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Explicit Symplectic Splitting
Methods Applied to PDE’s

ROBERT I. MCLACHLAN

ABSTRACT. The symplectic integration of Hamiltonian partial differential
equations with constant symplectic structure is discussed, with a consistent,
Hamiltonian approach. The stability, accuracy, and dispersion of different
explicit splitting methods are analyzed, and we give the circumstances un-
der which the best results can be obtained. Many different treatments and
examples are compared.

1. Introduction

A standard method of developing integrators for PDE’s is to derive an ad
hoc discretization in space and time, and then study the properties (conver-
gence, stability) of that method. However, because symplectic integrators have
shown an ability to capture the long-time dynamics of Hamiltonian ODE’s, one
would like to apply them to Hamiltonian PDE’s as well. A natural approach is
to discretize both the Hamiltonian function (an integral) and the Hamiltonian
(Poisson) structure, then form the resulting ODE’s. In principle this deals with
all Hamiltonian PDE’s at once, and provides a simple framework for incorpo-
rating symmetries of the phase space (Casimir functions), spatial symmetries
(in the Hamiltonian function), and temporal symmetries (such as reversibility, a
property of some symplectic integrators). Unfortunately some symmetries, such
as those giving rise to integrals of more than second degree, cannot be preserved
in the discrete system, and furthermore, symplectic integrators can be difficult
to construct for exotic Poisson structures.

The main difference from the low-dimensional ODE case is that the equa-
tions are stiff—they contain widely different time-scales. Hence any numerical
dissipation will have a severe effect; but standard conservative schemes (Crank-
Nicolson, leapfrog on u; = u,) have undesirable attributes such as implicitness,
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parasitic waves, and low order. Hamiltonian methods have no parasitic waves,
extend easily to any order, and are often explicit. However, note that if one
wants to compute u(7") accurately for fixed T then conventional methods will
always do better—this only depends on the truncation error of the method used.
This is not an appropriate test for symplectic integrators: one should concen-
trate instead on phase space structures (e.g. the shape of a traveling wave) and
not on temporal errors (its speed). Whether or not accumulating phase errors
(e.g. of angles on Liouville tori) corrupt the dynamics depends on the particular
system studied, and on the measured property being structurally stable in the
space of Hamiltonian systems.

We outline Hamiltonian systems in §2, and symplectic splitting methods in
§3. These may be applied when H = T'(p)+V(q), (“P-Q splitting”) but the best
methods are possible when the nonlinear terms in H may be integrated exactly,
as often happens (“L-N splitting”). Proposition 1 proves sufficient conditions
for the much more accurate Runge-Kutta-Nystrém methods to apply in this
case. Sections 4 and 5 analyze the stability and dispersion of the two different
splittings with different integrators—L-N splitting turns out to be more accurate
and more stable, and if the equation is linear in its highest derivatives, dispersion
errors are almost eliminated. Examples appear throughout.

2. Hamiltonian partial differential equations

Olver [12] is a good introduction to the structure of Hamiltonian ODE’s
and PDE’s. Here we give a brief overview. A Hamiltonian dynamical system
consists of a triple (M,{-,-}, H) where M is a smooth manifold (the phase
space), H : M — R is the Hamiltonian function, and {-,-} is a Poisson bracket,
a bilinear, skew-adjoint operator satisfying the Jacobi identity and the Leibniz
rule. The bracket can be written in coordinates z; as

{F,G} = (V)T J(z)(VG)

where F, G: M — R and J is called the Poisson tensor. A change of variables
z — X = ¢(z) induces a bracket in the new variables by

{Fo¢,Godlx ={F,G}s0¢

or, in coordinates, 5

(Dz9)J (2)(De)™ = J(X).
IfJ=1J , ¢ is called a Poisson map; the time-map of the Hamiltonian dynamical
system

¢ ={z,H} = J(z)VH(z)
is a Poisson map. A symplectic (or Poisson) integrator is one for which a time
step is a Poisson map. Casimirs are functionals C' such that {C, F'} = 0VF, hence
integrals of the motion for any H. When the phase space is infinite dimensional,
we write the triple as (M, {-, -}, H), and the Poisson operator as J. Typically
M consists of sets of smooth functions on a finite dimensional space Z i.e. an
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element in M is u(z), z € Z. The Hamiltonian H : M — R is a functional on
this space, and the bracket can be written as

§F 6G
g EJ (u) o dz
where §F /6u is the variational derivative. When J is constant over M, the

Jacobi identity is trivially satisfied, and one need only check skew-adjointness.
The most common cases are the canonical J = [_01 (1)] and the Gardner-
Zakharov-Faddeev operator J = 8., which appears for example in the Korte-
weg—de Vries equation.

