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Abstract
Liquid bridges are important in a number of industrial applications, such as the granulation of pharmaceuti-
cals, pesticides, and the creation of detergents and fine chemicals. This paper concerns a mathematical study
of static and dynamic liquid bridges. For the static case, a new analytical solution to the Young-Laplace equa-
tion is obtained, in which the true shape of the liquid bridge surface is able to be written in terms of known
mathematical functions. The phase portrait of the differential equation governing the bridge shape is then
examined. For the dynamic case of colliding spheres, the motion of the bridge is derived from mass conser-
vation and the Navier-Stokes equations. The bridge surface is approximated as a cylinder and the solution
is valid for low Reynolds number (Re � 1). As the spheres approach, their motion is shown to be damped
by the viscosity of the liquid bridge.

Introduction

Granulation is an important process in the powder industry [1]. The coalescence mechanism requires that
fundamental particles be bound together with a viscous binder which is able to form a liquid bridge between
particles. As a result of further inter-particle collisions, primary particles adhere together forming agglom-
erates. As the granulation cycle continues, agglomerates bind together resulting in granules. This paper is
concerned with the liquid bridges that form between fundamental particles. As an approximation, the parti-
cles are represented by spheres in this work.

A number of theoretical studies have been completed into properties of static liquid bridges which have con-
stant physical properties [2-7]. Parameters of interest in these applications are the critical rupture distance
and the area and volume of the bridge. However, approximations to the true bridge shape are introduced to
solve the problem. A well-known example of this is the toroidal approximation used by Fisher [5].

Static liquid bridges are studied in the following section, and a closed form analytic solution is obtained to
the Young-Laplace equation. This equation relates the curvature of the binder surface to that of the fluid sur-
face tension and the pressure deficiency caused by the fluid droplet. Physically, this equation requires that
the bridge surface has constant mean curvature. This paper shows that it is possible to represent the liquid
bridge surface in terms of known Jacobi elliptic functions.
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Figure 1: Illustration of the static liquid bridge geometry. Dimensional variables are used (as in equations (1) and (2)).
A contact angle of θ = 10o, α = 40o, β = 38o. The radius of particle A is rA = 0.1 mm and particle B rB = 0.15 mm.
The length of the bridge is 0.12 mm.

Static Bridges

Consider figure 1 which illustrates a liquid bridge with cylindrical symmetry between two spherical particles
‘A’ and ‘B’ of radii rA and rB . Coordinates r and x define the position of the liquid bridge surface along
with the radii of curvature r1 and r2 which lie in the r − x and r − y planes respectively. The curvature
in the r-x plane is therefore given by 1

r1
, and the curvature in the r-y plane by 1

r2
. Allowing ∆p to denote

the pressure deficiency caused by the presence of the liquid droplet (∆p > 0 when the internal pressure of
the bridge is higher than the external (ambient) pressure), the Young-Laplace equation relates the surface
tension of the binder γ to the pressure difference ∆p and the mean curvature of the bridge surface,

γ

(
1
r1

+
1
r2

)
= ∆p. (1)

Gravity does not appear in (1) as the mass of the liquid bridge is very small in comparison with the surface
tension force between particles. Upon substitution of the vector calculus results for 1

r1
and 1

r2
(see [8] for

details), equation (1) can be written

γ

(
r′′

(1 + r′2)3/2
− 1

r(1 + r′2)1/2

)
= −∆p. (2)

Equation (2) can be non-dimensionalised by introducing variables X = x
σ and R = r

σ , where σ is the scaling
variable relating non-dimensional and dimensional variables. In the case of figure 1, σ can be chosen as
either rA or rB . Also, a non-dimensional pressure difference ∆P = ∆p σ

γ is introduced, enabling the non-
dimensional version of (2) to be written as

R′′

(1 + R′2)3/2
− 1

R(1 + R′2)1/2
= −∆P. (3)

In (3) the notation R′ = dR
dX and R′′ = d2R

dX2 has been adopted. Initial values for the bridge height R0 and
tangent R′

0 (occurring on particle A above) are specified. The angle which the bridge makes contact with the
tangent plane to the spheres is the contact angle θ and is specified for a given problem. The starting value
for the bridge height (occurring at X0) is

R0 =
rA

σ
sinα = RA sinα
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and that of the slope at the point of contact is

R0
′ = cot(α + θ).

