machines; but
unless such schemes are designed ad hoec for particular problems or classes
of problems they are liable to be extremely wasteful of machine time, and
even in some cases to waste the programmer’s time as well. I do not
personally think that there is any general solution of the immediate practical
problem: a computing orgdanisation must simply build up its library of
programs - which may of course include special-purpose interpretive schemes -
and look to its efficiency in adapting them.

On the other hand there is a gocd deal to be said for research in what I
should like to call the "pure” theory of coding: not only because some of
us will, God willing, in the course of time be designing new computers but
also because there are things in it which may be of use to us in the meantime.
And there is also a third, if less tandible, reason: it can give us a better
grasp of what our programming problems are and of what machines do and are
capable of doing.

There is of course no one ideal computer code. But if we limit consider-
ation to computers for general mathematical and mathematico-logical applica-
tions, i.e. to computers in the mainstream of the development process, a
certain amount can be said which is at least fairly widely applicable. The
code which is obviously the most convenient for the programmer of mathematical
problems is the one he ordinarily uses in formulating them, namely the
symbolism of ordinary mathematics. Once a problem has been formulated
mathematically - formulated, I mean, as a clear sequence of mathematical
operations - it is in principle in a form which could be accepted by a
machine. The remainder of the task of the present-day programmer is
essentially a task of translation from one already adequate language into a
radically different one, which is at the same time vastly more redundant in
that he must make many decisions regarding storage addresses of both numbers
and instructions,

Ordinary mathematical symbolism has two things to commend it. The first
is simply that it is already familiar to the programmer, and in fact common
to all programmers and to their customers. The second is that in the course
of time it has evolved by natural selection into an extremely efficlent
language. A good symbolism of this sort is nct to be lightly set aside:
one is reminded of the numerocus cases in the history of mathematics in which
the invention of a notation has represented the crucial step in the develop-
ment of some branch of the subject.

2. SYMBOL ORDER

If some features of mathematical notation are unsuitable for our purposes
we should not of course hesitate to modify them, provided we do so with a

full consciousness of the issues involved. In the last hundred years or so
a good deal of attention has been devoted by formal logicians to the study
and invention of symbol-systems for logical purposes. Not very much of this

is immediately relevant here, and work on machine-codes uncovers its own
problems and possibilities; but one logical notation in particular I should
like to mention,

A minor complication of algebraic symbolism concerns its conventions
regarding "bracketing". For many years now, however, logicians have used
a system of writing logical formulae which eliminates brackets entirely -
the so-called "Polish" notation™. The trick is to be single-minded in
always writing operator-symbols in front of the symbols for the entities
which are operated on. In the formula "a + b", for example, the operation
of addition is applied to the numbers a and b: in Polish notation it would
be written "+ab". The result is that if a second operation is applied to
the first, as in "(a + b) x c¢", no brackets are needed: the Polish notation
for this would be "x+abec", whereas in the case of the formula "a + (b x c)*
it would be "ta x be".

For machine use this system has the disadvantage that the order in which
the operator-symbols occur in the formula is the reverse of the order in
which the operations are supposed to be performed. It is perfectly feasible,
however, to use a "reverse Polish" notation in which the operators follow
the operands: i.e. in place of "a + b" we can write "ab+", and in place of
"(a + b) x ¢" we can write "ab+cx". It is now not very difficult to demon-
strate that each symbol of a formula can be regarded as a machine instruct-
ion. Let us imagine we have a number of storage locations arranged in a
linear order and reserved as working—space in connection with the arithmetic
unit. I shall refer to these locations collectively as "the accumulator®
and to individual locations as "cells". When a number is required for an
arithmetic operation it is placed in the first vacant cell, i.e. in cell 1
" if this does not already contain a number, otherwise in cell 2 or etc.; and
when a diadic operation such as addition or multiplication is carried out it
is always on the numbers most recently transferred in, i.e. the numbers in

the last two occupied cells. The operation of addition, more specifically,
will be carried out by adding from the last occupied cell to the next last,
the last cell being "emptied"”. Now the result of any formula in "reverse

Polish" notation, interpreted as a sequence of instructions, will be to
calculate the number represented by the formula and leave it in cell 1.
For example the formula "a b + c x" operates in detail as follows:—

(A "a": number a transferred to cell 1.
(ii) "b": number b transferred to cell 2.
{idix) "+": contents of cell 2 added to those of cell 1, leaving a + b

in cell 1 and cell 2 empty.

