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a b s t r a c t

The geodesic motion on a Lie group equipped with a left or right invariant Riemannian
metric is governed by the Euler–Arnold equation. This paper investigates conditions on the
metric in order for a given subgroup to be totally geodesic. Results on the construction
and characterisation of such metrics are given, especially in the special case of easy totally
geodesic submanifolds that we introduce. The setting works both in the classical finite
dimensional case, and in the category of infinite dimensional Fréchet–Lie groups, in which
diffeomorphism groups are included. Using the framework we give new examples of both
finite and infinite dimensional totally geodesic subgroups. In particular, based on the cross
helicity, we construct right invariant metrics such that a given subgroup of exact volume
preserving diffeomorphisms is totally geodesic.

The paper also gives a general framework for the representation of Euler–Arnold
equations in arbitrary choice of dual pairing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In 1966 Vladimir Arnold demonstrated that Euler’s equation for an ideal fluid is the geodesic equation on the group
of volume preserving diffeomorphisms with respect to the right invariant L2 metric [1]. Since then there has been a lot
of interest in generalised Euler equations (also known as Euler–Arnold equations), i.e., geodesic equations on a Lie group
equipped with an invariant metric. Examples of such equations include Burgers’ equation (Diff(S1) with a right invariant
L2 metric), Korteweg–de Vries (Virasoro–Bott group with a right invariant L2 metric), and Camassa–Holm (Diff(S1) with a
right invariant H1 metric); these and other examples are surveyed in [2].

A Lie subgroup H ⊂ G is called totally geodesic in G if geodesics in H are also geodesics in G. Motivated by the physical
applications it is common to ask which subgroups (of a given group) are totally geodesic with respect to a given metric. In
this paper we investigate a different question: we do not fix the metric, but ask if it is possible to choose one so that a given
subgroup H ⊂ G is totally geodesic. A motivation for this study comes from diffeomorphic image matching, where one may
want to require a certain class of transformations (e.g. affine transformations) to be totally geodesic within a larger class.

There has been little systematic study of totally geodesic subgroups. However, in the case of diffeomorphisms, the
following results are known:

1. The exact volume preserving diffeomorphisms of a flat compact Riemannian manifold without a boundary is totally
geodesic in the volume preserving diffeomorphisms, with respect to the right invariant L2 metric. (Recall that the exact
volume preserving diffeomorphisms are generated by vector fields that have a vector potential in terms of the curl
operator.) This result is given in [3], and refined in [4].
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2. The Hamiltonian diffeomorphisms of a closed Kähler manifold with flat metric is totally geodesic in the symplectic
diffeomorphisms, with respect to the right invariant L2 metric. This result is given in [3], and refined in [4].

3. Let G be a compact Lie group that acts on a RiemannianmanifoldM by isometries. LetΦg denote the action. The subgroup
of equivariant diffeomorphisms DiffΦg (M) is totally geodesic in Diff(M) and Diffvol(M), with respect to the right invariant
L2 metric. This result is given in [5].

4. The subgroup of diffeomorphisms on a Riemannian manifold M that leaves the point of a submanifold N ⊂ M fixed is
totally geodesic with respect to the right invariant L2 metric. This result is given in [5].

5. The subgroup of diffeomorphisms of the cylindrical surface S1 × [0, 1] that rotates each horizontal circle rigidly by an
angle is totally geodesic in the group of volume preserving diffeomorphisms of S1 × [0, 1]. This result is given in [6].

The main contribution of this paper is a framework for the construction of a family of left or right invariant metrics on a
Lie algebra G such that a given subgroupH ⊂ G is totally geodesic with respect to eachmetric in the family. The requirement
is that there is a bilinear symmetric form on the Lie algebra g of Gwith certain bi-invariance and non-degeneracy properties.
The construction works both in the finite and infinite dimensional case (as in [4], we work in the category of Fréchet–Lie
groups [7]). In the finite dimensional case, using the Killing form as bilinear symmetric form, the requirement is that H is
semisimple.

Using this technique, we can extend the list of totally geodesic examples above:

6. Let G be an n dimensional Lie group, and let H ⊂ G be an m dimensional semisimple Lie subgroup of G. We construct a
(n + 1)n/2 − (n − m)m dimensional manifold of left (or right) invariant metrics on G, for which H is totally geodesic in
G. In particular, we give an example of a left invariant metric such that SO(3) is totally geodesic in GL(3).

In the infinite dimensional case of diffeomorphism groups, we are led to bi-invariant forms. For exact divergence free
and Hamiltonian vector fields respectively, there exist a bi-invariant non-degenerate bilinear symmetric form. Using our
framework, we then give the following new examples of totally geodesic subgroups of diffeomorphisms:

7. Let (M, g) be a compact Riemannian n-manifold with a boundary. The (finite dimensional) group of isometries Diffiso(M)
is totally geodesic in Diff(M)with respect to the right invariant H1

α metric.
8. Let (M, g) be a compact Riemannian n-manifold with a boundary. Then we give a strong condition for Diffexvol(M) to be

totally geodesic in Diffvol(M)with respect to the right invariant H1
α metric. This is an extension of a result in [4].

9. Let (M, g) be a compact contact 3-manifoldwith a boundary. Then the exact contact diffeomorphisms are totally geodesic
in the exact volume preserving diffeomorphisms, with respect to the right invariant L2 metric.

The paper is organised as follows. Section 2 begins with a brief presentation of geodesic flow on groups and the
Euler–Arnold equation. In Section 2.1 we state the infinite dimensional setting, which is based on Fréchet–Lie groups. In
particular, this setting allows groups of diffeomorphisms. As a subsidiary objective of the paper, we give in Section 2.2 a fairly
detailed framework of how to represent the dual space g∗ of a Lie algebra g by a choice of pairing. It is our experience that, in
the current literature, the choice of pairing used to represent a particular Euler–Arnold equation is often implicit, and varies
from equation to equation and from research group to research group. As examples, we give two different representations
of the rigid body equation, and five different representations of the ideal fluid equation, using various choices of pairing (all
of them occur in the literature).

In Section 3 we derive a characterisation on the algebra level, for a subgroup to be totally geodesic (Theorem 2). We
point out that part of this result appears already as a main tool in the paper [4]. To gain geometric insight we also derive,
in Section 3.1, the condition for a subgroup to be totally geodesic by the standard technique using the second fundamental
form. Furthermore, in Section 3.2 we derive the correspondence of Theorem 2 in terms of Lie algebra structure coefficients
and metric tensor elements, i.e., from the coordinate point view.

Section 4 presents a framework for constructing totally geodesic metrics. To some extent, this construction characterises
all metrics which makes a subgroup easy totally geodesic, meaning that the orthogonal complement of the subalgebra is
invariant under the adjoint action. In Section 4.2 we investigate the special case of semidirect products.

Finally, the examples of totally geodesic diffeomorphism subgroups given in the list above are derived in Section 5.

2. Geodesic flow and Euler–Arnold equations

Let G be a Lie group with Lie algebra g. We denote by [·, ·] the Lie algebra bracket on g, and the identity element in
G is denoted by e. For each g ∈ G we denote by Lg and Rg the left and right translation maps on G, and by TLg and TRg
their corresponding tangent maps (derivatives). To simplify the development we mainly work with left translation in our
derivation. Notice however that all results also carry over to the setting of right translation.

Consider a real inner product ⟨·, ·⟩A on g. It is implicitly associated with an inertia operator A : g → g∗ such that
⟨·, ·⟩A = ⟨A ·, ·⟩. The tensor field over G given by

TgG × TgG ∋ (vg , wg) −→ ⟨TgLg−1vg , TgLg−1wg⟩A =: ⟨⟨vg , wg⟩⟩A,g ,
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defines a Riemannian metric ⟨⟨·, ·⟩⟩A on G. The geodesic flow γ : [0, 1] → G between two points g0, g1 ∈ G fulfils (by
definition) the variational problem

δ

∫ 1

0

1
2
⟨⟨γ̇ (t), γ̇ (t)⟩⟩A,γ (t) dt = 0, γ (0) = g0, γ (1) = g1. (1)

This can be viewed as a Lagrangian problem, with a quadratic Lagrangian function L : TG → R given by L(vg) =
1
2

⟨⟨vg , vg⟩⟩A,g .
From the construction of the metric on G it is straightforward to check that L is left invariant, i.e., L(vg) = L(TgLhvg) for

each h ∈ G. In particular, it means that the Lagrangian L is fully determined by the reduced quadratic Lagrangian l : g → R
defined by restriction of L to TeG ≡ g, i.e., l(ξ) =

1
2 ⟨ξ, ξ⟩A. By Euler–Poincaré reduction (cf. [8, Chapter 13]), the second order

differential equation for geodesic motion, i.e., the Euler–Lagrange equation for L, can be reduced to a first order differential
equation on the Lie algebra g called the Euler–Arnold equation. In weak form it is given by

⟨ξ̇ , η⟩A = ⟨ξ, adξ (η)⟩A, ∀ η ∈ g, (2a)

where adξ := [ξ, ·]. The corresponding strong form of the Euler–Arnold equation is

ξ̇ = ad⊤A
ξ (ξ) (2b)

where ad⊤A
ξ is the transpose of the map adξ with respect to the inner product ⟨·, ·⟩A, i.e., ⟨ad⊤A

ξ (ψ), η⟩A = ⟨ψ, adξ (η)⟩A

for all ξ, ψ, η ∈ g. Throughout the rest of this paper we assume that ad⊤A
ξ is well defined for every ξ ∈ g, and that the

strong form of the Euler–Arnold equation is locally well posed for every choice of initial data. In finite dimensions this is
always the case since the inner product ⟨·, ·⟩A is non-degenerate, so A is an isomorphism. For infinite dimensional groups
(see Section 2.1) the assumption is non-trivial.