To reduce a Hamiltonian PDE to a set of Hamiltonian ODE’s which can be
symplectically integrated, our approach is to discretize J and H separately and
then form the resulting dynamical system. H is an integral which can be dis-
cretized in any (suitably accurate) way, being careful to maintain the symmetry
of any derivatives in H. If J is constant, it may be discretized by replacing the
differential operators by any (matrix) difference operator D, for example, central
or pseudo-spectral differences. In what follows D will be any appropriate ma-
trix difference operator. Some points to remember are that 8,8, = 8, usually
breaks down when discretized, H may be integrated by parts as necessary to get
compact differences, and that for equations involving odd derivatives we may get
1-point-more-compact differences using staggered grids.

Consider periodic boundary conditions. Finite differences introduce excessive
dispersion and will usually be inadequate, but full-spectral, pseudo-spectral and
anti-aliased schemes are all possible, by treating the nonlinear terms in H (not 4)
appropriately. The time-continuous dynamics are the same whether one works in
Fourier or physical variables; usually the choice is made to minimize the number
of Fourier transforms required per time-step.

{F,G}ul =

EXAMPLE 1. H = — [(ug)?dr = [uuy,dz may be discretized as H =
Ei) j u; Di;u; where D is a matrix difference operator approximating d;5. Then
(dH)z = Zj(D’ij + Dji)uj. This approximates 2ug, only if Dij = Dji, i.e. the
matrix D must be symmetric. So Chebyshev-spectral or finite differences skewed
at boundaries are not suitable.

3. Symplectic integration
Suppose the Hamiltonian may be split into two parts—the “P-Q” splitting:
| H =T(p) + V(0)
This was first considered by Feng [4]. Later we will also consider “L-N” splitting
H = L{u) + N(u)

where L has linear dynamics and N is nonlinear. Let Xp = JdT, etc., be
the associated vector fields, and e*¥X be the time-k flow of the vector field X. If
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J = [ _?(T IO(] then the following map is an explicit, first-order approximation

of the true flow e#%# [13]:

(3.1) R

which is computed as

pn+1 — pn —k (KTV/(qn)) , qn+1 — q'n. +k (KTI(pn+1)) .

In (3.1),

(3.2) X = Xr + Xy + k[Xr, Xy] + O(?) = JdH
where

(3.3) H=H+Hy+ O, Hy=-k{T,V}

where the error (due to the noncommutativity of T’ and V') is expanded using the
Campbell-Baker-Hausdorff (BCH) formula, and (3.3) follows because Hamilton-
ian vector fields form a Poisson algebra. The series in (3.2) is only an asymptotic
series in k—it does not generally converge, although it will for linear systems
for small enough k. Despite this problem, one might call Hy the “autonomous
Hamiltonian truncation error” (Yoshida [17]).

The leapfrog (“LF2”) method extends the method (3.1) to second-order:

1 1 =
(k) = e3hXTFXv 3hXr _ kXg

G4  E=H+leunvh-@@vh+or)

It is symmetric, that is, @(k)p(—k) = 1. Suzuki [15] and Yoshida [16] use
this property to construct schemes of arbitrary order by concatenating (2s + 1)
leapfrog stages and preserving the symmetry:

(3.5) o(wsk) ... o{lwik)o(wok)p(wik) ... o(wsk).

where wg = 1 — 2(wy + ... + w,). Particular schemes are given in Table 1.
Other compositions, analagous to (3.4), can be made which preserve specified
reversibilities of the continuous system [14]. A fourth-order scheme which has
been rediscovered many times ([2], [7], [15], [16]) is LF4a, which has s = 1 (see
Table 1). However, this method takes a large backwards step of 1.70k, leading
to poor accuracy and stability. A better fourth order method L¥4b [15] whose
largest step is —0.66k, has s = 2, and one can show that this is close to the most
accurate fourth-order method of this type. The best sixth-order method, LF6a,
is Yoshida’s Method A which has s = 3.