(iv) "c": number c¢ transferred to cell 2.

(v) "x": contents of cell 2 multiplied by those of cell 1, result
(a +b) x ¢ in cell 1 and cell 2 empty.

*See e.g. Chwistek, L., The limits of science, Eng. tr. London,
Kegan Paul, 1948. ‘

131-2

In this example only two cells are used. ‘But if the formula had been
written in the equivalent form "¢ a b + x", three cells would first have
‘been filled with numbers before any operations were carried out. This
system of having what might be called a "running accumulator” has the
advantage, implicit inm the mathematical symbolism, of permitting intermediate
results to be "held" pending the calculation of additional -terms.

A monadic operator, i.e. an operator on a single number, will be written
after its operand in the same way and will represent an operation on the
number in the last occupied cell. . Triadic and higher-order operators are
rare, but can be accommodated by the same means, as also can operators giving
more than one result - including the SPeéial case of a double-length result.
As coding possibilities all these are important since they would be needed
as subroutine operations if nct as elementary ones.

3., VARIABLES AND SUFFIXES

Now let us look at some of the other properties of mathematical notation..
Nunbers can be written in a mathematical formula directly as a sequence of
the numerals 0-9 with or without a decimal peint; and it would be very
convenient, if not strictly necessary, to be able to write them in this way
in a program. Algebraic representation is more important, however, since
provided some means is available of identifying numbers with letters any

constant number required can be represented by a letter anyway ,

The most obvious 1nterpretatlon of algebraic variables is that they should
represent storage locations, This, however, is only a start, because the
entire resources of the Latin and Greek alphabets are insufficient to name
even the fast-access storage locations in a present-day computer, and many
more numbers are required in some problems. How does mathematics manage
to formulate these problems? I think the answer lies in suffix-notation.

Suffixes have at least three functions. In the first place they indef- .
initely enlarge the alphabet, since after one has run through a, b, c...etc.
one can start on a ,»b1, c, coo €tc. and then a s bz,.c2 eso and sO on.

But one can also have algebraic suffixes, and th1s leads us to their second
function: +they enable_ag_¥3_8I5551fy numbers into groups, and to generalise
about members of a group or to indicate the performance of some operation
involving the members of the group as a whole. Thus if an operation is to
be carried out on a group of numbers X5 X,y ooo X_, Say, we indicate it as

carried out on'"xj", and make a note in the margin about the range of values

of j; and this simple notational. trick is a sort of analogue of a loop in
a present-day flow diagram. - :

The third facility that suffixes provide lS a rudlmentary "function®
notation., A set of values of a function can be represented by a variable
with a range of suffix-values; and when an algebraic suffix is used it may
be considered as representing, albeit usually on a different scale, the
argument of the function. Thus x: is a function of j, and the symbol "x¥
can here be considered as a sort of operator-symbol. It follows that to
conform with “"reverse Polish" algebraic notation we should write it after
the symbol "j"; and since j is an ordinary variable we should write it as
such and not (as in ordinary notation) provide a special range of suffix-
symbols. Actually it is the suffixed variable and not the suffix which
should have a special notation. Por simplicity, however, we might prefer
to have one special symbol rather than an alphabet of them,. and I suggest
a symbol "/", written between the two. For example for "xj" we can write
"J /X"

Since double suffixes are 0f frequent use there is something to be said
for making provision for them, and in conformity with what has been said we

- 121-3

could use one additional symbol "//" and e.g. in place of ”aijﬁ write
i Geef) at

The logic of these notations, together with that of the algebra system
outlined already, automatically guarantees the provision of a very large
slice of the facilities normally associated with suffixes. For example,
when a symbol-sequence such as "j / x" comes along the first thing that
happens is that the number j is placed in the next vacant cell of the
accumulator, and arithmetic operations may be carried out on it as they

ordinarily are on suffixes: for example, for "aj+n"‘we can write simply

"j n*+ / a".. Another straightforward possibility is the use of suffixed
suffixes, e.g. as in "ajk"’ since without any further symbols or elementary

operations we can write this in the form "k / j:/ a".: The limits on the
uses of this and allied notations are not so much logical as technical ones,
i.e. store size and access time: for each doubly-suffixed variable
represents a "matrix" of storage locations, and even with a moderate limit
on the permissible numerical magnitudes of the suffixes --— say 32 ——— one
such matrix would take up an appreciable fraction of the total storage of
present machines.:

4. REPETITIVE OPERATIONS

I have said that ordinary mathematics indicates repetition of an operation
for a range of suffix-values by means of a note in the margin, e.g.:

"(J= 1, 2, ... n)".. This is however only part of the truth: there are
other cases for which special notations are provided.: An example of this is
repeated summation, using the symbol "Z". This kind of notation is logically
easy enough to provide: all that is required is a special symbol, plus an
indication of the variable of summation and of its limiting values. The
limiting values of the summation are most conveniently written before the
special symbol, and the variable-symbol after it.f There would follow the
formula representing the summand, and finally some kind of "bracket" symbol

to mark the summand off from the subsequent program.:

One comment I should like to make here is that a summand is rather similar
to a subroutine, "called into control" by the summation-symbol a number of
times determined by the parameters. Furthermore, the possibility of nested
subroutines is paralleled by the possibility of nested summations (or other
repetitive operations), and by the possibility of repetitive operations
occurring within subroutines or vice versa.: It follows that if some kind
of provision is made for automatic subroutining it goes some way towards
meeting the case of repetitive operations.:

The most ‘important provision to be made towards automatic subroutines is
what I should call a "nesting register": this is a sequence of storage
locations for instruction addresses operated on something the principle of
the running accumulator.: It may even regularly store, in its last occupied
cell, the address of the current instruction for use by control.: When a
subroutine is called in, the address of its first instruction is placed in
the next vacant cell and becomes the current instruction address, the point
of interruption of the main program being indicated by the address in the
last cell but one.: Then when the subroutine is completed the last occupied
cell is cancelled and control reverts to the point of interruption.

* .
There is however an advantage in using a "name" symbol (see Appendix I)

121-4

If the same system is adopted for repetitive operations,. some indication
is needed in the nesting register to distinguish: the entries from those of
subroutines.: It happens that: it would be very convenient also to be able
to store a "count" number.- A quite general repetitive operation,. represent-
ing simply an instruction to repeat an arbitrary specified sequence of
operations for each of a range of parameter wvalugs; could: then be provided
quite simply.: This is the analogue of the notatiom "(j = 1, 2,. 5 n)"."

5. CONDITIONAL INSTRUCTIONS

Such: a notation: appears to be capable of coping with most of the applica;
tions requiring repetition of instructions;. and hence explicit "looping": of
programs: is. hardly needed. = The need for "discrimination" is also reduced.:
There 'appear to be still cases,: . however, requiring these latter facilities;
and it: is necessary to consider how best: they can be introduced into a scheme
of this kind.: 1I!shall consider discrimination’ first.:

Mathematics has no very satisfactory notation for discrimination: .the
nearest: approach seems to be am arrangement such as:-

X = { a (y € 0)
b - (y >0).:

On: the other hand, formal logic has something to say on the subject, at:
least in prineciple: it can be pointed out that the basic requirement. is for
a logic of conditional instructions, of the form "If p then A", where p ‘
represents a proposition and A an instruction.: If we assume that we shall
have some symbol or symbols to represent the "if ... them ..." operation,
what we are lacking is primarily a means of representing propositions.:
Now there is one important way in which propdsitions are represented in
mathematics, and that is by means of equatiOns,and.inequations.j It is
accordingly appropriate to introduce symbols such ag "=", "<",. "3" and so on
{or a selection of them) and treat: them as diadic. operators which operate on
pairs of numbers to give propositions.: Numerically a proposition can be
represented by its "truth-value™, i.e.:a digit (say the sign-digit) to
indicate whether it is true or false. If we use "1" for true and."O" for
false we accord with: the usual computer convention for Boolean operations;
and these may incidentally be: introduced and will have their usual meanings
when interpreted as operators on propositions. For example if "&" represents
the: Boolean "and": operation the proposition "s' < x < b" can be represented
as the conjupction of the propositions "a < x" and "x < b", taking the. form
wax < xb <,&"*': ‘