Given a solution curve ξ(t) ∈ g to the Euler–Arnold equation (2), the corresponding solution curve γ (t) ∈ G is recovered
by the reconstruction equation γ̇ (t) = TeLγ (t)ξ(t).

The Euler–Arnold equation (2b) is described in the Lagrangian framework of mechanics.1 It is also possible to obtain
a Hamiltonian description. Indeed, by the Legendre transformation we can change to the momentum variable µ :=

δl/δξ(ξ) = Aξ . In this variable the Euler–Arnold equation takes the form

µ̇ = ad∗

ξ (µ), ξ = A−1µ, (2c)

where ad∗

ξ : g∗
→ g∗ is defined by ⟨µ, adξ (η)⟩ = ⟨ad∗

ξ (µ), η⟩ for all η ∈ g and µ ∈ g∗. This is a Hamiltonian system
with respect to the canonical Lie–Poisson bracket (cf. [8, Chapter 13]), for the reduced quadratic Hamiltonian function
h(µ) =

1
2 ⟨µ,A

−1µ⟩.

Remark 1. If right invariance instead of left invariance is considered, the framework is almost identical, with the two
deviations that the right hand side of the Euler–Arnold equation (2) switches sign, and right instead of left reconstruction
should be used. Typically, finite dimensional examples are left invariant, and infinite dimensional examples are right
invariant.

2.1. Infinite dimensional setting

In addition to the classical setting of finite dimensional Lie groups, the framework described above is also valid for infinite
dimensional Fréchet–Lie groups and corresponding Fréchet–Lie algebras. The prime examples, and the only ones we consider
in this paper, are subgroups (including the full group itself) of the group Diff(M) of diffeomorphisms on an n-dimensional
compact manifoldM , with composition as group operation. IfM has no boundary, the corresponding Fréchet–Lie algebra is
the spaceX(M) of smooth vector field onM . IfM has a boundary, it is the vector fieldsXt(M) inX(M) that are tangent to the
boundary. The Lie algebra bracket on X(M) is minus the Jacobi–Lie commutator bracket, i.e., adξ (η) ≡ [ξ, η] = −[ξ, η]X.
See [9, Section I.4] for details on the category of Fréchet–Lie algebras and Fréchet–Lie groups.

The dual space of a Fréchet space is not itself a Fréchet space (see [9, Section I.1]). Thus, the Hamiltonian view-point,
established by Eq. (2c) above, does notmake sense, since it assumes that g and g∗ are isomorphic. As a remedy, it is customary
to introduce the so-called regular dual. It is a subspace of the full dual which is isomorphic to g. Indeed, the regular dual is
given by the image of the inertia operator g∗

reg = Ag. Throughout this paper we will only work with the regular dual, so the
subscript is omitted: g∗

:= g∗
reg. Furthermore, if several inertia operators A1,A2 are considered for the same Fréchet–Lie

algebra, we assume that the regular part of the dual is invariant, i.e., that A1g = A2g.

1 In this paper, we mean by the ‘‘Lagrangian form’’ of an Euler–Arnold equation that it corresponds to a reduced Lagrangian function as described above.
We do not mean the fluid particle representation of the equation.
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2.2. Choice of pairing

The most straightforward way to get a coordinate representation of the Euler–Arnold equation (2) is to introduce
coordinates in g, and then compute the transpose of adξ in these coordinates with respect to the given inner product
⟨·, ·⟩A. However, with this approach the inner product is implicitly entangled in the equation. Furthermore, in the infinite
dimensional case of diffeomorphism groups it is only possible to explicitly compute the transpose map ad⊤A

ξ in a few
special cases. Instead, a common approach is to ‘‘decouple’’ the dependence on the choice of inner product in the coordinate
representation, that is, to have a representation of the Euler–Arnold equation similar to the Hamiltonian form (2c). In order
to do so one needs to introduce a correspondence between elements in g∗ and elements in g without reference to the given
inner product ⟨·, ·⟩A. In finite dimensions one may choose any basis in g and use the corresponding dual basis in g∗. In
general, we identify every element in g∗ with a corresponding element in a space g•, isomorphic to g∗, via an isomorphism
L : g•

→ g∗ which we call the pairing operator. That is, µ ∈ g∗ is represented by µ̄ = L−1µ ∈ g•. In infinite dimensions
the trick is to find an isomorphic space g• and a suitable pairing operator in which ad∗

ξ is nicely represented, i.e., in which
ad•

ξ := L−1
◦ ad∗

ξ ◦ L is simple to write down. It is our experience that the relation between the choice of inner product
⟨·, ·⟩A, the choice of dual pairing space g•, and the choice of pairing operatorL, has caused confusion in the current literature,
especially when comparing different Euler–Arnold equations with different traditions.

In the Hamiltonian view-point, the Euler–Arnold equation (2) can be written in terms of µ̄ as
dµ̄
dt

= ad•

ξ (µ̄)

µ̄ = Jξ
where J := L−1A. (3a)

One may also take the Lagrangian view-point, in which case the equation is written as

Jξ̇ = ad•

ξ (Jξ). (3b)

Notice, in both cases, that the map ad•

ξ is used, not ad⊤A
ξ or ad∗

ξ . The dependence on the choice of inner product ⟨·, ·⟩A is
captured through J alone.

The reconstructed variablesµ(t) = Lµ̄(t) and ξ(t) = J−1µ̄(t) are of course independent of the choice of pairing space
and choice of hat map. For the choice g•

= g and L = A both Eqs. (3a) and (3b) exactly recover the original form (2b) of
the Euler–Arnold equation. We call this choice the inertia pairing. Next we continue with two original examples by Arnold.
Using our framework, we give a list of various choices of pairings, all occurring in the literature.

Example 1 (Rigid Body). This is the first example of Arnold [1]. The group is the set of rotation matrices SO(3). Its Lie
algebra is the space of skew-symmetric matrices so(3). A left invariant metric on SO(3) is obtained from the inertia operator
A : so(3) → so(3)∗, corresponding to moments of inertia for the rigid body. Next, we specify a choice of pairing. We give
two commonly used examples.

(a) Choose g•
= so(3), and the map L : g•

→ so(3)∗ defined by the Frobenius inner product: ⟨Lµ̄, ξ⟩ =
1
2 tr(µ̄

⊤ξ).
With this pairing operator it holds that ad•

ξ (µ̄) = −adξ (µ̄) = −ξµ̄ + µ̄ξ , which follows from the fact that the Frobenius
inner product on so(3) is the negative of the bi-invariant Killing form on so(3) (see Section 4). Thus, the rigid body equation
in the Hamiltonian form (3a) is given by the Lax pair formulation

dµ̄
dt

= −[ξ, µ̄] = µ̄ξ − ξµ̄, µ̄ = Jξ,

and in the Lagrangian form (3b) it is

Jξ̇ = −[ξ,Jξ ] = Jξ ξ − ξ Jξ,

where J = L−1A is a linear map so(3) → so(3), self-adjoint with respect to the Frobenius inner product, giving the
moments of inertia.

(b) This second choice of pairing is most frequently used. Let e1, e2, e3 denote the basis0 0 0
0 0 −1
0 1 0


,

 0 0 1
0 0 0

−1 0 0


,

0 −1 0
1 0 0
0 0 0



for so(3). We chose g•
= R3. Further, we use the traditional notation for the coordinate vector µ̄ = π = (π1, π2, π3),

corresponding to angular momentum. The pairing operator is given by Lπ =
∑3

i=1 πie∗

i , where e∗

1, e
∗

2, e
∗

3 is the dual basis
of so(3)∗. With this pairing operator it holds that ad•

ξ (π) = π × ω, where ω ∈ R3 is the coordinate vector of ξ in the
basis e1, e2, e3, corresponding to angular velocity. Thus, we recover the classical version of the rigid body equation, in the
Hamiltonian form

π̇ = π × ω, π = Jξ = Jω
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or in the Lagrangian form

J ω̇ = Jω × ω

where J is the symmetric 3 × 3 inertia matrix, defined by Jei = Jei = L−1Aei, with {ei}3i=1 being the canonical basis in R3.