If T(p) is quadratic (i.e. one may write § = f(g)), one can do significantly
better by simply concatenating several stages of (3.1): ¢ = [[;_, e%*X7ebihXv,
These are known as Runge-Kutta-Nystrom (RKN) methods. The most accurate
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Table 1. Symplectic Integrators
1. General methods
o(wsk) ... p(wik)p(wok)p(wik) ... o(wsk), wo=1-2(wy+...+ws)
where (k) is any symmetric method, such as leapfrog
(LF2:) e%kXAekXBe%kX",  H=A+B
LFda: s=1, w; =(2-2V8)"!
LF4b:  s=2, w;=ws= (4431

LF6a: §=3, wi=-—L17767998417887, wy = 0.235573213359357,
w3 = 0.78451361047756

II. Runge-Kutta-Nystrém methods, ¢ = []}_, e%+X7bikXv,
a; = 0.5153528374311229364 by = 0.1344961992774310892
az = —0.085782019412973646 by = —0.2248198030794208058

LF4c: =4
¢ § " a3 = 0.4415830236164665242 bs = 0.7563200005156682911
ag = 0.1288461583653841854 by = 0.3340036032863214255
b1 — 0
a; = —1.0130879789881764712 by = 0.00016600692650939825
LF6b: s=8 az = 1.18742957380274263478 b3 = —0.379624214274416219

a3z = —0.018335852095646462 by = 0.68913741186280925274
ag = 0.34399425728108029845 b5 = 0.38064159097019513586
a; = ag—;, i =5,6,7,8 b; = bio—i, 1=16,7,8

4th- and 5th-order methods (in the sense of minimizing the Hamiltonian trun-
cation error) are due to McLachlan and Atela [10]; the 4th-order one, LF4c, has
s = 4 stages. Okunbor and Skeel [11] give sixteen 8-stage, 6th-order methods.
Their method 13 (LF6b) has the smallest truncation error, about 0.02 times that
of LF6a. ‘

If both X1, and the nonlinear vector field Xy can be integrated exactly, then
one may use the same composition methods with L-N splitting (p = eFXzebXn,
etc.) This will usually be superior in that more (or all) or the derivatives in H
will be treated exactly, and for weak nonlinearities, the truncation error will be
asymptotically smaller. Furthermore, the more accurate RKN methods may still
sometimes be used:

_fO{T IO{} and H = L(g,p) + N{(q) where L is

a quadratic polynomial in p and q. Then any canonical Runge-Kutta-Nystrém
method of order five or less, or any symmetric (i.e. p(k)p(—k) = 1) method of
order siz or less, maintains its order of accuracy when applied to this splitting.

ProroSITION 1. Let J =
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PROOF. The special requirement of RKN for the splitting H = T'(p) + V(g)
is that certain terms in the expansion of e**XTebikXv contain a factor T
and hence vanish identically. We compare these terms to those appearing in the
expansion via the BCH formula, namely higher-order commutators of

T |4
{T,V}=-W;T;, T;= -gp—j, W, = 2; g-a;K,-j.

The first vanishing term is at O(k*), which corresponds to a 4th-order method.
It is {V,{V,{T,V}}} = T;xW;W;Wi. For the L-N splitting this term is
L;;xWiW;W;, which is also identically zero (although OL/0q does enter in the
other terms). At fifth order, the two zero terms (in P-Q) are the two commu-
tators of this one, hence also zero in L-N. At sixth order this simplicity breaks
down: the twelve terms in the BCH expansion reduce to eight for both the P-Q
and the L-N splitting. These eight contain five distinct terms in the P-Q case
but eleven in the L-N case (the extra terms containing dL/dq, etc); hence the
order conditions in the two cases are different. But if the method is symmetric,
the sixth-order terms are identically zero, so the RKN methods do then carry
over to the L-N splitting.

ExaMpPLE 2. De Frutos, Ortega and Sanz-Serna have given two treatments
0 o,
5 0’"} H =[50+ () + %) + 3¢° du.
.z :
The first method [5] is unconditionally stable; this is achieved by time-averaging
the stiffest (D*q) term:

of the Boussinesq equation J =

— 1 n mn— ¥ 3
(3.6) (¢"*'—2¢" +¢" 1)/kz=--ZD4(f1"+1+2q +¢" 1) +Dg" + D((g")?)

where superscripts denote time-levels and D is the pseudo-spectral difference
operator, but could just as well be the (diagonal) spectral difference operator or
even 0. Rearranging terms, this can be written as a map ¢:

L k?
p"tE =pE R+ D) TH(=D" + D" + D(d")")

(3.7) =p" 7 +k E N(q™)

q'n+1 =q" + kDpn—}-%

showing that stability is achieved by braking the high modes severely; in fact
k = O(h?) is required for consistency. Secondly, a direct calculation of ¢'J¢' T
shows that ¢ is a Poisson map iff EN' = N'E, which is not true here. It is true
if N(qg) is linear; in this case the method is equivalent to leapfrog with the high
modes braked in the Hamiltonian. (A similar method of gaining unconditional
stability is used in Dai [3] for the variable-coefficient Schrodinger equation.)
Their second method (de Frutos et al. [6]) is equivalent to (3.7) with E = I.
In our framework this is P-Q splitting with time-stepping e**7e*Xv  which is
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second-order if the unknowns are staggered in time (¢®, p“*'é‘ ). They prove con-
vergence and nonlinear stability for this method. Consider instead the equivalent
LF2; the Hamiltonian truncation errors (3.4) for the P-Q and L-N splittings are

k2

P-Q: =57 [ ~PPes + 0" +200" + 2 ~Gaa + ¢+ ¢*) 2 du
k2

L-N: ~ 31 2qp? + 2¢* dz

or their corresponding discretizations. For strong nonlinearities, both are O(g?);
for ¢ ~ p ~ 1, L-N has two terms against nine, and no derivatives (which can
be larger); and for weak nonlinearities (¢ ~ p < 1), L-N is O(q®) whereas P-Q
is O(¢?). In addition, one may use the optimal RKN integrators; and the L-N
splitting gains a factor % in the stability criterion.

Integrals of the system are conserved if they are integrals of each part of the
Hamiltonian separately. This is clearly the case for linear integrals (conserved
by any consistent scheme anyway) and for bilinear integrals under both the P-Q
and L-N splittings. When J is constant, Casimirs are linear functions and hence
conserved.

4. Behavior of P-Q splitting

With finite differences, P-Q splitting must be used, because computing eFXz
requires a Fourier transform. Even if L-N splitting is feasible, there is still the
question of how the splitting acts on any derivatives remaining in N. For a simple
analysis, we consider the linear wave equation § = p, p = g, with P-Q splitting,
and investigate the above methods with regard to stability and dispersion. The
time-stepping is identical if one works in real or in Fourier space; choose the
latter, so that the modes uncouple, and a change of scale reduces each to a
linear oscillator:

¢g=p, Pp=-¢
Write one time step of the method as an explicit linear map

1 0 0
(fﬂ) — A (ZO) _ <A11(k) Alz(k)> (;ZO)
Az1(k)  Aaa(k)
where the polynomials A;;(k) can be found explicitly. One has by induction
in the number of stages that A;; and Ags are even functions and A and Ag;
are odd. For symmetric methods, writing out the symmetry condition shows

that A;; = Ago. Because the methods are symplectic, det A = 1, and thus by
standard stability analysis, the method is stable iff [trA(k)| < 2. The exact

cosk sink
—sink cosk ) 5° A(k) for a method

of order p will agree with this up to terms of order k?; thus the first wrong term
in trA is of order kP*2 for even-order methods.

solution for the linear oscillator is Ag = (
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PROPOSITION 2. Consider gs; = qup discretized with time-step k and spatial
mesh size h and a symplectic integrator with matriz A(k) defined above. Let k*
be the least positive root of |trA(k)| = 2. Then the stability criterion, depending
on the spatial discretization, is

1
(a) Pseudo-spectral differences: % < ;T-k*
(b) Second-order finite differences: % < %k*
(c) Fourth-order finite differences: % < l{gk*

Proor. For the spectral discretization with Fourier modes —%+1 <m< Az"'—,
we require stability for each oscillator (¢, = —m?gm) separately; rescaling leads
to mk < k* for 0 <m < %. Then M = 2r/h gives (a). (b) and (c) follow from
standard von Neumann stability analysis.

ExXAMPLE 3. For leapfrog, tr4/2 = 1 — k2/2 so k* = 2. We therefore have
stability in the spectral approximation for k/h < % ~ 0.6366. LF4a is worse: we
find 2k*2 = 12 — 6(w + w?) + 3vV/—8 + 2w + 4w?, where w = V/2; k* ~ 1.5734
and we need k/h < 0.5008.