We can represent the conditional instruction "If p then A" in some such
form as "p = A]": for example, the instruction "If x = y, add n to the
number in’ the accumulator"™ becomes "x y = =, m +]u, Methods can be devised
of- handling nesting of conditional imstructions. using the nesting register.:

8. CONTROL TRANSFER.

‘"Control transfer” instructions represent thevbiggest-problem in this
kind of notation;. and none-of the suggestions I! can offer is completely
satisfactory., Since the whole point of the notation is to save the

* . o4 '

A minor modification,. the use of "all ones" for true and "not all ones™. for
false, permits an interesting application to the logical calculus of
propositions.- False: mathematical propositions are in' this case represent-

" o S o 1T
ed by "all zeros - 191-5

programmer from having to worry about addresses inside the machine it is
undesirable at this stage to demand that he specify the instruction address
to which control is to be transferred.: An alternative is to insert
recognisable "markers" in the program and provide means of instructing that
control be transferred to such-and-such a marker; but unless the machine
can be persuaded, say, to make a list of all marker addresses while reading
in a program,. this involves a search for the appropriate marker and is
presumably ruled out on the grounds of speed.:

The most important case of control transfer is that of subroutine entry;
and in this case it seems less objectionable to demand listing (automatic

or not) of instruction addresses. For the rest there are some hopes that
control transfer may be unnecessary in other cases if a sufficiently flexible
system of conditional instructions can be found. This possibility however

requires more study and I shall not enlarge on it here.:

7. REALISATION AS SECONDARY CODE

To help crystallise the above suggestions into something approaching a
practical code, at least from the point of view of the programmer, I. have
prepared an interpretive program for Utecom and tried it out on a number of
problems.: It is of course rather wasteful of machine time, and I. would
not seriously put it forward in this form for general use. It completely
vindicates my hopes, however, as regards programming convenience.: Inh fact
it has been a real joy to be able to write programs in a matter of minutes,
and particularly to be able to write faultless programs. The latter point
should be particularly emphasised since it has an economic importance:
hardly any machine time has been wasted in program-checking, and problems
have usually gone through in one uninterrupted machine session.

The code actually used differs from that suggested above only as regards
the method of discrimination: +the facility provided is a conditional
transfer of control, the actual transfer being initiated by one of two
alternative kinds of "skip" instruction which operate in conjunction with
program place-markers and a search-routine.. The "skip" instructions can
also be used unconditionally.: Various facilities have been added, e.g.
for input and output of numbers from or to the usual punched cards, and for
a number of longer operations such as exponentiation, radication and
trigonometric functions which would not of course be elementary machine
operations.: A table of code-symbols, with some additional notes on their
operation, is given in Appendix I.:

Symbols are coded as groups of eight binary digits and are fed four-per-—
word (48 per card) into the machine by a routine which eliminates any spaces
left between them (code 00000000 is not used): this facilitates the patching-
together of a program without wasting storage, since component cards may
simply be collected into a pack. Subroutines are simply attached to the
program, and a special symbol is used to terminate program read-in and start
the calculation at the first symbol.: The scheme is unambitious in its
system of numeration: all operations are carried out as if the numbers
were expressed to 16 binary places {in the Utecom word of 32 digits) and
always give single-length answers.: Overflow checks are provided. The
number store is divided like Gaul into three parts: (i) the "scalar" store
(32 unsuffixed variables), (ii) the "vector" store (32 singly-suffixed
variables) and (iii) the "matrix" store (four doubly-suffixed variables ——-
only a, b, c¢c and d can carry double suffixes). Since suffixes can take
values from O to 31, up to 5000 numbers can be stored. There is room for
512 instruction-symbols. The "running accumulator” has 31 cells (though
no program so far has ever used more than about ten) and the nesting
register has six. Some of these figures Iiwould alter if I were to redesign

121-6

the scheme, but: in general they have proved adequate. The exception is the
number-store, which is unduly inflexible: it needs reorganisation to
permit,: for example, the use of much larder suffix-values under certain
circumstances and could perhaps be treated sequentially such that.“aszf
represents: the same number as "bO"? and so on,