Using the information above, an analytic solution to equation (3) is possible upon making the substitution

U =
(
1 + R′2

)− 1
2

. (4)

Differentiating U with respect to X gives

dU

dX
= − R′R′′

(
1 + R′2) 3

2
. (5)

Rearranging the right hand sides of (4) and (5), substituting these equations into (5) and applying the chain
rule (where dU

dX
dX
dR = dU

dR ), (3) can be written as the following first order differential equation,

dU

dR
+

U

R
= ∆P. (6)

Integrating (6) gives

U =
R ∆P

2
+

E

R
(7)

where the constant of integration E is the energy of the liquid bridge surface. Equation (3) defines a Hamil-
tonian dynamical system and hence the energy E is conserved. By combining (4) and (7),

E = R

(
1√

1 + R′2
− R∆P

2

)
. (8)

Substituting (4) into (7) and rearranging gives R′ as

R′ =
dR

dX
= ±

√
R2 −

(
∆P R2

2 + E
)2

∆P R2

2 + E

Rearranging the above, the shape of the bridge (where R0 ≤ R ≤ R1) is given by the integral

X =
∫ R

R0

∆PR2

2 + E√
R2 −

(
∆PR2

2 + E
)2

dR. (9)

If E = 0 then (9) can be solved to give

X2 + R2 =
(

2
∆P

)2

(10)

showing that the liquid bridge then has a spherical shape.

If E �= 0, (9) can be completed using integral tables [9]. The following parametric solution in terms of X
is produced,

X =
[
F

(
R

ξ
, χ

)
− F

(
R0

ξ
, χ

)] (
η +

2E

∆P η

)

+ η

[
E

(
R0

ξ
, χ

)
− E

(
R

ξ
, χ

)] (11)
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Figure 2: Phase portrait for ∆P > 0. Here φ = arctan R′. Contour labels are values of E ∆P .

where

η2, ξ2 =
2

(∆P )2
[
(1 − E∆P ±

√
1 − 2E∆P

]

and

ξ = χ/η

such that ξ ≤ R ≤ η, and where E and F are Jacobi elliptic functions of the first kind [9]. Equation (11) de-
fines the shape (R) of a bridge parameterised by the position X , where the energy levels E are determined
from (8). Upon consideration of the discriminant of the the quadratic in X2 of (9), it can be shown that
E ∆P < 1

2 .

Although equation (11) represents the liquid bridge configuration in terms of known mathematical functions,
difficulty arises when attempting to integrate this solution to determine properties such as the bridge surface
area and volume. In order to solve the problem in which certain properties are held constant, approximations
to the bridge surface, or a numerical scheme, must be used (as in [2-6]).

Phase Portrait

The energy level E is related to the height and slope of the bridge surface (R, R′) by equation (8). Boundary
conditions on R and R′, along with the pressure difference ∆P determine the contour for a particular liquid
bridge. Generic contours, characterising all liquid bridge configurations, can be obtained from (8) by scaling.
Upon introducing R̃ = R ∆P and X̃ = X ∆P , it follows that

E ∆P = R̃


 1√

1 + R̃′2
− R̃

2


 . (12)

An angle φ measured with respect to the horizontal coordinate X is introduced where R′ = tanφ and there-

fore
√

1 + R′2 = sec φ. In terms of φ, equation (12) becomes

E ∆P = R̃

(
cos φ − R̃

2

)
for ∆P > 0, (13a)
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(a) Phase portrait for ∆P < 0, in which φ = arctan R′

is plotted against R ∆P . Contour labels are values of
E∆P .
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(b) Phase portrait for ∆P = 0. Labels are values of E.

