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Abstract We investigate what happens to periodic orbits and lower-
dimensional tori of Hamiltonian systems under discretisation by a symplec-
tic one-step method where the system may have more than one degree of
freedom. We use an embedding of a symplectic map in a quasi-periodic non-
autonomous flow and a KAM result of Jorba and Villaneuva (J Nonlinear
Sci 7:427–473, 1997) to show that periodic orbits persist in the new flow, but
with slightly perturbed period and an additional degree of freedom when the
map is non-resonant with the periodic orbit. The same result holds for lower-
dimensional tori with more degrees of freedom. Numerical experiments with
the two degree of freedom Hénon–Heiles system are used to show that in
the case where the method is resonant with the periodic orbit, the orbit is
destroyed and replaced by two invariant sets of periodic points—analogous
to what is understood for one degree of freedom systems.

Keywords Periodic orbit · Lower dimensional invariant tori · KAM theory ·
Symplectic integrators · Hénon-Heiles · Geometric numerical integration

1 Introduction

In the numerical solution of ordinary differential equations (ODEs) it is
desirable that the numerical solution should possess as many as possible of the
structures inherent to the exact solution of the ODE. Sometimes it is necessary
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to know about these structures in advance and to take specific steps in order
to preserve them but the preferable situation is when one is able to use a
numerical integrator of a particular class which can guarantee the preservation
of certain structures whenever those structures are present. Such integrators
are known as geometric numerical integrators (GNIs) or structure-preserving
integrators.

Here we investigate a class of GNIs known as symplectic integrators. These
integrators preserve the symplectic form associated with a Hamiltonian vector
field and are one of the most popular GNIs. Symplectic integrators also
preserve other properties of dynamical systems; amongst these are phase space
volume, KAM tori and stable/centre/unstable-manifolds near fixed points [7].

When a symplectic integrator using step size h is applied to a d-degree of
freedom Hamiltonian vector-field f it gives a symplectic map �h, f : R

2d →
R

2d. We are interested in what happens to periodic orbits of a dynamical
system when the system is discretized by a symplectic integrator. Does the
numerical solution given by �h, f preserve the periodic orbits of the original
vector field f = XH? The question can be split into two cases: the resonant
case where some multiple of the integrator step size exactly divides the period
T of the orbit (nT/h ∈ Z, n ∈ N), and the non-resonant case, when it does
not (nT/h ∈ R \ Z). We find that in the resonant case the periodic orbit is
destroyed and splits into 2T/h points which lie close to the original periodic
orbit and which are alternately elliptic and hyperbolic. In the nonresonant case
the orbits generally persist but are slightly perturbed—similar to what happens
to full dimensional invariant tori in KAM theory. A point of difference be-
tween the result for full dimensional invariant tori and periodic orbits or lower
dimensional tori is that the frequency of the periodic orbit/lower dimensional
torus is shifted from the original frequency while for full dimensional invariant
tori, the frequencies of the torus are unchanged by the perturbation.

Knowing that particular geometric structures persist in numerical solutions
is important if we are correctly understand the dynamical systems which the
solutions represent. In Hamiltonian systems full dimensional tori can partition
the phase space of the system and thus form bounds to chaotic regions of the
systems; dividing the phase space into regions of regular and chaotic motion.
This has implications for the study of ergodicity since sets of invariant tori with
positive measure are incompatible with true ergodicity.

At the other end of the dimensional spectrum, one can view fixed points
as invariant tori with dimension zero. Clearly, preserving the fixed points
and the nature (stable/centre/unstable sets, hyperbolic/parabolic/elliptic) of
the eigenvalues of their linearisation is essential to correctly representing a
dynamical system with a numerical solution. Fortunately, fixed points are easy
to preserve in numerical solutions and the nature of their eigenvalues can also
be easily preserved by using symplectic integrators.

Periodic orbits and other lower-dimensional tori with dimension between
zero and full dimension also help us better understand the dynamical proper-
ties of Hamiltonian systems—celestial mechanics being one obvious example
where preservation of periodic orbits can be important. For non-Hamiltonian
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systems, periodic orbits are preserved by numerical algorithms if the periodic
orbit is isolated and hyperbolic. Isolated hyperbolic periodic orbits are not
possible for Hamiltonian systems and so we need more subtle methods such
as KAM theory to determine the preservation, or otherwise, of the periodic
orbits.