Example 2 (Ideal Hydrodynamics). This is the second example of Arnold [1]. Let (M, g) be a compact Riemannian manifold
of dimension n, possibly with a boundary. The group we consider is first Diffvol(M), i.e., the set of volume preserving
diffeomorphism, and later also the subgroup Diffexvol(M) ⊂ Diffvol(M) of exact volume preserving diffeomorphisms.

It holds that Diffvol(M) is a Fréchet–Lie subgroup of Diff(M); see [7]. Its Fréchet–Lie algebra is Xvol,t(M) = Xvol(M) ∩

Xt(M), i.e., the set of divergence free vector fields on M , tangent to the boundary ∂M . The metric ⟨⟨·, ·⟩⟩A on Diffvol(M) is
right translation of the L2 inner product, i.e.,

⟨ξ, η⟩A = ⟨ξ, η⟩L2 :=

∫
M
g(ξ , η)vol,

where vol is the volume form associated with the Riemannian metric g. We now present various choices of pairings which
renders different representations of the Euler–Arnold equation for ideal hydrodynamics.

(a) The classical choice is the inertia pairing, i.e., g•
= Xvol,t(M) and L = A (the L2 inner product is used for the pairing).

Straightforward calculations yield (see e.g. any of [3,10,2])

ad•

ξ (ξ) = P(∇ξ ξ)

where ∇ denotes the Levi-Civita connection and P : X(M) → Xvol,t(M) is the L2 projection onto Xvol,t(M), i.e., projection
along X

⊥A
vol,t . From the Hodge decomposition for manifold with a boundary (see [11, Section 7.5]), it follows that X

⊥A
vol,t =

grad(F (M)). We now recover the well-known Euler equation of an ideal incompressible fluid:

ξ̇ = −∇ξ ξ − grad p, div ξ = 0. (4)

Notice that the additional pressure function p (corresponding to Lagrangian multiplier) must be used in this representation,
due to the projection operator P occurring in the expression for ad•

ξ .
(b) There is another commonly used choice of pairing, in which the Euler fluid equation takes a simpler form (see

e.g. [3, Section 7.B]). The space of k-forms on M is denoted Ωk(M). Every vector field ξ on M corresponds to a 1-form
ξ ♭, by the flat operator ♭ : X(M) → Ω1(M) defined by contraction with the metric. Its inverse is given by the sharp
operator ♯ : Ω1(M) → X(M). Consider the map T : Ω1(M) → Xvol,t(M) defined by Tα = Pα♯, were P is the projection
operator as above. Clearly, the kernel is given by ker T = grad(F (M))♭ = dΩ0(M), i.e., the exact 1-forms. Thus, we have
a corresponding isomorphism T : Ω1(M)/ dΩ0(M) → im T = Xvol,t(M), so we may chose g•

= Ω1(M)/ dΩ0(M), with
pairing operator defined by

⟨Lµ̄, ξ⟩ = ⟨T µ̄, ξ⟩L2 ∀ξ ∈ Xvol,t(M).

Since Diffvol(M) acts onXvol,t(M) by coordinate changes, and due to preservation of the volume form, it holds that ad•

ξ (µ̄) =

£ξ µ̄, where the Lie derivative iswell defined onΩ1(M)/ dΩ0(M) since itmaps exact forms to exact forms. For details see [12,
Chapter 3]. Thus, the Hamiltonian form of the Euler–Arnold equation with this pairing is

d
dt
µ̄ = −£ξ µ̄, ξ = T µ̄, (5a)

and the corresponding Lagrangian form of the equation is

d
dt

[ξ ♭] = −£ξ [ξ ♭]. (5b)

(c) There is another choice of pairing, ‘‘in between’’ the choices (a) and (b), sometimes used in the literature (see e.g. [8,
Section 14.1]). Recall that the metric on M induces the Hodge star operator ⋆ : Ωk(M) → Ωn−k(M). The L2 inner product
onΩk(M) is given by

⟨α, β⟩L2 :=

∫
M
α ∧ ⋆β. (6)

From the Hodge decomposition theorem for manifolds with a boundary (see [11, Section 7.5]) we get an L2 orthogonal
decomposition Ωk(M) = dΩk−1(M) ⊕ Dk

t (M), where Dk
t (M) = {α ∈ Ωk(M); δα = 0, i∗(⋆α) = 0} are the co-closed

tangential k-forms (i : ∂M → M is the natural inclusion and δ : Ωk(M) → Ωk−1(M) is the co-differential). It follows from
the de Rham complex that Xvol,t(M) ≃ D1

t (M), with an isomorphism given by ξ → ξ ♭. Indeed, if ξ ∈ Xvol,t(M) then iξvol is
a closed normal (n− 1)-form, since the isomorphism ξ → iξvol maps tangential vector fields to normal (n− 1)-forms, and



K. Modin et al. / Journal of Geometry and Physics 61 (2011) 1446–1461 1451

since div on X(M) corresponds to d onΩn−1
n (M). Further, the Hodge star maps tangential k-forms to normal (n− k)-forms,

and co-closed k-forms to closed (n − k)-forms, so

Xvol,t(M) ∋ ξ → ⋆−1 iξvol = ⋆−1 ⋆ξ ♭ = ξ ♭ ∈ D1
t (M)

is an isomorphism. Thus, we may chose g•
= D1

t (M), with pairing operator defined by

⟨Lµ̄, ξ⟩ = ⟨µ̄, ξ ♭⟩L2 .

By direct calculations (see the report [13]) we obtain ad•

ξ (µ̄) = P(£ξ µ̄), where P : Ω1(M) → D1
t (M) is the L2 orthogonal

projection. Since the orthogonal complement ofD1
t (M) is dΩ0(M) (by the Hodge decomposition theorem), we get ad•

ξ (µ̄) =

£ξ µ̄+ dp, for some p ∈ Ω0(M). Thus, the Hamiltonian form of the Euler–Arnold equation is

d
dt
µ̄ = −£ξ µ̄− dp, δµ̄ = 0, µ̄ = ξ ♭, (7a)

and the Lagrangian form is

d
dt
ξ ♭ = −£ξ ξ ♭ − dp, δξ ♭ = 0. (7b)

Notice the resemblancewith both the form (4) and the form (5). Indeed, applying the Riemannian lift yields (4), and applying
the quotient map yields (5).

(d) Now letM be a 3-manifold, and consider the subgroup Diffexvol(M) ⊂ Diffvol(M) consisting of exact volume preserving
diffeomorphisms (see Section 5.2). For this setting, one may use the vorticity formulation (see e.g. [14]). The space of exact
divergence free tangential vector fields Xex

vol,t(M) is the Lie algebra of Diff
ex
vol(M). Furthermore, Xex

vol,t(M) is isomorphic to the
space of normal exact 2-forms dΩ1

n (M), with isomorphism given by ξ → iξvol. Also, the map ( d⋆)−1 is well defined on
dΩ1

n (M), where it is non-degenerate and L2 self-adjoint (see the report [13]). Now, we choose g•
= dΩ1

n (M) with pairing
operator defined by

⟨Lµ̄, ξ⟩ = ⟨µ̄, ( d⋆)−1iξvol⟩L2 .

For ξ, η ∈ Xex
vol,t(M)we now get

⟨ad∗

ξ (µ̄), η⟩ = ⟨ad•

ξ (µ̄), ( d⋆)
−1iηvol⟩L2 = ⟨µ̄, ( d⋆)−1iadξ (η)vol⟩L2

= −⟨µ̄, ( d⋆)−1i[ξ,η]Xvol⟩L2

= −⟨µ̄, ( d⋆)−1£ξ iηvol⟩L2 + ⟨µ̄, ( d⋆)−1iη £ξvol  
0

⟩L2

= ⟨£ξ µ̄, ( d⋆)−1iηvol⟩L2

where the last equality follows from the bi-invariant property of cross helicity (see Section 5.4). Notice that £ξ µ̄ is exact since
d commutes with the Lie derivative. Thus, ad•

ξ = £ξ . Next, notice that Aξ = L d⋆ iξvol, so Jξ = d⋆ iξvol = d⋆⋆ξ ♭ = dξ ♭.
Now, the Hamiltonian form of the Euler–Arnold equation is

d
dt
µ̄ = −£ξ µ̄, µ̄ = Jξ = dξ ♭ (8a)

and the Lagrangian form is

dξ̇ ♭ = −£ξ dξ ♭. (8b)

The requirement for solutions of Eq. (8b) to also fulfil Eq. (7b) is that Diffexvol(M) is totally geodesic inside Diffvol(M). The exact
condition for this is given in [4], in the case when M has no boundary. It is extended to the case when M has a boundary,
and for a possibly altered H1

α metric (corresponding to the averaged Euler fluid equation), in Theorem 13.
(e) There is another vorticity formulation, which is perhaps the most elegant form of the ideal hydrodynamic fluid

equation. Again, the requirements is that M is a 3-manifold, and we consider the subgroup Diffexvol(M). As pairing space
we choose g•

= Xex
vol,t(M), and the pairing operator is defined by

⟨Lµ̄, ξ⟩ = ⟨µ̄, curl −1ξ⟩L2 .