Some examples to illustrate programming techniques are given: in Appendix
IT.: - To those who find these merely bewildering I. can only point out that
the notation is extremely compressed compared with, say, that of the
customary coding-table; but is in consequence all the more convenient in
the long run since when learnt it can be read (and written) with a facility
that: a coding-table never couldef :

8. CONCLUSION

How feasible is it to build a machine embodying this kind of code?: I
do ‘not. know, having made no detailed attempt to investigate.: But I should
like to record the impression ——— though: it is admittedly scarcely more than
that ——- that the majority of the requirements could be met without much
real difficulty by a judicious combination of elementary operation and
built-in subroutine.: The built-in' subroutine facility is perhaps the
crucial one: given this, the logical design process becomes one of deciding
exactly what elementary operations are the best ones to use as building-
bricks.: A good deal must depend on the broad technical approach (e.g. on
the kind of storage used) and hence can only be profitably discussed after
some initial technical decisions: are made.. On the other hand there are .
also many possibilities of theoretical developments along the lines I; have:
mentioned, and it' should ‘be fairly clear that. seemingly technical problems
can often be meét: and solved in this field simply by some basic re-thinking.

*And if "reverse. Pollsh"’symbol order proves for some reason comprehensible
only to formal logicians I have a final trump-card in .the. shape of a
translation program which will accept: a mathematical notation that is:
almost completely orthodox! : :

121-7

APPENDIX I:

TABLE OF CODE-SYMBOLS

0 1 2 3 4 |5 s] 7 8 9 |10 11 12 13| 14 15
0 |not 0 / // | alalla)]| (q)]m b4 sin tms | Ry
used
1 , 1 |disp + b |r|(b)| (r)] e T |rep cos rep | R
; 2 |neg - c |s|(c) | (s)|T 2|+ tan Ry,
3 * 3 mod A d |t | (d) (f) o) 3 pow cot | R/
4 X 4 |sig € |u|(€)| (u) |V csc j; Ry
5 I 5 |int £f v | (f)]| (v) 5 exp sec _ﬁe. R/,
6. |end 8. |frac | max | g [w | (g) | (w) B log 1;2
7 |buzz | 7 min | h |x | (h) | (%) 7il1g fu
8 |unbz 8 |dup rev | i |y | (1) | (y) sin? > Py,
9 |wait 9 J |z | (J)]| (=) 1 cost I1 P
10:30= | 20 k o | (k)| () 2 csc’ 5 | Py
11 11 LB (1) | (B | 3 sec o |p,
12 12 & |mo|y | (m) | (V)b | 4 tan® Py
13 | < |13 = |n (A m) | Mg | 5 cot’ P,
14 | > 14 | ~ v o0 [k [(8) (e | 8
18 B g PV [(p) | (V)| | 7 ang #
Notes
Column O
"," used to separate numeral sequences.:
";" cancels last occupied cell.
"¥" and " " program place-markers: the latter is to be followed by a
reference number.
"wait" stops program until manual signal given.
Column 2

"disp" displays contents of last occupied cell on output lights.

121-8

"neg" monadic operation taking negative of a number (cf.:"-" diadic
(operation denoting subtraction).

"int" and "frac" monadic operations giving integral and fractional parts
respectively.:

"dup": duplicates number from last occupied cell in next cell.;

i Boolean negation.
ren discrimination instruction, means "if number in last occupied cell is
all ones ignore the next skip (any symbol of column 9)": last occupied

cell is cancelled.:
Column 3
"rev" interchanges contents of last two occupied cells.:

ngm, = owygn mow Boolean conjunction, equivalence, disjunction and
implication respectively..

Columns 6 and 7 "Names"

These' correspond with the variables of columns 4 and 5.° A name
transfers the contents of the last occupied cell (without cancelling)
into the number-store.:

Names can be suffixed in the same way as variables.

Cclumn 8 Constants
"T" truth (all ones).-
"g". sign-digit.

"¢i" to "¢§" digit-patterns for use as truth-tables of elementary proposit-
ions.