In its original form, KAM theory [1, 13, 19] says that if a real-analytic
Hamiltonian H(θ, I) posses quasi-periodic/non-resonant invariant tori then
those tori survive small real-analytic, Hamiltonian perturbations. One begins
with a real-analytic Hamiltonian defined for I ∈ R

d in a neighbourhood of zero
and θ ∈ T

d, for which the linearisation of H(θ, I) about I = 0 takes the θ -
independent form

H(θ, I) = c + ω� I + 1

2
I�M(θ, I)I,

where the frequencies ω ∈ R
d satisfy a diophantine condition |ω�k| ≥ γ |k|−ν

for k ∈ Z
d \ {0} and where the angular average M̄0 := 1

(2π)d

∫
Td M(θ, 0)dθ of

M(·, 0) is an invertible d × d matrix satisfying ‖M̄0v‖ ≥ μ‖v‖, v ∈ R
d, γ, ν, μ >

0.

For

Hε(θ, I) = H(θ, I) + εG(θ, I),

a real-analytic perturbation of H, there exists ε0 > 0 such that for all |ε| < ε0

there is an analytic, symplectic coordinate transformation χ : (θ ′, I′) �→ (θ, I)
which is order ε close to the identity, has analytic dependence on ε and which
puts Hε(θ, I) back into the form

Hε(θ, I) = cε + ω� I′ + 1

2
I′�Mε(θ

′, I′)I′,

for (θ, I) = χ(θ ′, I′). The perturbed system therefore also has an invariant
torus {θ ′ ∈ T

d, I′ = 0} whose quasi-periodic flow has the same frequencies ω

as the unperturbed system.
Initially, KAM theory was particularly interested in the case of H(θ, I) =

H0(I); i.e. perturbations of fully integrable systems. Since then, KAM theory
has been extended in many directions, to the point where it is now difficult
to succinctly state all the results covered by the theory. Roughly speaking,
modern KAM theory says that for open sets of d degree of freedom dynam-
ical systems posessing some geometric property (e.g. Hamiltonian, volume-
preserving, reversible, etc.) there exist sets of positive measure covered by
invariant tori. The tori need not have dimension d (e.g. lower dimensional
tori) and d need not be finite (e.g. infinite dimensional KAM theory, KAM
for PDEs). See [14] and the references therein for comprehensive surveys and
expositions of KAM theory.

For one degree of freedom systems a periodic orbit is also a full dimen-
sional invariant torus and both the resonant and non-resonant cases are well
understood. The non-resonant case was dealt with by Z.-J. Shang [25–27]
who proved that the original KAM theory for full dimensional invariant tori
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of area-preserving/symplectic flows also holds for symplectic maps. That is,
a symplectic integrator applied to a Hamiltonian system which is integrable
in some domain preserves invariant tori with unchanged frequencies for a
Cantor set’s worth of strongly non-resonant step sizes. The tori are only slightly
deformed by the integrator and the density of the set of step sizes tends to one
as h → 0. We state Shang’s result more precisely in Theorem 1 of Section 2.

In the resonant case with one degree of freedom, results go back as far as
Poincaré who realised that an area preserving twist map of an annulus to itself,
with a rational rotation number, must have an even number of periodic points.
These periodic points are alternately hyperbolic and elliptic and lie close to the
original periodic orbit. Homoclinic tangles originate at the hyperbolic periodic
points, trapping the points of the original periodic orbit in a chaotic band within
which Poincaré famously described the behaviour “These interactions form a
type of trellis, tissue or grid with infinitely fine mesh . . . The complexity of this
figure is striking, and I shall not even try to draw it.” [22].

This article is split into two main parts; we deal with preservation of non-
resonant periodic orbits using a KAM type result in Section 2. In Section 3 we
consider the case where a periodic orbit is discretised by a symplectic integrator
whose step size is resonant with the period of the orbit. We report on numerical
investigations which suggest that the periodic orbit is destroyed and is replaced
by two invariant sets, one elliptic, the other hyperbolic, analogous to the case
for resonant periodic orbits of one degree of freedom systems.

2 Non-resonant step sizes

When a symplectic integrator is applied to a Hamiltonian system containing
an invariant torus or periodic orbit, and when the step size of the integrator is
not resonant with any of the frequencies of the invariant torus, it is reasonable
to hope that the torus persists in the numerical solution. The proof that such
tori/periodic orbits persist is possible through a KAM theory for symplectic
maps. We begin this section by stating a numerical KAM theorem due to Z.-J.
Shang [25–27] which shows that for full dimensional tori of a non-degenerate
Hamiltonian system there is a Cantor set, with positive measure, of step sizes
for which finitely many different tori with strongly non-resonant frequencies
are simultaneously preserved.