Further, using Theorem 15, it follows that ad•

ξ (µ̄) = −adξ (µ̄) = [ξ, µ̄]X, since the inner product ⟨·, curl −1
·⟩L2 is bi-

invariant. Moreover, Jξ = curl ξ , so the Hamiltonian form of the Euler–Arnold equation takes the Lax pairing form

d
dt
µ̄ = −[ξ, µ̄]X, µ̄ = Jξ = curl ξ . (9a)
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The corresponding Lagrangian form of the equation is

curl ξ̇ = −[ξ, curl ξ ]X. (9b)

From the de Rham complex of a 3-manifold it follows that the previous form (d) is obtained from these equations by applying
the flat operator followed by theHodge star. Again,we remark that these equations give solutions corresponding to solutions
of the full Euler fluid equation only in the case when Diffexvol(M) is totally geodesic in Diffvol(M).

3. Totally geodesic subgroups

First, recall the definition of totally geodesic.

Definition 1. LetM be a Riemannianmanifold, withmetric ⟨⟨·, ·⟩⟩, and letN ⊂ M be a submanifold with the inducedmetric.
Then N is called totally geodesic in M with respect to ⟨⟨·, ·⟩⟩ if each geodesic of N , embedded inM , is also a geodesic ofM .

Now, let G be a Lie group equipped with a left (or right) invariant metric. Let H be a Lie subgroup of G, i.e., a topologically
closed submanifold which is closed under the group multiplication inherited from G. The main ambition of our paper is to
investigate conditions on the left invariant metric ⟨⟨·, ·⟩⟩A under which a given subgroup H is totally geodesic in G. Due to
left invariance, it is enough to consider the Lie subalgebra h of g:

Lemma 1. H is totally geodesic in G if and only if all solutions ξ(t) ∈ h to the Euler–Arnold equation on h are also solutions to
the Euler–Arnold equation on g.

Proof. Let i : H → G be the inclusion map, let LHh and LGg for h ∈ H and g ∈ G be the left translation maps on H and G
respectively. Then i ◦ LHh = LGi(h) ◦ i, so Ti ◦ TLHh = TLGi(h) ◦ Ti.

Now, let ξ(t) ∈ g be the solution to the Euler–Arnold equation on g with initial data ξ(0) = TeG iψ0 for ψ0 ∈ h (eG is the
identity element in G). Further, let ψ(t) ∈ h be the solution to the Euler–Arnold equation on h with initial data ψ(0) = ψ0.
Let g(t) ∈ G and h(t) ∈ H be the corresponding geodesic curves. We need to prove that i(h(t)) = g(t) if and only if
ξ(t) = TeH iψ(t). The curve h(t) fulfils ḣ(t) = TeH L

H
h(t)ψ(t)with h(0) = eH . Applying Ti from the right and using the identity

derived above we get

d
dt

i(h(t)) = Th(t)i ◦ TeH L
H
h(t)ψ(t) = TeGL

G
i(h(t)) ◦ TeH iψ(t), i(h(0)) = eG.

Thus, i(h(t)) fulfils the same reconstruction equation as g(t) if and only if ξ(t) = TeH iψ(t), so the result follows by
uniqueness of solutions. �

Thus, we say that a subalgebra h is totally geodesic in g with respect to ⟨·, ·⟩A if solutions to the Euler–Arnold equation
for h are also solutions to the Euler–Arnold equation for g. Whether this holds or not depends upon an interplay between
the choice of subalgebra h and the choice of metric ⟨·, ·⟩A. As a basic tool we have the following result, of which 1 ↔ 4 is
stated in [4].

Theorem 2. Let h be a subalgebra of g, and let h⊥A the orthogonal complement of h with respect to the inner product ⟨·, ·⟩A.
The following statements are equivalent:

1. h is totally geodesic in g with respect to ⟨·, ·⟩A.
2. ⟨ξ, [ξ, η]⟩A = 0 for all ξ ∈ h and η ∈ h⊥A .
3. ⟨ψ, [ξ, η]⟩A + ⟨ξ, [ψ, η]⟩A = 0 for all ξ, ψ ∈ h and η ∈ h⊥A .
4. ad⊤A

ξ (ξ) ∈ h for all ξ ∈ h.
5. ad⊤A

ξ (ψ)+ ad⊤A
ψ (ξ) ∈ h for all ξ, ψ ∈ h.

Proof. We first prove 1 ↔ 2. Let ξ(t) be a solution to the Euler–Arnold equation (2) on h. Consider the weak formulation
(2a). Every test function can be uniquely written η = η1 + η2 with η1 ∈ h and η2 ∈ h⊥A . Since ξ(t) ∈ h for all t it holds
that ⟨ξ̇ (t), η2⟩A = 0. Thus, in order for ξ(t) to be totally geodesic, i.e., fulfil the Euler–Arnold equation (2a) on g, a sufficient
condition is that ⟨ξ(t), [ξ(t), η2]⟩A = 0 for all η2 ∈ h⊥. Since the initial condition ξ(0) ∈ h is arbitrary the condition is
also necessary. Next, 2 ↔ 3 follows since the bilinear form Qη(ξ , ψ) := ⟨ξ, [ψ, η]⟩A fulfils Qη(ξ , ξ) = 0 if and only if Qη is
skew-symmetric. Lastly, 2 ↔ 4 and 3 ↔ 5 follows from the definition of ad⊤A

ξ and the fact that g is spanned by h⊕h⊥A . �

A geometric interpretation of the result in Theorem 2 is that h is totally geodesic if and only if [ξ, η] ⊥A ξ for all ξ ∈ h

and η ∈ h⊥A . That is, [ξ, η] must belong to the hyperplane which is A-orthogonal to ξ .

Example 3 (Rigid Body, Cont.). Consider again Example 1. A one dimensional subalgebra of so(3) is given by h = {ξ ∈

so(3); ξ = ae1, a ∈ R}. Since it is one dimensional the bracket is trivial, so the Euler–Arnold equation on h reduce to ξ̇ = 0,
i.e., all solutions are stationary.



K. Modin et al. / Journal of Geometry and Physics 61 (2011) 1446–1461 1453

From Theorem 2 we obtain that h is totally geodesic if and only if ad⊤A
ξ (ξ) ∈ h for all ξ ∈ h. Expressed in ad• this means

ad•

e1(J ê1) = bê1 for some b ∈ R. (Since solutions are stationary we know that b = 0.) Explicitly, this reads ê1 × J ê1 = bê1,
which happens if and only if ê1 and J ê1 are parallel, i.e., ê1 is an eigenvector of J . Indeed, it is well known that the only
stationary solutions to the Euler–Arnold equation on so(3) are given by the set of eigenvectors of the inertia matrix J .

3.1. Derivation using the second fundamental form

In this section we give a different derivation of Theorem 2, based on computing the second fundamental form. This
derivation gives more geometrical insight to the process.

To begin with, recall the following well known result (see e.g. [15]):

Theorem 3. Let N be a submanifold of a Riemannian manifold M with metric g. Then N is totally geodesic in M if and only if the
second fundamental form of N vanishes identically.

Thus, an alternative approach for deriving Theorem 2 is to compute the second fundamental form of the subgroupH ⊂ G.
Again, ⟨⟨·, ·⟩⟩A denotes a left invariant metric on G, and we use the same notation for its restriction to H . Let e denote the
identity element of G. Recall that the second fundamental form is a symmetric tensor on TH , given by

Π(X, Y ) := (∇XY )⊥A .

Because themetric is invariant, this tensor is determined by its values on the tangent vectors toH at the identity. It therefore
follows that we can determine the tensor by computing a formula for

⟨⟨∇Xξ Yη, Zψ ⟩⟩A,e,

where Xξ denotes the left invariant vector field on G whose value at e is ξ , and similarly for Yη and Zψ . Indeed, we have the
following result.

Proposition 4. For left invariant vector fields Xξ , Yη on G the following formula holds,

∇Xξ Yη(e) =
1
2


[ξ, η] − ad⊤A

ξ (η)− ad⊤A
η (ξ)


. (10)

Proof. Starting with the defining identity for the connection,

2⟨⟨∇XY , Z⟩⟩A = £X ⟨⟨Y , Z⟩⟩A + £Y ⟨⟨Z, X⟩⟩A − £Z ⟨⟨X, Y ⟩⟩A − ⟨⟨Y , [X, Z]⟩⟩A − ⟨⟨Z, [Y , X]⟩⟩A + ⟨⟨X, [Z, Y ]⟩⟩A

and replacing X by Xξ , Y by Yη and Z by Zλ and noting that the first three terms then vanish due to left invariance of the
vector fields and metric, we then have, evaluating at the identity,

2⟨⟨∇Xξ Yη, Zλ⟩⟩A,e = −⟨⟨Yη, [Xξ , Zλ]⟩⟩A,e − ⟨⟨Zλ, [Yη, Xξ ]⟩⟩A,e + ⟨⟨Xξ , [Zλ, Yη]⟩⟩A,e

= −⟨η, [ξ, λ]⟩A − ⟨λ, [η, ξ ]⟩A + ⟨ξ, [λ, η]⟩A

= ⟨−ad⊤A
ξ (η), λ⟩A − ⟨[η, ξ ], λ⟩A − ⟨ad⊤A

η (ξ), λ⟩A

= ⟨[ξ, η] − ad⊤A
ξ (η)− ad⊤A

η (ξ), λ⟩A

which proves the result. �

Using this result we obtain a different proof of Theorem 2.