For the other methods the roots of the polynomials must be found numerically,
and the corresponding stability criteria are given in Table 2. Notice that they
are quite good—for non-symplectic methods (e.g. three-time-level leapfrog), one
typically needs Courant numbers k/h near 1 with finite differences, and near
1/m with spectral differences. The results apply to any linear PDE with P-Q
splitting: if the time-continuous problem has eigenvalues ior,, then the stability
criterion is ko, < k™.

Table 2. Stability criteria, P-Q splitting

k/h is the stability criterion for spectral differencing of the linear wave equation;
a is the first (O(kP)) term in the expansion of the phase speed error.

Method E* k/h Phase error a
LF2 2 0.6366 —4.2 x 1072
LF4a 1.5734 0.5008 6.6 x 10~2
LF4b 2.7210 0.8661 9.3 x 10~4
LF4c 3.0389 0.9673 1.1 x 1074
LF6a 2.2691 0.7223 —-3.8x1073
LF6b 3.0674 0.9764 ~1.3x 1076

No general time-integrator can be free of dispersion in general. Historically
this has led to schemes which introduce artificial dissipation of the high modes
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to prevent “wiggles.” Indeed Crank-Nicolson (symplectic for a linear PDE) is
often frowned on for just this reason. Now we have expressly disallowed numer-
ical dissipation. Does dispersion mean that we cannot expect good long-time
behavior from symplectic integrators? Certainly it does in the case of the linear
wave equation, for which any initial condition will eventually disperse into its
constituent modes as all phase accuracy is lost. However, for nonlinear and par-
ticularly for near-integrable equations, we can hope that phase locking inherent
in the system will prevent this. (Consider the ODE case of coupled oscillators,
for example.) In addition, it turns out that some integrators (e.g. LF4c) and
L-N splitting have negligible dispersion errors.

We take k < k* and calculate the eigenvectors of A; separating real and
imaginary parts show that the phase space is foliated by similar invariant ellipses,

of whi(;h one is
B cosay) _ Aqn 0 cos &
sina) ~ \cosf— Ay;; sinf ) \sina/

Applying the map to this ellipse and using det A = 1 gives

5(me) =2 (e =)

where cos @ = trA/2. Thus the map moves a point an angle § around the ellipse
each time-step, giving a dispersion relation §. The exact map has = k, and
we are only considering a single wave, so the most natural error measure is the
relative phase speed of that wave, ¢ = 6/k. Because cosf = cosk + akPt? +
o(kP*?) for even-order methods, we have ¢ ~ 1 — ak? for small k (see Table
2.) At k = k* ¢ = w/k*. The figure shows c for different methods and also
illustrates their stability limits.

5. Stability of L-N splitting

There are two approaches to the linear stability of splitting methods. Firstly,
one can make general statements based on the generic bifurcations of symplectic
vector fields and maps, giving sufficient conditions for linear stability. Secondly,
the eigenvalues of the time-map can be computed explicitly for particular exam-
ples; the generic sufficient conditions turn out to be often necessary as well.

Here we are thinking of integrating H = L + N with one of the composition
methods in Table 1 with the resulting map @ linearized about some steady state.
Now 3 = e*® & = C is linear and hence is the time-k map of some autonomous
linear Hamiltonian H which can be found directly: A = uT Bu where CTBC =
B. In this case the asymptotic series

(5.1) H=H+kHy+...

(cf. (3.4)) will converge to H for k small enough. However, one cannot use the
series to examine stability because near the onset of instability, typically all its
terms are the same order in k. Examining the first term in (5.1) can determine
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cos(k)

-

0/k

1.5t

LFb6g

LF4b
4_—_‘,/f LF4c

k

Ficure. Stability & accuracy for explicit P-Q splitting. Top: %trA
for five explicit methods applied to the linear oscillator; the true so-
lution is cos k. The e shows the stability limit for each method. LF4c
and LF6b are indistinguishable here. Bottom: Relative phase speed
¢ for each method.
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when the conditions of the following proposition are not satisfied, and can help
in choosing a good splitting of H. Then (roughly, if dispersion errors are o(1) as
k — 0) two time-steps per period of the fastest wave are sufficient for stability:

PROPOSITION 3. Suppose Xy has pure imaginary eigenvalues {Fion}M_,,
o1 < ... < oum, any multiple eigenvalues have positive signature, and any zero
eigenvalues are associated with zeros of both Xr and Xn. Let k — 0 with
kom = k* held fized, and assume that in this limit @ is a small perturbation of
o = e*XH_ (One may need to rescale the independent variables to get ¢ ~ 1
first.) Then, for M sufficiently large, the method @ is generically linearly stable
for k* <.