Theorem 1 (Shang [26]) Given an analytic, non-degenerate, and integrable
Hamiltonian system of d-degrees of freedom, and given N diophantine1 fre-
quency vectors ω j, j = 1, 2, . . . , N in the domain of frequencies of the system,
there exists a Cantor set I ⊂ R, depending on the N frequency vectors, such that
for any symplectic algorithm applied to the system, there exists a positive number
δ0 such that if the step size h of the algorithm falls in the set (−δ0, δ0) ∩ I, then

1I.e. each ω j ∈ R
d satisfies |k�ω| ≥ γ

|k|ν , 0 �= k = (k1, . . . , kd) ∈ Z
d for some γ > 0 and ν > 0.
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the algorithm has N invariant tori with frequency vectors hω j, j = 1, 2, . . . , N
when applied to the integrable system. These invariant tori approximate the
corresponding ones of the system, in the sense of Hausdorff, with the order equal
to the order of accuracy of the algorithm. The Cantor set I has density one at the
origin.

Our goal in this section is to develop a similar result for preservation of
periodic orbits (and other lower dimensional tori). To do so, two possible
approaches are available. The first is to follow the example of Shang who re-
proved the original KAM theorem in the setting of analytic symplectic maps.
This is not a trivial undertaking. The second approach is to use interpolation to
embed the map produced by a symplectic integrator into an analytic symplectic
flow. One can then use a suitable result for preservation of periodic orbits of
perturbed symplectic flows to prove that such orbits are also preserved by the
symplectic map. This has the advantage that it is often easier to think of a
problem in terms of maps while it is simpler to give a proof in terms of flows.
Many KAM style results for lower dimensional invariant tori already exist.
Using interpolation one can avoid redoing lengthy proofs for maps and so it is
this approach we take in this paper.

We will assume that the Hamiltonian system H we are working with has the
following properties.

1. The Hamiltonian has d degrees of freedom and is autonomous and an-
alytic with respect to all its variables. It contains an invariant torus with
irrational/quasi-periodic flow with frequencies ω̂(0) ∈ R

r, 0 ≤ r ≤ d (r = 1
corresponds to a periodic orbit).

2. The invariant torus is reducible; that is the time-dependent linear equa-
tions which describe the flow on the torus (e.g. ẋ = A(φ + ωt)x) can be
transformed into linear constant coefficient equations. It is known, from
Floquet’s theorem, that reducibility holds automatically for periodic orbits.
For invariant tori with more degrees of freedom there are various positive
results concerning when a system is reducible (see, for example, [4, 5, 8–
10, 12, 20, 24]), however, the question of reducibility remains open in
general.

3. The initial periodic orbit or invariant torus is isotropic; that is the symplec-
tic form evaluates to zero everywhere on it. Any one-dimensional subspace
of a symplectic vector space is isotropic so the property holds automatically
for periodic orbits.

There is a canonical change of coordinates such that the initial Hamiltonian
can be written as a function of the coordinates θ̂ , Î, x, y with θ̂ , Î ∈ C

r, x, y ∈
C

m, d = r + m, and z� = (x�, y�). Here θ̂ and x are the position variables, with
θ̂ being the angle coordinates on the periodic orbit or torus. Î and y are their
respective conjugate momenta. (We use hats to denote variables pertaining
to the initial torus. The x and y coordinates are the “normal” directions to
the torus.) Since the original Hamiltonian was assumed to be analytic, it has
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a Taylor expansion (about z = 0, Î = 0). For periodic orbits, Floquet theory
ensures that the expansion has constant coefficients for the Î and z�z terms and
that the only linear term is ω̂(0) Î where ω̂(0) ∈ R is the frequency of the periodic
orbit. (For invariant tori of dimension two, or greater, the frequency is replaced
by a frequency vector ω̂(0) ∈ R

r and the linear term is ω̂(0)� Î.) More generally,
the assumption of linear, reducible flow on the invariant torus ensures that the
initial Hamiltonian can be put into the semi-normal form

H(θ̂ , x, Î, y) = ω̂(0)� Î + 1

2
z�Bz + H∗(θ̂ , x, Î, y). (1)

This is sometimes referred to as Floquet form. The terms in the Taylor
expansion of H∗ begin at second order in Î and z. The assumption that the
flow on the torus can be reduced to the case of constant coefficients means
that H∗ has no quadratic terms in the z variables — all such terms are included
in 1

2 z�Bz. In these variables B is a symmetric 2m × 2m complex matrix. H∗ is
analytic with respect to all its arguments and is periodic in θ̂ .