Another proof of Theorem 2. From Eq. (10) we have that the fundamental form,Π of H is given by, for ξ, ψ ∈ h

Π(X, Y )(e) = (∇XY )⊥A =
1
2
([ξ, ψ] − ad⊤A

ξ (ψ)− ad⊤A
ψ (ξ))⊥A (11)

where X and Y are arbitrary vector fields extending ξ and ψ . From this equation it follows that the fundamental form
vanishes if and only if the pairing of the right hand side of Eq. (11) with every element η ∈ h⊥A vanishes. Thus, the second
fundamental form is zero if and only if for all ξ, ψ ∈ h and η ∈ h⊥A it holds that ⟨([ξ, ψ] − ad⊤A

ξ (ψ)− ad⊤A
ψ (ξ)), η⟩A = 0.

Since [ξ, ψ] ∈ h, this holds if and only if for all ξ, ψ ∈ h and η ∈ h⊥A , it holds that ⟨ad⊤A
ξ (ψ)+ ad⊤A

ψ (ξ), η⟩A = 0. This is
equivalent to ⟨ψ, [ξ, η]⟩A = −⟨ξ, [ψ, η]⟩A for all ξ, ψ ∈ h and η ∈ h⊥A . In particular, lettingψ = ξ , this last equation says
that ⟨ξ, [ξ, η]⟩A = −⟨ξ, [ξ, η]⟩A for all η ∈ h⊥A and therefore ⟨ξ, [ξ, η]⟩A = 0. This yields condition (2) in Theorem 2. �

3.2. Coordinate form of Theorem 2

Wenowwork out the consequence of Theorem 2 in terms of the structure constants of the Lie algebra and the symmetric
matrix of the inner product. That is, we investigate the condition for a subalgebra to be totally geodesic from a coordinate
point of view.
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Let g be of finite dimension n, and let h be a subalgebra of dimensionm < n. Further, let e1, . . . , en be a basis of g such that
h is spanned by e1, . . . , em. The corresponding Cartesian coordinate vectors in Rn are denoted with bold symbols e1, . . . , en.
We denote by Ci the matrix representation of adei in the given basis. In terms of the structure constants ckij for the bracket
we have e⊤

k Ciej = ckij .
For every inner product ⟨·, ·⟩A on g there corresponds a symmetric matrix A = (aij) defined by aij = ⟨ei, ej⟩A. The

following result is a statement of Theorem 2 in terms of the matrices Cj and A:

Proposition 5. The subalgebra h is totally geodesic with respect to (g, ⟨·, ·⟩A) if and only if

e⊤

i ACjA−1ek + e⊤

j ACiA−1ek = 0 for all

i, j ∈ {1, . . . ,m}

k ∈ {m + 1, . . . , n}.

Proof. Coordinate version of (2) in Theorem 2. See the report [13] for details. �

4. Totally geodesic metrics

In this section the setting is the following. Given a Lie group G and a subgroupH , find a right invariant Riemannianmetric
such that H is totally geodesic. Thus, throughout this section the condition in Theorem 2 is interpreted as a condition on the
inner product ⟨·, ·⟩A in order for the subalgebra h of H to be totally geodesic in the algebra g of G.

4.1. Construction with invariant form

As a start, consider first the case when the full algebra g is finite dimensional and semisimple. In particular, this implies
that the Killing form, denoted ⟨·, ·⟩K , is non-degenerate (but not necessarily negative definite). Recall that the Killing form
is bi-invariant, i.e., it fulfils the relation ⟨[ξ, ψ], η⟩K = −⟨ψ, [ξ, η]⟩K for all ξ, ψ, η ∈ g. If the corresponding self-adjoint
isomorphismK : g → g∗ is used as pairing operator, the Lagrangian form of the Euler–Arnold equation (3b) takes the ‘‘rigid
body form’’

Jξ̇ = −[ξ,Jξ ], where J = K−1A, (12)

which is a direct consequence of the bi-invariant property. Indeed, it holds that ⟨ψ, adξ (η)⟩K = −⟨adξ (ψ), η⟩K so
ad•

ξ = −adξ . Notice that both KJ and AJ are self-adjoint operators, so J is self-adjoint with respect to both ⟨·, ·⟩K and
⟨·, ·⟩A.

Remark 2. If, in addition to being semisimple, g is also compact, then its Killing form is negative definite. Thus, we may use
⟨·, ·⟩A = ⟨− ·, ·⟩K as choice of inner product. Since it is bi-invariant, it follows that all subalgebras in g fulfil the condition
in Theorem 2, i.e., all subalgebras are totally geodesic with respect to a bi-invariant inner product. The dynamics in this case
is trivial. Indeed, we have J = −Id, so the Euler–Arnold equation (12) reduce to −ξ̇ = [ξ,−ξ ] = 0. For the rigid body this
happens when all moments of inertia are equal. From a geometric point of view, bi-invariance of the metric implies that
geodesics are given by the group exponential.

A direct consequence of Theorem 2 is that h being totally geodesic in a semisimple Lie algebra g is equivalent to

J−1
[ξ,Jξ ] ∈ h ∀ ξ ∈ h. (13)

In particular this is always true if h is an invariant subspace of J, i.e., Jh = h.
We now continue with a generalisation of these ideas, which will lead to a recipe for the construction of totally geodesic

metrics.

Definition 2. Let ⟨·, ·⟩A be an inner product on g. A subalgebra h ⊂ g is called easy totally geodesic in g respect to ⟨·, ·⟩A if
adh(h

⊥A) ⊂ h⊥A , i.e., h⊥A is invariant under adh.

As the name implies, easy totally geodesic is a special case of totally geodesic.

Proposition 6. Let h be a subalgebra of g which is easy totally geodesic in g with respect to ⟨·, ·⟩A. Then h is totally geodesic in
g with respect to ⟨·, ·⟩A.

Proof. Let ξ, ψ ∈ h and η ∈ h⊥A . Easy totally geodesic implies ⟨[ξ, η], ψ⟩A = ⟨adξ (η), ψ⟩A = 0, since adξ (η) ∈ h⊥A and
ψ ∈ h. The result now follows from Theorem 2 by taking ψ = ξ . �

We now develop a method for constructing inner products for which a given subalgebra is easy totally geodesic. The
construction generalises the approach described above, where the Killing form was used as a pairing.
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Definition 3. Let h be a subalgebra and V a subspace of g. A symmetric bilinear form ⟨·, ·⟩K on g is called adh-invariant on
V if

⟨adξ (η), ψ⟩K + ⟨η, adξ (ψ)⟩K = 0 ∀ ξ ∈ h and ∀ η,ψ ∈ V .

If V = g we simply call ⟨·, ·⟩K adh-invariant.

Notice that bi-invariance is equivalent to adg-invariance. Also notice that adh-invariance is equivalent to
⟨Adh(ξ),Adh(η)⟩K = ⟨ξ, η⟩K for all h ∈ H .

Given an adh-invariant form on g, which is non-degenerate on h, we can construct a large class of inner products on g for
which h is totally geodesic. Indeed, we have the following result.

Theorem 7. Let g be a Lie algebra, and h ⊂ g a subalgebra. Further, let ⟨·, ·⟩K be an adh-invariant form on g, such that its
restriction to h is non-degenerate, and let ⟨·, ·⟩A be an inner product on g. Then:

1. If h⊥K = h⊥A , then h is easy totally geodesic in g with respect to ⟨·, ·⟩A.2
2. If [h, h] = h and h is easy totally geodesic in g with respect to ⟨·, ·⟩A, then h⊥K = h⊥A .