Figure 3: Phase portraits for ∆P < 0 and ∆P = 0.
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E ∆P = R̃

(
cos φ +

R̃

2

)
for ∆P < 0 (13b)

and

E = R cos φ for ∆P = 0. (13c)

The phase portraits for equations (13a)-(13c) are shown in figures 2, 3(a) and 3(b). These figures show that
5 distinct types of liquid bridges exist. With reference to figure 2, for E ∆P > 0, periodic solutions exist
for |φ| < 90o. For this case, the shape of the liquid surface is that of a ‘wavy’ cylinder. For the contour
E ∆P = 0.5, φ ≡ 0o and this corresponds to the cylinder solution. For E ∆P < 0, the liquid surface
begins with initial height R0, and curves upwards reaching a maximum height Rmax > R0. The critical
contour at φ = 90o (E ∆P = 0) is the sphere described in (10), which separates the cylinder and upwardly
curved solutions.

When the pressure inside the bridge is equal to the external (ambient) pressure (as in figure 3(b)), two types
of liquid bridges occur : for |φ| �= 90o, the bridges start with initial height R0 and then curve inward achiev-
ing a height Rmin < R0. For φ = 90o, the solution corresponds to two vertical planes separated by fluid.
When the pressure inside the bridge is lower than ambient (∆P < 0), the bridges curve inward as shown in
figure 3(a).

Dynamic Bridges

Dynamic liquid bridges have previously been studied by Ennis et. al [10]. Their study was directed towards
establishing the relative importance of certain dimensionless groups which govern an axially strained dy-
namic liquid bridge. We follow a different approach by finding a vertically averaged pressure gradient for
the fluid and then the subsequent bridge motion.

Theory is presented for two general surfaces z1(r, t) and z2(r, t), as shown in figure 4, with cylindrical sym-
metry about the z axis separated by a gap distance h(r, t). h0(t) is the closest approach distance between
the surfaces, and f1(r) and f2(r) describe the shape of each surface relative to a radial datum line occurring
at z = −h0(t)

2 and z = h0(t)
2 . z = 0 is defined to be midway between the closest approach points of the two

surfaces, which approach each other along the z axis. The particular case for two approaching spheres with
a constant bridge volume V0, as illustrated in figure 5, will then be examined.

So that the dynamics can be studied, a simple approximation is made that the shape of the bridge is a cylin-
der. The fluid velocity 	v is assumed to be steady and at low Reynolds number (Re � 1), implying that
the inertial force is negligible in comparison with the viscous force of the bridge, and the fluid has constant
viscosity µ. The fluid has constant and uniform density ρ (as isothermal flow is assumed), and is isotropic
and incompressible. Only viscous forces are studied. No other particle interactions, such as van der Waals,
surface tension, electrostatics, or the body force effect of gravity are considered.

Balance Equations

Cylindrical coordinates (r, θ, z) are used, and the velocity vector is 	v = (vr, vθ, vz) where vr is the radial
fluid velocity, vθ the fluid velocity about the r-z axis, and vz the fluid velocity in the z direction. For this
system, the mass conservation equation from Hughes & Gaylord [11] is used,

1
r

∂

∂r
(rvr) +

∂vz

∂z
= 0 (14)

where, by symmetry, there is no rotational flow about the z or r axes and therefore vθ = 0.



P. Rynhart et al., Mathematical Modelling of Granulation 205

Neglecting inertial terms, that is assuming Re � 1, the momentum equations from [11] reduce to

0 = −∂P

∂r
+ µ

�
∂2vr

∂r2
+

1

r

∂vr

∂r
+

∂2vr

∂z2
− vr

r2

�
(15)

0 = −∂P

∂z
− ρg + µ

�
∂2vz

∂r2
+

1

r

∂vz

∂r
+

∂2vz

∂z2

�
(16)

where P = P (r, z) is the pressure difference between the inside and outside of the liquid bridge, defined
to be positive when the pressure is higher internally. To make progress on this problem, an approximation
that vz � vr is introduced. Physically this means that the bridges must have a small volume, and that a
small gap distance h must separate the particles when compared to the volume and radius of a fundamental
particle with radius R. Since vz � vr, and because gravity is not considered in this approximation, only
equation (15) is applicable to the solution.