We also assume that:

4. The analyticity of H∗ holds in a neighbourhood of z = 0, Î = 0 (the
periodic orbit/torus is assumed to be centered about this point — if it is
not, then a change of variables can be used to reduce to this case) and
in a complex strip about the variable θ̂ , that is for |Im(θ̂ j)| ≤ ρ, j =
1, 2, . . . , r, ρ ∈ R. Also, the matrix JmB is diagonal with distinct eigen-
values2

λ� = (λ1, . . . , λm, −λ1, . . . ,−λm).

We will also require that the periodic orbit/torus satisfies a strong non-
resonance condition and that the normal ‘frequencies’ λ satisfy a non-
degeneracy condition. We delay giving the details of these conditions until
later where they arise naturally.

Our method is as follows: we first put the Hamiltonian into the form of (1).
Before considering any perturbation it is helpful to put the initial Hamiltonian
into a (semi-) normal form. One does this by expanding H∗, the higher order
part of (1), as a power series in Î and z about Î = 0, z = 0. Individual
monomials in the expansion of H∗ can be eliminated with a convergent change
of variables using a generating function. The procedure is similar to that used
at each step of the usual KAM method [7] with a point of difference being that
the small divisors which appear in the construction of the generating function
take the form ik�ω̂(0) + l�λ, with k ∈ Z

r \ 0, l ∈ N
2m. To ensure convergence,

the diophantine condition
∣
∣ik�ω̂(0) + l�λ

∣
∣ ≥ μ0

|k|γ1
, |l|1 ≤ 2 (2)

2 Jm is the matrix of the canonical symplectic form on C
2m,

[
0 Im

−Im 0

]

.
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is assumed to hold. This differs from the usual non-resonance condition of
KAM theory in that it includes the effect of the normal frequencies λ. Details
of the procedure are in [11], Section 2.2. The resulting Hamiltonian has the
form

H = ω̂(0)� Î + 1

2
z�Bz + 1

2
Î�C Î + H∗(θ̂ , x, Î, y) (3)

where C is a constant matrix with det(C) �= 0 and where H∗(θ̂ , x, Î, y) satisfies
the conditions P1 and P2—given in the Appendix—which require that partic-
ular monomials of order three, four and five in H∗ vanish.

Associated with H is the real analytic vector field XH = f (u), u� =
(θ̂�, x�, Î�, y�). When a symplectic integrator with step size h is applied to
the vector field f it induces a symplectic map �h, f . In order to study whether
periodic orbits of f (u) persist in the numerical solution given by the integrator
we want to embed �h, f in the flow of a modified vector field close to f (u) and
ask whether the modified vector field still contains a periodic orbit. We assume
that the symplectic integrator is given by a one-step method, �h, f , analytic in
both h and u. Iterating the numerical method gives a numerical trajectory {un}
by generating the sequence of vectors un:

un+1 = �h, f (un), n = 0, 1, . . . u0 = u(0).

The problem of embedding the map �h, f in a flow means finding an analytic
modified vector field f̄ which exactly interpolates un.

It is well known that it is possible to find an autonomous vector field whose
flow is close to the numerical trajectory. The following theorem, presented
in [18], states that there is always a local modified vector field which comes
exponentially close to interpolating the numerical solution.

Theorem 2 (Moan [18]) Let f be an analytic vector field with ‖ f‖δ1+δ2 bounded.
(‖ f (x)‖δ = supz∈Dδ

‖ f (z)‖∞, Dδ := {z ∈ C
d : |zi − xi| ≤ δ, i = 1, . . . , d} with

δ > 0 and x ∈ R
d.) Let u1 = �h, f (u0) = u0 + hf (u0) + O(h2) be the approxi-

mation produced by a one-step method, and let φh, f be the time-h flow of f .
Then, for sufficiently small h there exists an autonomous modified vector field
f̄ , bounded on the smaller domain Dδ1 ⊂ Dδ1+δ2 such that

‖u1 − φh, f̄ (u0)‖δ1 = O(exp(−cδ2/h‖ f‖δ1+δ2)).

Proofs of Theorem 2 are given by Hairer and Lubich [6] for any B-series
methods (e.g. Runge-Kutta methods) and by Benettin and Giorgilli [3] for any
symplectic map.

