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Abstract

We study the dynamics of the generalized Euler equations on Virasoro groups

D̂(S1) with different Sobolev Hk metric (k ≥ 2) on the Virasoro algebra. We first

prove that the solutions to generalized Euler equations will not blow up in finite time

and then study the stability of the trivial solutions.
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1 Introduction and Main Results

Since Arnold’s pioneering work [1], introducing the geometric approach to study the Euler fluid equation,

many papers (such as [14], [16, 17, 18], [2] and the references therein) are devoted to this field.

Let D(S1) be the group of orientation preserving Sobolev Hs diffeomorphisms of the unit circle S1,

then D(S1) has a non-trivial one-dimensional central extension, the Bott-Virasoro group D̂(S1) with the

Virasoro algebra V̂ ect
s
(S1) ([17]), in which the commutator is given by

[Û , V̂ ] ≡
(

(uxv − uvx)
∂

∂x
, c(u, v)

)
, with c(u, v) ≡

∫

S1
u∂3

xvdx, (1.1)

where Û = (u ∂
∂x , a), V̂ = (v ∂

∂x , b) ∈ V̂ ect
s
(S1) with a, b ∈ R.

It is now well-known that the Euler equation on the Virasoro algebra for the L2 metric (or equivalently,

the geodesic equation on the Virasoro group of the right invariant metric which is L2 metric at the identity)

is the KdV equation ( [19]), and the Euler equation for the H1 metric is the Fuchssteiner-Fokas-Camassa-

Holm equation ([4, 11, 14]). Recently, A.Constantin et al ([8, 9]) showed that on the Virasoro group,

only the Euler equations for the L2 metric and the H1 metric are bi-Hamiltonian systems (see also [14]).

In order to study how the dynamics of the Euler equations depends on the different metric on the
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Virasoro algebra, we are concerned in this paper with the generalized Euler equation

mt + 2uxm + umx = a∂3
xu on S1, with m = Aku, (1.2)

where the operator Ak = 1− ∂2
x + · · ·+ (−1)k∂2k

x , k is a positive integer and a ∈ R.

For the local well-posedness of (1.2), we can apply the Kato theory ([13]) or the approach in ([10])

(see also ([15])). For Fuchssteiner-Fokas-Camassa-Holm equation equation (i.e., the Euler equation (1.2)

with k = 1), a striking feature is that the solutions evolve into singularity in finite time if the initial

momentum m(0, x) assumes both positive and negative values. But for k ≥ 2, our following result

excludes this possibility.

Theorem 1 Suppose k ≥ 2 in (1.2). If the initial value m(0, x) ∈ L2(S1), then m(t, x) ∈ L2(S1) for

any finite time t > 0, and there exists a constant C0 depending only on the initial condition such that

||m||L2 ≤ eC0t||m0||L2 . (1.3)

Thereupon the global well-posedness of (1.2), and so it is of interest to study the geometry of the Vi-

rasoro group and consider the stability of some steady solutions. We can compute the sectional curvature

and obtain

Theorem 2 The geodesic in D̂(S1) with initial condition η̂(0) = (e, 0) and ˙̂η(0) = (v0
∂
∂x , b), where

v0, b are constants, contains points conjugate to η̂(0) along η̂.

2 Derivation of the equation (1.2)

We give a brief description how to get the Euler equation (1.2). Let Û = (u ∂
∂x , a), V̂ = (v ∂

∂x , b), Ŵ =

(w ∂
∂x , c) ∈ V̂ ect

s
(S1), and define the Hk inner product on V̂ ect

s
(S1) by

(Û , V̂ )Hk =
∫

S1
(uv + uxvx + · · ·+ ∂k

xu∂k
xv)dx + ab, (2.1)

then we find ad∗
Û

by

(ad∗
Û

V̂ , Ŵ )Hk = (V̂ , adÛŴ )Hk = (V̂ , [Û , Ŵ ])Hk

= (v, uxw − uwx)Hk + b · c(u,w)

= (g − b∂3
xu,w)L2 = (A−1

k (g − b∂3
xu), w)Hk ,

(2.2)

where g = 2uxAkv + uAkvx. So

ad∗
Û

V̂ =
(

A−1
k (2uxAkv + uAkvx − b∂3

xu)
∂

∂x
, 0

)
(2.3)

and the generalized Euler equation d
dt Û = −ad∗

Û
Û on the Virasoro group w.r.t. the right invariant metric

gives us
dAku

dt
= −(2uxAku + uAkux − a∂3

xu),
da

dt
= 0, (2.4)

which is (1.2) for m = Aku.
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3 Proof of the theorems

Proof of Theorem 1 We prove the Theorem 1 for sufficiently smooth function m and the general case

m0 ∈ L2 follows by a standard density argument. Multiply (1.2) by m and integrate over S1, we have

1
2

d
dt
||m||2L2 + 2

∫
uxm2 +

∫
ummx = a

∫
m∂3

xu, (3.1)

Clearly,
∫

m∂3
xu =

∫
∂3

xuAku = 0. So

d
dt
||m||2L2 = −3

∫
m2ux, (3.2)

from which
d
dt
||m||2L2 ≤ 3|ux|L∞ ||m||2L2 . (3.3)

On the other hand, it is obvious that H =
∫

S1 umdx is a conserved quantity for (1.2), i.e.

k∑

l=0

||∂l
xu(t, x)||2L2 =

k∑

l=0

||∂l
xu(0, x)||2L2 . (3.4)

So from the Sobolev embedding theorem and k ≥ 2 we have

|ux|L∞ ≤ C||uxx||L2 ≤ C0, (3.5)

where C0 is a constant depending only on the initial condition. The Gronwall inequality and (3.3) yield

||m||L2 ≤ eC0t||m0||L2 . (3.6)