Figure 4: Figure showing two general surfaces that are approaching each other, described by z1 = h1(r, t) and z2 =
h2(r, t), separated by a distance h0(t) which is the distance of closest approach between the two surfaces.

Velocity Profile

Consider the volume flow rate Q of fluid displaced when surfaces z1 and z2 move toward each other. Since
the surfaces have cylindrical symmetry,

Q =
∫ h2(r,t)

h1(r,t)

2πr vr dz. (17)

To determine Q, we manipulate (17) by taking the partial derivative of Q with respect to r, and then dividing
through by r. Upon completing this, we obtain

1

r

∂

∂r

�Z h2(r,t)

h1(r,t)

2πrvr dz

�
=

2π

r

Z h2(r,t)

h1(r,t)

∂

∂r
(rvr)dz

+
2π

r

�
∂h2

∂r
vr(r, h2(r, t), t) −

∂h1

∂r
vr(r, h1(r, t), t)

� (18)

where the second term in (18) arises upon application of the fundamental theorem of calculus and the chain
rule. Now, since the fluid is unable to move through the surfaces,

vr(r, h1(r, t), t) = vr(r, h2(r, t), t) = 0.
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Figure 5: The scenario in which two approaching equi-sized spheres, of radius R, are connected together via a dynamic
liquid bridge shown by the dotted lines.

This reduces (18) to

1
r

∂Q

∂r
=

2π

r

∫ h2(r,t)

h1(r,t)

∂

∂r
(rvr)dz. (19)

Substituting (14) into (19) yields

1
r

∂Q

∂r
= −2π

∫ h2(r,t)

h1(r,t)

∂vz

∂z
dz

= −2π (vz(r, h2(r, t), t)
− vz(r, h1(r, t), t))

(20)

The separation functions h1(r, t) and h2(r, t) can be written as the sum of a time dependent function h0(t),
changing as the surfaces move, and a radial function f1(r) and f2(r) as shown in figure 4. It is then possible
to write h1(r, t) = − 1

2h0(t) + f1(r) and h2(r, t) = 1
2h0(t) + f2(r). Now

vz(r, h1(r, t), t) =
∂h1

∂t
(r = 0, t) = −1

2
ḣ0(t)

vz(r, h2(r, t), t) =
∂h2

∂t
(r = 0, t) =

1
2
ḣ0(t),

so it follows that equation (20) is equivalent to

1
r

∂Q

∂r
= −2π

(
1
2
ḣ0(t) −

−1
2

ḣ0(t)
)

= −2πḣ0(t). (21)
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Therefore

Q(r, t) = −2π

∫ r

0

rḣ0(t)dr = −πr2ḣ0(t). (22)

For laminar flow, a parabolic radial velocity profile can be assumed,

vr(r, z, t) = A(r, t) [z − h1(r, t)] [h2(r, t) − z] (23)

where A(r, t) is unknown and h1(r, t) ≤ z ≤ h2(r, t). Substituting (23) into (17) gives

Q =

Z h2(r,t)

h1(r,t)

2πr vr dz

=

Z h2(r,t)

h1(r,t)

2πrA(r, t) [z − h1] [h2 − z] dz

=
πr

3
A(r, t) (h2(r, t) − h1(r, t))

3

(24)

Equating (24) with (22) gives the unknown function A(r, t) = −3rḣ0(t)
h2−h1

, and the radial velocity profile is
therefore

vr(r, z, t) =
−3r [z − h1(r, t)] [h2(r, t) − z]

[h2(r, t) − h1(r, t)]
3 ḣ0(t) (25)

Equation (25) is used to find the pressure profile within the liquid bridge.