Iterating the bound in Theorem 2 for each step of a numerical integrator,
one sees that the numerical trajectory stays exponentially close to φnh, f̄ , the
flow of the modified vector field, for some finite time. Unfortunately this result
is too weak for our intended use since a trajectory which is close to an invariant
curve may diverge from it and may do so after only a short time in the case
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of exponentially divergent systems. For an arbitrary numerical trajectory, an
autonomous flow interpolating the trajectory need not exist, and, in general,
rarely does [21]. The following proposition from [18] is an example of the
failure of maps, or diffeomorphisms, to embed into flows. Further discussion
and examples of this point can be found in the book by Banyaga [2, 1.3.6].

Proposition 1 There exist vector fields f and one-step methods �h, f for which
no time-independent vector field f̄ exists with time-h flow φh, f̄ equal to �h, f .

Pronin and Treschev [23] use a time-averaging procedure to construct an an-
alytic, non-autonomous, periodic flow which exactly interpolates analytic maps
isotopic to the identity.3 If the original map is symplectic then the modified flow
is Hamiltonian, (similarly for volume preserving or reversible maps). Other
versions of the theorem also hold for maps without such geometric properties.

Theorem 3 (Pronin and Treschev [23]) Let (M, ω) be a compact real-analytic
symplectic manifold, where ω is a symplectic structure, and let the analytic map
� : M → M be symplectic and isotopic to the identity. Then there exists a
function H(z, t), z ∈ M, t ∈ R, analytic in t and z and 2π -periodic in t, such that
the shift z(0) → z(2π) along trajectories of the Hamiltonian system ż = XH(z, t)
coincides with �.

In [16–18] Moan presents the following theorem which gives estimates
on the size of the non-autonomous component of the modified vector field
f̄ = XH̄ .

Theorem 4 (Moan [17]) Let �h, f be a one-step method and assume that f (u) is
analytic for u ∈ Dδ1+δ2 ⊂ C

d. Then there exists a modified vector field

f̄ (u, t, h) = f (u) + εr1(u) + εr2(u, t; h) (4)

analytic in Dδ1 , analytic and h-periodic in t and with a flow that exactly
interpolates the numerical trajectory un for all time. Additionally, if the step
size is sufficiently small then the time-dependent term is exponentially small in
h. More precisely, for h‖ f‖δ1+δ2 < 2πδ2

e the size of the non-autonomous term is

bounded by ‖εr2‖δ1 ≤ C · exp
(

−2πδ2
eh‖ f‖δ1+δ2

)
.

One can now see the O(exp(−cδ2/h‖ f‖δ1+δ2)) term in Theorem 2 as being a
consequence of the non-autonomous term εr2 in Theorem 4.

By Theorem 4 of Moan, and Theorem 3 of Pronin and Treschev, we know
that there exists an analytic vector field f̄ (u, t; h) = f (u) + εr1(u) + εr2(u, t; h)

3Two smooth maps �i : M → M′, i = 0, 1 of manifolds M, M′ are called isotopic if there exists
a family of maps �̂s : M → M′ of the same smoothness class and continuous in the parameter
s ∈ [0, 1], such that �̂0 = �0 and �̂1 = �1.



Numer Algor (2010) 53:343–362 351

which is also analytic and h-periodic in t. This modified vector field exactly
interpolates the numerical trajectory {un} and is symplectic. Now we associate
a perturbed Hamiltonian with the modified vector field, f̄ = XH, H = H +
εHpert. Since the perturbation to the vector field is periodic in time we extend

the phase space of the original system; θ� = (θ̂�, θ̃ ), I� = ( Î�, Ĩ) where θ̃ is the
new time/angle variable, with frequency ω̃(0), ω(0)� = (ω̂(0)�, ω̃(0)), and Ĩ is its
conjugate variable. The perturbed Hamiltonian associated with the modified
vector field is written as

H(θ, x, I, y, ε) = ω̂(0)� Î + ω̃(0) Ĩ︸ ︷︷ ︸
=ω(0)� I

+1

2
z�Bz + 1

2
Î�C Î + H∗(θ̂ , x, Î, y)

+ εH̃(θ, x, I, y, ε), (5)

that is, Hpert = w̃(0) Ĩ + εH̃, XHpert = εR := ε(r1 + r2) = f̄ − f. The depen-

dence of H and H̃ on ε is due to the dependence of the perturbation size of the
modified vector field ‖R‖ on the step size h. However, we don’t make any use
of ε as a parameter.