Column 9 "Skips"

" " (preceded by number) skip to subroutine of indicated reference number.

ngn etc. skip right to first (etc.) asterisk

", " (preceded by number) skip to indicated reference number.:

"1" etc.: skip left to first (etc.) asterisk.:

Column 10

"pow" diadic operation such that "a b pow" represents abg
"1lg" diadic operation, logarithm to given base.

Cclumn 12

"ang" diadic operation, angle of complex number.
Column 14 Repetitive operations

"tms" simple repetition a number of times given by preceding number, e.g.
"n tms .;;;;0]42;

"rep" repetition for increasing values of parameter,
e.g. "a b rep (Jj) »,’cpva.,j]‘"-ﬂi

121-9

"f;" etc. definite integration by Simpson's rule, for different numbers of
intervals, e.g.:

"a b j; L& ittt d s

"2" etc. repeated sum, product, logical sum and logical product
respectively, e.g. "a b = (j)]".

Column 15

Read and punch, with or without conversion, to accumulator or vector
store or matrix store.

"#" ends program read-in..

121 - 10

APPENDIX IT.

'PROGRAMMING EXAMPLES

'0f these examples: the: first: six are simple illustrations of methods of
using various symbols; -the seventh. is a "subroutine"; and the eighth-is
the main part: of a working program. .

1. Va2 + 2ab cos 8 + b° (result in accumulator).:

a2powab2Bocosxxx+b2powt+V

2. Put: x = £(a t b)), y = &(a - b).:
ab+2* (x); ab-2%(y);

3. Put. tjj= aj? (j:-=1, 2, ..»:n).;

1 nrep (j) g/ ag2powi/ (t);]
4. .2 ajsx X (result. in accumulator)..
i,j=1 J-

1nS()1nS(j)ij Haxjpowx]
X i pow x

2 2
1 b -x"/{2s")
j‘ .

5. a € dx (result in accumulator)
s vV 21
a b fv(x) X s ¥ 2 pow 2 ¥ neg exp. 's T 2 x Voxo*
6. If'x is odd, add one to y.:
x1&1=9 7Ty 1+ (y); *
7. Iterate from initial value unity using the formula
- . 2
X(n+1) ° é(x(n)'+ y/x(n)) until Iy - X 14 €
leaving result: in accumulator.:
1 ¥ (x) yx* +2 % dup 2 pow y —mod €$ 9 1
8.: Solve ‘the linear equations
J'=21 aiJ XJ-‘ = ai_’_n.*_l (i = 1, 2, ...n)

Crout's method is used..

1, 1 // a(p); 2ml trep (§)1j/ap*1j/la);]
2 nrep (q) gnrep (i) i q /a1 g1l -2 (k) ik //
akaqg//ax]l -iaq//(a); 'a1l1+n1+rep (J)
ej/H/alaql-Z(k)lak//akj//ax] -aaq/a
+.q g //(a); 1]

nnil* /f/fan/ (x); 1nl-rep (q) ng - (i);
ini+//ail+n(k)ik//ak/xx] -

i/ (x); I

121 - 11

Mr. R. Davis English Electric Co.

Mr. Hamblin said that schemes such as his would only apply: to certain
ranges of work. Would he indicate the range for which he thinks his
scheme is suitable?

Mr. Co L. Hamblin (in reply)

It is not severely restricted - it has all the elementary operations
of normal computers. The main difficulty appears to be in organisation
of storage.

Professor T.M. Cherry University of Melbourne

Have you a symbol to show when a variable is finished with, so that
the location may be used for other purposes?

Mr. C.L. Hamblin (in reply)

There is no provision for this. However, the same letter may be used
for different variables at different stages in a calculation.

Dr. T. Pearcy Commonwealth Scientific and Industrial Research Organization.

I feel that Mr. Hamblin is asking us to learn a new language whereas
automatic programming should use the language of mathematics.

Mr. C.L. Hamblin (in reply)

You cannot quite do this. Ordinary mathematics has things which cannot
simply be coded into a programme. One has to learn an exact language.

Dr. S Gill Perrati Limited

I am not worried by the author's notation. I think it could be
learnt more easily than some of the other schemes which have been suggested.
But has the author considered using forward Polish notation and making
the machine read it backwards?

Mr. C.L. Hamblin (in reply)

Yes, I have, but this system has certain advantages.

121-12