Proof. In general, g have the two decompositions g = h ⊕ h⊥A and g = h ⊕ h⊥K . The inertia operator A : g → g∗ can be
decomposed as Aξ = A1ξ1 + A2ξ2, where ξ = ξ1 + ξ2 are the unique components in the decomposition g = h ⊕ h⊥A ,
and A1 : h → h∗, A2 : h⊥A → (h⊥A)∗ are invertible operators. Further, the operator K : g → g∗ can be decomposed as
Kξ = Kaξa + Kbξb, where ξ = ξa + ξb are the unique components in the decomposition g = h ⊕ h⊥K , and Ka : h → h∗

is invertible.
We first prove assertion 1. Let ξ, ψ ∈ h and η ∈ h⊥A . Then

⟨[ξ, η], ψ⟩A = ⟨Aψ, [ξ, η]⟩ = ⟨A1ψ, [ξ, η]⟩

= ⟨Ka K−1
a A1  
J1

ψ, [ξ, η]⟩ = ⟨KJ1ψ, [ξ, η]⟩

= ⟨J1ψ, [ξ, η]⟩K = −⟨[ξ,J1ψ], η⟩K = 0

where the last equality follows since [ξ,J1ψ] ∈ h and η ∈ h⊥A = h⊥K . Thus, ⟨[ξ, η], ψ⟩A = 0 for all ξ, ψ ∈ h, η ∈ h⊥A ,
which means that [ξ, η] ∈ h⊥A for all ξ ∈ h, η ∈ h⊥A , i.e., h is easy totally geodesic.

Next we prove assertion 2. Again, let ξ, ψ ∈ h and η ∈ h⊥A . Then, since h is easy totally geodesic, it holds that

0 = ⟨[ξ, η], ψ⟩A = ⟨Aψ, [ξ, η]⟩ = ⟨A1ψ, [ξ, η]⟩

= ⟨KaK
−1
a A1ψ, [ξ, η]⟩ = ⟨J1ψ, [ξ, η]⟩K = −⟨[ξ,J1ψ], η⟩K .

Thus, since J1 : h → h is non-degenerate and ξ, ψ is arbitrary, it must hold that ⟨[h, h], η⟩K = 0 for all η ∈ h⊥A . Using
now that [h, h] = h, we get ⟨h, η⟩K = 0 for all η ∈ h⊥A . Since every element in h⊥K also fulfils this, and since h⊥A and h⊥K

are isomorphic, it holds that h⊥A = h⊥K , which proves the result. �

From the first part of Theorem 7 we obtain a recipe for constructing easy totally geodesic inner products. Indeed, take
any inner product of the form

⟨ξ, ψ⟩A = ⟨ξ1, ψ1⟩A1 + ⟨ξ2, ψ2⟩A2 ,

where ξ = ξ1 + ξ2 and ψ = ψ1 + ψ2 are the unique components in the decomposition g = h ⊕ h⊥K .
From the second part of Theorem 7we see that if [h, h] = h we can totally characterise the inner products making h easy

totally geodesic. For example, in the finite dimensional case we have the following.

Corollary 8. Let g be an n-dimensional Lie algebra, and let h ⊂ g be an m-dimensional semisimple subalgebra. Denote by ⟨·, ·⟩K

the Killing form on g. Then h is easy totally geodesic in g with respect to ⟨·, ·⟩A if and only if h⊥A = h⊥K . Further, the set of inner
products on g making h easy totally geodesic defines a manifold of dimension (n + 1)n/2 − (n − m)m.

Proof. Since h is semisimple, the Killing form restricted to h is non-degenerate. Further, [h, h] = h since h is semisimple.
Thus, it follows from Theorem 7 that ⟨·, ·⟩A makes h easy totally geodesic in g if and only if h⊥A = h⊥K . Further, every inertia
operator A with h⊥A = h⊥K takes the form

Aξ = A1ξ1 + A2ξ2,

where A1 : h → h∗ and A2 : h⊥K → (h⊥K )∗ are self-adjoint linear operators. The set of such pairs (A1,A2) forms a linear
space of dimension (n+ 1)n/2− (n−m)m. The subset of such pairs having positive definite eigenvalues is thus a manifold
of dimension (n + 1)n/2 − (n − m)m. �

2 Here, h⊥K = {η ∈ g; ⟨η, h⟩K = 0} denotes the generalised orthogonal complement with respect to ⟨·, ·⟩K .
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In contrast to the non-easy totally geodesic case, the following universality result holds for easy totally geodesic
subalgebras.

Proposition 9. Let g be a Lie algebra, and let ⟨·, ·⟩A be an inner product. Further, let h be a subalgebra of g, and k a subalgebra
of h. If k is easy totally geodesic in h with respect to ⟨·, ·⟩A, then k is easy totally geodesic in g with respect to ⟨·, ·⟩A.

Proof. Let k⊥A be the orthogonal complement of k in g with respect to ⟨·, ·⟩A. Then adk(k
⊥A) ⊂ k⊥A since k is easy totally

geodesic in g. Now, since h is a subalgebra it holds that

adk(k
⊥A ∩ h) ⊂ k⊥A ∩ h

which proves the theorem. �

Example 4. Let g = gl(3) and h = so(3). A basis e1, . . . , e9 for gl(3) is given by

1
√
2

0 0 0
0 0 −1
0 1 0


,

1
√
2

 0 0 1
0 0 0

−1 0 0


,

1
√
2

0 −1 0
1 0 0
0 0 0


,

1
√
2

0 1 0
1 0 0
0 0 0


,

1
√
2

0 0 1
0 0 0
1 0 0


,

1
√
2

0 0 0
0 0 1
0 1 0


,

1
√
2

1 0 0
0 0 0
0 0 −1


,

1
√
6

1 0 0
0 −2 0
0 0 1


,

1
√
3

1 0 0
0 1 0
0 0 1


.

The first three elements gives the standard basis of so(3). It is straightforward to check that the symmetric matrix
representing the Killing form with respect to this basis is diagonal with entries (−1,−1,−1, 1, 1, 1, 1, 1, 0). Thus, the
orthogonal complement so(3)⊥K is the subspace generated by e4, . . . , e9. Now, from Theorem 7 it follows that so(3) is
easy totally geodesic in gl(3) for any inertia operator A : so(3) → so(3)∗ which is represented by a 3 × 3 and 6 × 6 block
diagonal matrix with respect to the basis e1, . . . , e9.

Given such an inner product, the weak form of the Euler–Arnold equations in the decomposition ξ = ξ1 + ξ2 relative to
g = h ⊕ h⊥K is

⟨ξ̇1, η1⟩A1 = ⟨ξ1, [ξ1, η1]⟩A1 + ⟨ξ2, [ξ2, η1]⟩A2 , ∀ η1 ∈ h

⟨ξ̇2, η2⟩A2 = ⟨ξ, [ξ2, η2]⟩A + ⟨ξ2, [ξ1, η2]⟩A2 , ∀ η2 ∈ h⊥K .

Notice that the algebra of trace free matrices sl(3) is spanned by the basis elements e1, . . . , e8. Thus, using Proposition 9,
we get that so(3) is easy totally geodesic also as a subalgebra of sl(3) for any of the constructed inner products restricted
to sl(3).

4.2. Semidirect products

Consider the semidirect product GsV of the group G with the vector space V , with group multiplication given by

(g, v) · (h, u) := (gh, g · v + u),

where g·v denotes the linear action (representation) ofGonV . The Lie algebra ofGsV is denoted gsV , and the corresponding
Lie bracket on gsV is given, in terms of the Lie bracket on g, by

[(ξ , v), (η, u)] = ([ξ, η], ξ · u − η · v)

where ξ · v indicates the infinitesimal action of g on V from the action of G on V .
The unit element in GsV is (e, 0). There are two natural subgroups, Gs{0} and the normal subgroup {e}sV . Their

Lie algebras are given correspondingly by gs{0} and {0}sV . An inner product ⟨·, ·⟩A on gsV is called a split metric if
(gs{0})⊥A = {0}sV .

Theorem 10. It holds that:

1. The subalgebra gs{0} is easy totally geodesic in gsV with respect to any split metric ⟨·, ·⟩A.
2. The subalgebra {0}sV is totally geodesic in gsV with respect to an inner product ⟨·, ·⟩A on gsV if and only if G acts on V by

isometries with respect to ⟨·, ·⟩A restricted to V .

Proof. For (ξ , 0) ∈ gs{0} and (0, v) ∈ (gs{0})⊥A , we have

[(ξ , 0), (0, v)] = (0, ξ · v) ∈ {0}sV = (gs{0})⊥A .

Thus, we conclude that the subalgebra gs{0} is easy totally geodesic in gsV for any split metric.
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Next consider the subalgebra {0}sV . For v ∈ V , (η, u) ∈ ({0}sV )⊥A we again compute the obstruction to the vanishing
of the second fundamental form

⟨(0, v), [(0, v), (η, u)]⟩A = ⟨(0, v), (0,−η · v)⟩A = −⟨v, η · v⟩A|V ,

where ⟨·, ·⟩A|V is the restriction of ⟨·, ·⟩A to V . Now, let g(t) be a curve in G such that g(0) = e and ġ(0) = η. Then

⟨v, η · v⟩A|V =
1
2

d
dt


t=0

⟨g(t) · v, g(t) · v⟩A|V .