For the right invariant vector fields Û , V̂ , the covariant derivative ∇Û V̂ can be obtained form the

formular ([5])

2∇Û V̂ = [Û , V̂ ]− ad∗
Û

V̂ − ad∗
V̂

Û

= [Û , V̂ ]−
(
(A−1

k (2uxAkv + uAkvx + 2vxAku + vAkux − b∂3
xu− a∂3

xv) ∂
∂x

, 0
)

=
(
(uxv − uvx −A−1

k (2uxAkv + uAkvx + 2vxAku + vAkux − b∂3
xu− a∂3

xv) ∂
∂x

, c(u, v)
)

,

(3.7)

so

∇Û Û = −
(

(A−1
k (2uxAku + uAkux − a∂3

xu)
∂

∂x
, 0)

)
.

On the other hand,

[[Û , V̂ ], V̂ ] =
(

((uxv − uvx)xv − (uxv − uvx)vx)
∂

∂x
, c(uxv − uvx, v)

)
,

so by the formula ([5])

R(Û , V̂ ) ≡ (R(Û , V̂ )V̂ , Û)Hk = 1
4 ||ad∗

Û
V̂ + ad∗

V̂
Û ||2Hk −

(
ad∗

Û
Û , ad∗

V̂
V̂

)
Hk

− 3
4 ||[Û , V̂ ]||2Hk − 1

2

(
[[Û , V̂ ], V̂ ], Û

)
Hk

− 1
2

(
[[V̂ , Û ], Û ], V̂

)
Hk

,
(3.8)
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we can get the sectional curvature formula although the calculation is lengthy and messy. However, if

V̂ = (v0
∂
∂x , b) is a constant vector field, then the direct computation gives the simple sectional curvature

formula
R(Û , V̂ ) =

1
4
b2

∫

S1
∂3

xuA−1
k ∂3

xu + v2
0

∫
uxA−1

k ux + bv0

∫
uxxA−1

k uxx

=
1
4

∫

S1

(
bA

−1/2
k ∂3

xu + 2v0A
−1/2
k ux

)2

dx ≥ 0,

(3.9)

and the Riemannian curvature

R(Û , V̂ )V̂ = ∇Û∇V̂ V̂ −∇V̂∇Û V̂ −∇[Û,V̂ ]V̂

=
(

(−1
4
b2A−2

k ∂6
xu− v2

0A−2
k uxx + bv0A

−2
k ∂4

xu)
∂

∂x
, 0

)
.

(3.10)

Let η̂(t) be the geodesic with the initial condition ˙̂η(t) = V̂ , and Ŵ (t) be an arbitrary vector along

η̂(t) and

(w(t, x)
∂

∂x
, s(t)) ≡ dη̂(t)Rη̂−1(t)Ŵ (t),

where Rg denote the right multiplication by g on the Virasoro group. Then the Jacobi equation along

η̂(t)

∇ ˙̂η(t)∇ ˙̂η(t)Ŵ (t) + R(Ŵ (t), ˙̂η(t)) ˙̂η(t) = 0 (3.11)

reads s′′(t) = 0 and

∂2w

∂t2
− 2v0

∂2w

∂t∂x
+ v2

0

∂2w

∂x2
+ 2v2

0A−1
k

∂2w

∂x2
− 2v0A

−1
k

∂2w

∂t∂x
+ bA−1

k

∂4w

∂t∂x3
− bv0A

−1
k

∂4w

∂x4
= 0 (3.12)

that is (
∂

∂t
− v0

∂

∂x

)2

w − 2v0A
−1
k

(
∂

∂t
− v0

∂

∂x

)
wx + bA−1

k

(
∂

∂t
− v0

∂

∂x

)
∂3

xw = 0. (3.13)

For any integer n ≥ 1, if we denote k(n) = (1 + n2 + n4 + · · ·+ n2k)−1,

µ = nv0k(n) +
1
2
bk(n)n3 and λ = nv0 + nv0k(n) +

1
2
bk(n)n3,

then a direct calculation tells us that

w(t, x) = sin(µt) sin(nx + λt)

is a non-trivial solution to the Jacobi equation (3.12). And clearly, Ŵ is always perpendicular to ˙̂η(t), so

it is a Jacobi field along η̂(t). And if we take

t =
2πj

µ
for j = 0,±1,±2, · · ·

we got the points conjugate to η̂(0), which completes the proof of Theorem 2.
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4 Comments

The solutions to the generalized Euler equation on the Virasoro group with different Sobolev Hk metric

evolve non-integrably for k ≥ 2. Due to the smoothing effect of the operator A−1
k , the solution will not

blow up in any finite time, contrast to the KdV equation and the Fuchssteiner-Fokas-Camassa-Holm

equation. However, our numerical simulation indicates that the solution m does increase exponentially

in the time t for some initial m(0, x) assuming both positive and negative values.

Theorem 2 tells us that the constant solutions to (1.2) stay in the nonnegative sectional curvature

region and contain some conjugate points. On the other hand, it is easy to see that the linearized equation

of (1.2) at V̂ = (v0
∂
∂x , b) is

Zt + v0Zx + 2v0A
−1
k Zx = bA−1

k ∂3
xZ, (4.1)

and the quadratic

H(Z(t, x)) = v0

∫

S1
Z(t, x + v0t)A−1

k Z(t, x + v0t) +
1
2
b

∫
Zx(t, x + v0t)A−1

k Zx(t, x + v0t) (4.2)

is the Hamiltonian functional of (4.1), so it is conserved, from which we have the Eulerian linear stability

at the trivial solutions to (1.2).
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