PROOF. We are investigating the stability of the fixed point at the origin to
small symplectic perturbations. The nonunit eigenvalues of ¢ are e?*m which
are are bounded away from —1 if k* < 7. Because the eigenvalues of the vector
field have positive signature, so do those of its time-k flow. These are just the
requirements for generic stability of the origin when ¢ is perturbed to & (Arnol’d
[1], MacKay (8], [9]). Finally, if zero eigenvalues of Xy come from zeros in X7,
and Xy, then there is a corresponding zero in Xz, so the +1 eigenvalues of ¢
are fixed and do not split.

Notes:

1. If H = T(p) + V(q), eigenvalues are guaranteed to have positive signature [9].

2. At £kon, =, p has a double eigenvalue at —1. In the perturbed map & this
generically splits into a real pair, signaling loss of stability in this mode. It
may be a bubble of instability or a permanent loss.

3. The proposition applies if H = L(g,p) + N(g) and N has fewer derivatives
of ¢ than L—as in the nonlinear wave equation g = gzz + V’(¢) and the
Boussinesq equation (example 2).

EXAMPLE 4: A NONLINEAR WAVE EQUATION. Sine-Gordon ¢;; — gz +
sin(g) = 0 linearized about ¢ = 0 is Klein-Gordon. Consider LF2 with L-N
splitting on this equation: each mode decouples into a linear map

A = e3RXL hXn ,3kX,

_ < cos(mk) — 5= sin(mk) 725 (cos(mk) — 1) + sin(mk)/m)
~ \—£(cos(mk) + 1) — m sin(mk) cos(mk) — 5 sin(mk)
(5.2) cosf = -;—trA = cos(mk) — % sin{mk)

The stability limit for large m is indeed mk < =, but beyond this there are
bubbles of instability. Consider k small with mk = z held fixed, so trA =
cosz — 3k?sin(z)/z. Solving by series for & near Ir shows that this is larger
than 1 in absolute value for z € (I — k?/Ir,Iw). However, these instabilities
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are unlikely to be triggered as they are only k/Im times as wide as the spacing
between modes, hence one can easily choose k so as to avoid them. The maximum
growth rate in the bubbles is only k2/27.

Numerical experiments show that the formal stability limit can indeed be
exceeded by a factor of three or four without the nonlinear terms triggering any
instability, even for strong nonlinearities.

Expanding (5.2) for small k¥ and any m gives the numerical dispersion relation:

k2
24+/1 + m?

which is O(k?) away from the true relation, uniformly in m. This, and the
smaller truncation errors, are the great advantages of the L-N splitting.

0/k=+v1+m?+ + O(k*)

6. A numerical example

For a numerical test of the above analyses consider the nonlinear wave equa-

tion

=p, P=—Gos+¢’

on [0,27] with periodic boundary conditions; the Hamiltonian discretized by
pseudo-spectral differences and the (spectral) trapezoidal rule for the integral;
and the time-integrator LP4c. (The advantage of this equation is that it is not
integrable but it is known that C* initial data stays C* for all time.) The
initial conditions considered are p = 0, ¢ = acosz for various amplitudes a.
Standard properties of symplectic integrators were confirmed: (a) the energy
error did not increase secularly with time; (b) the bilinear momentum integral
[ pgz dz (3 mpmg—m for the ODE’s) was conserved within round-off error; and
(c) the above accuracy and stability analyses were confirmed (nonlinear terms
could destabilize the calculation only when the solution was extremely poorly
resolved spatially).

When |g| is small the relative truncation error of P-Q splitting is O(1), against
O(q?) for L-N, so the latter is clearly superior then. Its maximum energy error
was 2.4 times smaller at a = 0.5, and 3.2 times smaller at a = 2.

For all amplitudes a, P-Q splitting was stable for Courant numbers ¢ =
k/h <~ 0.94 (cf. k/h < 0.9673 in Table 2). L-N was stable for ¢ <~ 14
when @ = 0.5 (but only useful for ¢ < 5) and for ¢ < 3 when a = 2—L-N has no
linear stability limit here. Clearly linear-nonlinear splitting is preferred when
feasible.
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