The right hand side vanishes for all η ∈ g and v ∈ V if and only if G acts on V by isometries with respect to ⟨·, ·⟩A|V . �

Example 5 (Magnetic Groups). For any group G we can consider the action of G on g∗ by coadjoint action, which is a
linear representation of G. We can then form the semidirect product, Gsg∗, so that g∗ plays the role of V in the previous
development.

This example arises physically in magnetohydrodynamics, where the group is given by G = Diffvol(M), thus forming the
semidirect product Diffvol(M)sXvol,t(M)∗. The inner product is given by ((ξ , a), (η, b)) → ⟨ξ, η⟩L2 + ⟨a, b⟩L2 . Since this is
a split metric, Theorem 7 asserts that Xvol,t(M)s{0} is easy totally geodesic. From a physical point of view, it means that if
the magnetic field is initially zero, then it remains zero and the flow reduces to the Euler fluid.

Example 6 (Rigid Body in Fluid).Another example in physics is given by Kirchhoff’s equations for a rigid body in a fluid. Here,
G = SO(3) and V = R3, thus forming the special Euclidean group SO(3)sR3. The SO(3) variable describes the orientation
of the body, and the R3 variable the translational position of its centre of mass. The Lie algebra is given by so(3)sR3, and
the inner product (describing the total kinetic energy) is of the form

((ξ , u), (η, v)) → ⟨ξ, η⟩I + m⟨u, v⟩L2 + Q (ξ , v)+ Q (η, u),

where I : so(3) → so(3)∗ is the rotational moments of inertia operator, m > 0 is the effective mass, and Q is positive and
bilinear (depending on the geometry of the body). Thus, the inner product is generally not a split metric, so so(3)s{0} is
typically not totally geodesic. Physically this implies that if the initial velocity of the centre ofmass of a rotating rigid body in
a fluid is zero, it will generally not remain zero (due to interactionwith the fluid). However, sincem⟨g ·u, g ·v⟩L2 = m⟨u, v⟩L2
for all g ∈ SO(3) it holds that SO(3) acts on R3 by isometries. Thus, it follows from Theorem 7 that {0}sV is totally geodesic,
meaning that an initially non-rotating rigid body moving in a fluid will remain non-rotating.

5. Diffeomorphism group examples

Theorem 7 is valid also for infinite dimensional Fréchet–Lie algebras. In the finite dimensional case, as we have seen, one
can always use the Killing form as adh-invariant form, so the only requirement is that the Killing form is non-degenerate on
h, which is equivalent to the subalgebra h being semisimple. In the infinite dimensional case the situation is more difficult:
one has to explicitly find an infinite dimensional adh-invariant form on g. In this section we give some examples.

5.1. Isometries and H1
α metric

Let (M, g) be a Riemannian manifold. Further, let ⟨·, ·⟩L2 be the inner product on Ωk(M) given by (6). Recall the flat
operator ♭ : X(M) → Ω1(M), the differential d : Ωk(M) → Ωk+1(M), and the co-differential δ : Ωk(M) → Ωk−1(M).

Definition 4. The left (right) H1
α metric on Diff(M) is the left (right) invariant metric given by left (right) translation of the

corresponding H1
α inner product on X(M) given by

⟨ξ, η⟩H1
α

:= ⟨ξ ♭, η♭⟩L2 + α⟨ dξ ♭, dη♭⟩L2 + α⟨δξ ♭, δη♭⟩L2 .

Remark 3. The H1
α metric as defined here contains 1 + n(n − 1)/2 partial derivative terms. In some articles, an H1

α metric
is defined such that it contains all the n2 partial derivative terms.

Let Xiso(M) = {ξ ∈ X(M); £ξg = 0} denote the Killing vector fields onM . Let Diffiso(M) ⊂ Diff(M) denote the subgroup
of isometries. The corresponding subalgebra is given by the tangential Killing vector fields Xiso,t(M) = Xiso(M) ∩ Xt(M).
Since Φ ∈ Diffiso(M) acts by isometries, and since the inner product ⟨·, ·⟩H1

α
is defined only in terms of operations that are

natural with respect to the metric g, it holds that ⟨AdΦ(ξ),AdΦ(η)⟩H1
α

= ⟨ξ, η⟩H1
α
. Thus, the following result holds (for a

detailed proof using Hodge decomposition theory, see the report [13]):

Proposition 11. Let (M, g) be an n dimensional Riemannianmanifold. Then the H1
α inner product onXt(M) isXiso(M)-invariant.
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As a consequence, we now have the following corollary.

Corollary 12. Diffiso(M) is easy totally geodesic in Diff(M) with respect to the H1
α metric. In fact, if ξ ∈ Xiso(M), then ξ is a

stationary solution to the (Diff(M), ⟨⟨·, ·⟩⟩H1
α
) Euler–Arnold equation.

Proof. The first assertion follows from Propositions 11 and 6. Further, if ξ ∈ Xiso(M) the weak Euler–Arnold equation is

⟨ξ̇ , η⟩H1
α

= −⟨ξ, adξ (η)⟩H1
α

= ⟨adξ (ξ), η⟩H1
α

= 0,

for any η ∈ X(M). Thus, ξ is a stationary solution. �

5.2. Exact volume preserving diffeomorphisms and H1
α metric

In this sectionwe extend a result in [4], which, on a compact Riemannianmanifold without a boundary, gives a condition
for the subgroup of exact volume preserving diffeomorphisms, corresponding to the Lie subalgebra of exact divergence free
vector fields, to be totally geodesic with respect to the L2 metric. We extend the result to compact Riemannian manifolds
with a boundary and H1

α metric.
Let (M, g) be a Riemannian n-manifoldwith a boundary. Recall that the exact divergence free vector fields onM are given

by
Xex

vol(M) = {ξ ∈ Xvol(M); ∃α ∈ Ωn−2(M) s.t. iξvol = dα}.

It is straightforward to check that it is a subalgebra. Indeed, if ξ, η ∈ Xex
vol(M) then

i[ξ,η]vol = £ξ iηvol + iη £ξvol  
0

= £ξ dα = d£ξα,

so i[ξ,η]vol is exact. The subgroup of Diffvol(M) corresponding to Xex
vol,t(M) = Xex

vol(M) ∩ Xt(M) is denoted Diffexvol(M).

Theorem 13. Diffexvol(M) is totally geodesic in Diffvol(M) with respect to the H1
α metric if and only if

⟨iξ dξ ♭, γ ⟩L2 = 0

for all ξ ∈ Xex
vol,t(M) and γ ∈ H1(M).

Proof. By the flat operator, the space Xvol,t(M) corresponds to the tangential co-closed 1-forms D1
t (M), and Xex

vol,t(M)
corresponds to the co-exact tangential 1-forms (δΩ2(M))t = δΩ2

t (M). From the Hodge decomposition for manifolds with a
boundary (see [11, Section 7.5]) it follows that the L2 orthogonal complement of δΩ2

t (M) inΩ
1
t (M) is given by the tangential

closed 1-forms C1
t (M). Thus, the L2 orthogonal complement of δΩ2

t (M) in D1
t (M) is given by C1

t (M) ∩ D1
t (M), which are the

tangential harmonic fieldsH1
t (M). Since δγ = 0 and dγ = 0 for any harmonic field, it follows thatH1

t (M) is the orthogonal
complement of δΩ2

t (M) also with respect to H1
α .

As computed in Example 2(c), it holds that ad∗

ξ represented on D1
t (M) takes the form ad•

ξ (ψ) = P(£ξψ ♭), where P is the
L2 orthogonal projection Ω1

t (M) → D1
t (M). Now, from Theorem 2 we get that Xex

vol,t(M) is totally geodesic in Xvol,t(M) if
and only if

0 = ⟨ad⊤A
ξ (ξ), γ ♯⟩H1

α
= ⟨A−1ad∗

ξ (Aξ), γ
♯
⟩H1
α

= ⟨P(£ξ ξ ♭), γ ⟩H1
α

= ⟨P(£ξ ξ ♭), γ ⟩L2

= ⟨£ξ ξ ♭ + dp, γ ⟩L2 = ⟨£ξ ξ ♭, γ ⟩L2

for all ξ ∈ Xex
vol,t(M), and all γ ∈ H1

t (M). The last equality follows since dΩ0(M) is orthogonal to H1
t (M). Next we have

⟨£ξ ξ ♭, γ ⟩L2 = ⟨iξ dξ ♭, γ ⟩L2 + ⟨ diξ ξ ♭, γ ⟩L2

= ⟨iξ dξ ♭, γ ⟩L2 + ⟨iξ ξ ♭, δγ
0

⟩L2 +

∫
M
i∗(iξ ξ ♭) ∧ i∗(⋆γ )  

0

= ⟨iξ dξ ♭, γ ⟩L2

which proves the theorem. �

Remark 4. In the case when α = 0 andM has no boundary, Theorem 13 amounts to statement 1 ↔ 5 of Theorem 1 in [4].