Finding the Pressure

The r momentum equation (15) is used to consider the pressure. Rearranging (15) gives

1
µ

∂P

∂r
=

1
r

∂

∂r

(
r
∂vr

∂r

)
+

∂2vr

∂z2
− vr

r2
(26)

After differentiating (23) to find ∂vr

∂r and ∂2vr

∂z2 , and substituting these results in (26), we obtain, after some
tedious algebra,

1
µ

∂P

∂r
=

[
−27

h4

∂h

∂r
+

36r

h5

(
∂h

∂r

)2

− 9r

h4

∂2h

∂r2

]
z2ḣ0

+

[
18
h3

∂h

∂r
− 18r

h4

(
∂h

∂r

)2

+
6r

h3

∂2h

∂r2

]
zḣ0

+
6rḣ0

h3

(27)

which is valid for general surfaces described by a separation function h. The radial pressure profile ∂P
∂r for

the case of equi-sized spheres of radius R is obtained by first calculating the separation distance function
h(r, t), which is illustrated in figure 5. For spheres,

h(r, t) = h0(t) + 2(R − Φ)

where Φ =
√

R2 − r2.
Therefore

h(r, t) = h0(t) + 2
(
R −

√
R2 − r2

)
(28)
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Differentiating (28) gives ∂h
∂r = 2r√

R2−r2 and ∂2h
∂r2 = 2R2

(R2−r2)
3
2

. Substituting these into (27) gives

1

µ

∂P

∂r
=

ḣ0

(R2 − r2)
3
2 h3

�
54r3 − 72rR2

h
z2+

�
28rR2 − 36r3� z

�

+
r3

(R2 − r2)h4

h
144ḣ0z

2 − 72zḣ0

i
+

6r

h3
ḣ0

(29)

Equation (29) includes z terms and this makes integration difficult to find the pressure P . However, since
the fluid layer is small in comparison to R, the vertically averaged pressure P̄ provides an accurate approx-
imation. Vertical averaging, given by

∂P̄

∂r
=

1
h

∫ h(r,t)

0

∂P

∂r
dz, (30)

removes the explicit z dependence, and integration to find P̄ is then straightforward. Substitution of (29)
into (30) and integrating gives

∂P̄

∂r
=

6rµ(R2 + r2)
h3(R2 − r2)

ḣ0. (31)

If the pressure of the liquid bridge at some r = r0 is at ambient pressure Pamb, and then the bridge expands
to r > r0 then vertically averaged pressure is

P̄ (r, t) = Pamb +
∫ r

r0

∂P̄

∂r
dr

= Pamb + 6µḣ0(t)
∫ r

r0

r(R2 + r2)
h3 (R2 − r2)

dr,

and the pressure difference

P̄ (r, t) − Pamb = 6µḣ0(t)
∫ r

r0

r(R2 + r2)
h3 (R2 − r2)

dr. (32)

Force

The pressure difference between the internal and external regions of the liquid bridge, P̄ (r, t) − Pamb, pro-
vides the force which decelerates the particles.
The force Fbridge is given by integrating the pressure difference over the cross-sectional area of the liquid
bridge. Using equation (32), the force is

Fbridge = mḧ0(t)

=

Z r0

0

�
P̄ (r, t) − Pamb

�
dA

=

Z r0

0

�
2πr̂

�
6µḣ0(t)

Z r

r0

r̂(R2 + r̂2)

h3(R2 − r̂2)
dr

�
r

�
dr̂ dr

= 6πµḣ0

�Z r0

0

Z r

0

2r̂(R2 + r̂2)

h3(R2 − r̂2)
r dr̂dr

−
Z r0

0
r dr

Z r0

0

2r̂(R2 + r̂2)

h3(R2 − r̂2)
dr̂

�

(33)
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i.e.

ḧ0 =
6πµḣ0

m
{G (r0, h0) −

1
2
r0

2H (r0, h0)} (34)

where the functions

G(r0, h0) =
∫ r0

0

∫ r

0

2r̂(R2 + r̂2)
h3(R2 − r̂2)

r dr̂dr

H(r0, h0) =
∫ r0

0

2r(R2 + r2)
h3(R2 − r2)

dr

(35)

are evaluated for current radius r0 and separation h0. Fourth order Runge-Kutta integration (Matlab’s ode45)
is used to evaluate the integrals on the right hand sides of (35). (Note that the function h appearing in (35) is
the separation function (28)). Once G and H are evaluated, the bridge acceleration is determined using (34).