5.3. Maximal torus of volume preserving diffeomorphisms

Consider the finite cylinderM = S1×[0, 1], coordinatised by (θ, z) and equippedwith the natural Riemannian structure.
In [16,17,6] the groupof volumepreserving diffeomorphismsonM is studied. In particular, it is shown in [6] that themaximal
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Abelian subgroup of Diffvol(M) is given by

T = {φ ∈ Diffvol(M);φ(θ, z) = (θ + f (z), z), f ∈ C∞([0, 1], S1)}.

The corresponding algebra is given by

t = {ξ ∈ Xvol,t(M); ξ(θ, z) = T ′(z)∂θ , T ∈ C∞([0, 1],R)}.

It is also shown in [6] that T is totally geodesic in Diffvol(M)with respect to the L2 inner product. Using our framework, we
now show the slightly stronger result that it actually is easy totally geodesic.

Since M is a 2-manifold, the metric together with the induced volume form equips M with the structure of a Kähler
manifold. Thus, since the volume form is the symplectic form, the algebra of tangential divergence free vector fields on
M is equal to the space of tangential symplectic vector fields on M . Furthermore, by the flat map, the space of tangential
divergence free vector fields on M is isomorphic to the tangential co-closed 1-forms on M , i.e., Xvol,t(M)♭ = D1

t (M). It is a
result in [6] that D1

t (M) = δΩ2
t (M), i.e., that every tangential co-closed 1-form on the finite cylinder is co-exact. In turn,

this implies that Xvol,t(M) consists of tangential Hamiltonian vector fields on M . Notice that a Hamiltonian vector field is
tangential if and only if the corresponding Hamiltonian function is constant when restricted to each connected component
(∂M)i of the boundary.

Next, it is straightforward to compute the orthogonal complement of t in Xvol,t(M). Indeed, let ξT ∈ t, and consider an
element ξH =

∂H
∂z ∂θ −

∂H
∂θ
∂z ∈ Xvol,t(M). Now

⟨ξT , ξH⟩L2 :=

∫
M
g(ξT , ξH)vol =

∫
M
⋆ dT ∧ ⋆ ⋆ dH =

∫
M

dT ∧ ⋆ dH.

Using a Fourier expansion we see that ⟨ξT , ξH⟩L2 = 0 for all ξT ∈ t if and only if H is of the form

H(θ, z) = const +

∞−
k=1

ak(z) cos(kθ)+ bk(z) sin(kθ). (14)

Thus, the L2 orthogonal complement of t in Xvol,t(M) is given by

t⊥ = r =


ξH ∈ Xvol,t(M);H(θ, z) =

∞−
k=1

ak(z) sin(kθ)+ bk(z) cos(kθ), ak, bk ∈ C∞([0, 1],R)


.

Now, let ξT ∈ t and ξH ∈ r. Then adξT (ξH) = [ξT , ξH ] = ξ{T ,H}, where {T ,H} = −
∂H
∂θ

∂T
∂z . It is straightforward to check that

∂H
∂θ

∂T
∂z is of the form (14). Thus, adt(r) ⊂ r, so t is easy totally geodesic in Xvol,t(M).

5.4. Bi-invariant form on XHam(M)

Let (M, ω) be a symplectic manifold with a boundary. The Hamiltonian vector fields XHam(M) are the tangential
symplectic vector fields which have a globally defined Hamiltonian. Consider the following symmetric bilinear form on
XHam(M):

(ξH , ξG) →

∫
M
HGωn

=: ⟨ξH , ξG⟩Ham (15)

where H,G are normalised such that

M H ωn

=

M Gωn

= 0. If Φ ∈ DiffSp(M) then AdΦ(ξH) = ξΦ∗H ∈ XHam(M), since Φ
preserves the symplectic structure. Now,

⟨AdΦ(ξH),AdΦ(ξG)⟩Ham =

∫
M
(Φ∗H)(Φ∗G) ωn

=

∫
M
(Φ∗H)(Φ∗G)(Φ∗ω)n

=

∫
M
(Φ∗H)(Φ∗G)Φ∗ωn

=

∫
M
Φ∗(HGωn)

=

∫
M
HGωn

= ⟨ξH , ξG⟩Ham

where we have used thatΦ∗ω = ω. Thus, since the Lie algebra of DiffSp(M) is XSp,t(M)we have the following result, which
is given for boundary-free manifolds in [18,19]:

Proposition 14. The bilinear form (15) defines an adXSp,t (M)-invariant inner product on XHam(M).

5.5. Bi-invariant form on Xex
vol,t(M)

Let (M, g) is a Riemannian 3-manifold. The exact divergence free vector fields Xex
vol(M) are the vector fields on M that

have globally defined vector potentials. That is, ξ ∈ Xex
vol(M) implies that ξ = curlψ for some ψ ∈ X(M). Equivalently, in
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the language of differential forms, ξ ∈ Xex
vol(M) implies that iξvol = dα, for some α ∈ Ω1(M)which is unique up to closed

1-forms. Now, let iξvol = dα and iηvol = dβ and consider the following bilinear form

(ξ , η) →

∫
M
α ∧ dβ =: ⟨ξ, η⟩hel (16)

sometimes called cross helicity. This form is symmetric and independent of the choice of α (see [3, Section III.1D]).
The following result is given in [20] (see also [14] and [3, Section III.1D]). For a proof based on Hodge decomposition

theory, see the report [13].

Theorem 15. Let (M, g) be a Riemannian 3-manifoldwith a boundary. Then (16) defines an adXvol,t (M)-invariant non-degenerate
symmetric bilinear form on Xex

vol,t(M).

With this result we get a characterisation of subalgebras of Xex
vol,t(M)which are easy totally geodesic with respect to the

L2 inner product.

Theorem 16. Let h be a subalgebra of Xex
vol,t(M). Then h is easy totally geodesic in Xex

vol,t(M)with respect to the L2 inner product
if and only if adh(curl h) ⊆ h.

Proof. Let V be the orthogonal complement of h inXex
vol,t(M). Then h is easy totally geodesic if and only if ⟨adh(V ), h⟩L2 = {0}.

Now,

⟨adh(V ), h⟩L2 = ⟨adh(V ), curl h⟩hel = −⟨V , adh(curl h)⟩hel.

This proves sufficiency. To get necessity, we need to show that adh(curl h) ⊂ Xvol,t(M), because then ⟨V , adh(curl h)⟩hel =

{0} implies adh(curl h) ⊆ h. But this follows since Xvol,t(M) is an ideal in Xvol(M). Indeed, if ξ ∈ Xvol(M) and η ∈ Xvol,t(M)
then

i∗(i[ξ,η]vol) = i∗(£ξ iηvol)
= i∗( diξ iηvol + iξ diηvol)
= dii∗ξ i∗(iηvol)  

0

+ii∗ξ d i∗(iηvol)  
0

= 0,

where, as usual, i : ∂M → M is the natural inclusion. Thus, i[ξ,η]vol is normal, which is equivalent to [ξ, η] ∈ Xvol,t(M). �

As an example, letM now be a three dimensional contact manifold, with contact form θ ∈ Ω1(M). For details on contact
manifolds, see [10, Section 11]. In our context, it is enough to recall the following properties:

• M carries a natural contact Riemannian structure;
• the volume form is given by θ ∧ dθ ;
• the Reeb vector field is given by ξR = θ ♯. We assume K -contact structure (cf. [10, Section 11]), i.e., that the Reeb vector

field is Killing. This is the common case, although it is not always true.

Consider the subgroup of exact contact diffeomorphisms Diffexθ (M) = {φ ∈ Diff(M);φ∗θ = θ}. It is shown by Smolentsev
[10, Section 11.2] that Diffexθ (M) is a subgroup of Diffexvol(M). Now, using Theorem 16, we give the following new example of
an easy totally geodesic subgroup of Diffexvol(M):

Corollary 17. Diffexθ (M) is easy totally geodesic in Diffexvol(M) with respect to the L2 metric.

Proof. The algebra of Diffexθ (M) is given by Xex
θ,t(M) = {ξ ∈ Xex

vol,t(M); £ξθ = 0}. Let ξ ∈ Xex
θ,t(M). We first show that

£curl ξθ = 0, and then use Theorem 16. Since θ = ξ
♭

R , and since ξR is a Killing vector field, it holds that £curl ξθ = [curl ξ, ξR]♭.
From [10, Section 11.2] we have that curl ξ = (f −∆f )ξR + ξR × grad f , where f = iξθ is the contact Hamiltonian. We recall
that the Reeb vector field conserves all contact Hamiltonians. Also, we have [ξR, ξR × grad f ] = 0. Thus, it remains to show
[(f −∆f )ξR, ξR] = 0. But this follows since both f and∆f are contact Hamiltonians, so

[ξR, (f −∆f )ξR] = £ξR(f −∆f )ξR = (£ξR f
0

− £ξR∆f  
0

)ξR + (f −∆f ) £ξRξR
0

.

Thus, [curl ξ, η] ∈ Xex
θ,t(M), for any η ∈ Xex

θ,t(M), and the result follows from Theorem 16. �
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