Numerical Solution

To maintain a constant liquid bridge volume of V0, we specify a radius rf corresponding h0 = 0 (i.e. the
case where the spheres are touching). The volume to be maintained is then

V0 =
∫ rf

0

2πr
(
R −

√
R2 − r2

)
dr

=
∫ R

√
R2−r2

f

2πΦ (R − Φ) dΦ

where the substitution Φ =
√

R2 − r2 has been used. It follows that

V0 = 2π

[
1
3
(R2 − r2

f )
3
2 +

1
2
Rr2

f − 1
3
R3

]
(36)

where V0 is the bridge volume.

The problem begins with the initial separation h0(0) specified. As the separation distance changes, the cur-
rent bridge radius r0 changes in order to maintain the constant volume V0. If r0 and h0 are the bridge radius
and separation distance at time t, we are required to solve

V0 = 2π

[
(R2 − r2

0)
3
2

3
+

Rr2
0

2
− R

3

]
+ πr2

0h0. (37)

For given V0 and h0 there is a unique solution for r0 which is determined numerically.

Equations (34) and (37) define a second order differential algebraic equation (DAE) subject to one constraint.
Integration of (34) to obtain the bridge velocity and separation distance is achieved using a fourth order
Runge Kutta integrator.

Depending on the initial values of h0 and ḣ0, the liquid bridge exhibits four types of behaviour. Two cases
occur for ḣ0 < 0. If a small initial gap distance separates the particles, and provided the magnitude of the
initial velocity ḣ0(0) is sufficient, then the particles will collide. However, since the fluid has no inertia,
energy is not stored in the liquid bridge and the particles do not rebound.

If the initial gap separation is too large, or the initial velocity insufficient, the bridge motion is damped by
the fluid viscosity and the particles slow but do not touch. This is due to the internal pressure of the bridge
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Figure 6: Two solutions from (34)-(37) are plotted for an initial separation of h0(0) = 0.04 mm. The solid line case
has initial particle velocity ḣ0(0) = −0.2 mm s−1, and the dashed line case ḣ0(0) = −2.2 mm s−1.

equalising to that of external (ambient) pressure. Since no pressure difference exists across the liquid bridge,
the bridge force Fbridge = 0 (c.f. equation (34)) and no further particle movement occurs. Critical values for
the initial separation and velocity are a function of the parameters for the problem (such as R, m and µ).

Two cases occur when the particles are initially moving away, i.e. ḣ0 > 0. Given this initial condition,
an escape velocity ḣ∗ exists such that if ḣ0(0) < ḣ∗, the liquid bridge is able to retard the motion and the
particles will then come to a stop. If ḣ0(0) ≥ ḣ∗ the particles continue to move apart.

An Example

In figure 6 two examples are shown. The dashed line plot shows two spheres approaching, slowing, and
colliding. The initial conditions used are h0(0) = 0.04 mm and ḣ0(0) = −2.2 mm s−1. The solid line case
shows approaching spheres which do not collide, using the initial conditions h0(0) = 0.04 mm, ḣ0(0) =
−0.2 mm s−1. For both examples, the values of the parameters used are R = 1 mm, r0 = 0.7 mm, µ =
10−3 g mm−1, and particle mass m = 0.1 g.
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Nomenclature

Static
Variable Description Units

r Vertical coordinate m
x Horizontal coordinate m
y Bridge coordinate m
θ Contact angle o

α Half angle for particle ‘A’ o

β Half angle for particle ‘B’ o

∆p Pressure difference Pa
σ Scaling variable m
R Non-dimensional bridge -

vertical coordinate
X Non-dimensional bridge -

horizontal coordinate
∆P Non-dimensional -

pressure difference
E Energy level -

Dynamic
Variable Description Units

r Vertical coordinate m
R Sphere radius m
z Vertical Coordinate m
h Separation function m
h0 Closest separation m
	v Velocity vector m s−1

ρ Fluid density kg m−3

g Acceleration due to gravity m s−2

µ Dynamic Viscosity kg m−1

P Pressure within liquid bridge Pa
Pamb Ambient pressure Pa
P̄ Vertically averaged pressure Pa
Re Reynolds number -

Fbridge Force N
V0 Constant bridge volume m3
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