Having found a perturbed Hamiltonian whose flow interpolates the numer-
ical trajectory we are in a position to apply a KAM type method to H in order
to prove that it still contains the periodic orbit/lower dimensional torus of the
initial H and thus, state our main result.

Theorem 5 Consider a Hamiltonian of the form (3) which contains a periodic
orbit (r-dimensional invariant torus) about z = 0, Î = 0 and satisfying the
following assumptions

(i) H∗ is analytic with respect to (θ̂ , x, Î, y) about z = 0, Î = 0 and satisfies
the conditions P1 and P2 specified in the Appendix.

(ii) B is a constant symmetric matrix such that JmB is diagonal with distinct
eigenvalues λ� = (λ1, . . . , λm, −λ1, . . . , −λm).

(iii) C is a constant symmetric matrix with non-zero determinant.
(iv) For μ0 > 0 and γ > 1 (γ > r for the r-dimensional torus case) the follow-

ing diophantine condition holds.

∣
∣ik�ω(0) + l�λ

∣
∣ ≥ μ0

|k|γ1
, k ∈ Z

r+s \ {0}, l ∈ N
2m, |l|1 ≤ 2. (6)

Then under the ε independent version of the non-degeneracy condition NDC
specified in the Appendix, the following assertion holds.

Given a fixed ε satisfying 0 ≤ ε ≤ R
γ

γ+1

0 for R0 ∈ R small enough, there
exists a Cantor set W∗(ε, R0) ⊂ {ω̂ ∈ R : |ω̂ − ω̂(0)| ≤ R0} =: V(R0) (ω̂ ∈ R

r for
the r-dim. torus) such that for every ω̂ ∈ W∗(ε, R0) the Hamiltonian H cor-
responding to this fixed value of ε has a reducible 2-dimensional ((r + 1)-
dim.) invariant torus with a vector of frequencies ω� = (ω̂�, ω̃(0)) on the
torus. Moreover, if R0 is small enough (depending on σ ) then for 0 < σ < 1,
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mes (V(R0) \ W∗(ε, R0)) ≤ exp

(

−R
−σ
γ+1

0

)

where mes(A) denotes the Lebesgue

measure of the set A.

Since the additional period of the motion is h, the numerical method sees
only a periodic orbit (or r-dim. torus), rather than a 2-torus (or r + 1-dim.
torus). That is, the numerical method is the time-h flow of the modified vector
field and this flow has a component with period h.

The theorem above is an application of a more general result due to À.
Jorba and J. Villaneuva [11] which we now state.

Theorem 6 (Jorba and Villaneuva [11]) Consider a d-degree of freedom
Hamiltonian of the form (5), containing an r-dimensional invariant torus and
where the perturbation H̃ is quasi-periodic in s ≥ 1 time-like coordinates θ̃ ∈ C

s.

Assume that H̃ is analytic with respect to (θ, x, Î, y), θ� = (θ̂�, θ̃�) about z = 0,

Î = 0 with 2π periodic dependence on θ for any ε ∈ I0 := [0, ε0], in a domain
that is independent of ε. The dependence of H̃ on ε is assumed to be C2 and
the derivatives of H̃ with respect to ε are also analytic in (θ, x, Î, y) on the same
domain. Then, if assumptions (i) to (iv) of Theorem 5 are satisfied, along with
the full ε-dependent version of NDC as given in the Appendix, then the following
two assertions hold.

(a) There exists a Cantor set I∗ ⊂ I0, such that for every ε ∈ I∗ the Hamil-
tonian H has a reducible (r + s)-dimensional invariant torus with a vector
of basic frequencies ω(0).

Moreover, for every 0 < σ < 1, and for ε̄ small enough (depending on
σ ), mes([0, ε̄] \ Ī∗) ≤ exp(−(1/ε̄)

σ
γ ), where mes(A) denotes the Lebesgue

measure of the set A and where, for every ε̄, Ī∗ := Ī∗(ε̄) = [0, ε̄] ∩ I∗.
(b) Given R0 small enough and a fixed 0 ≤ ε ≤ R

γ

γ+1

0 , there exists a Cantor set
W∗(ε, R0) ⊂ {ω̂ ∈ R

r : |ω̂ − ω̂(0)| ≤ R0} =: V(R0), such that for every ω̂ ∈
W∗(ε, R0) the Hamiltonian H corresponding to this fixed value of ε has a
reducible r + s-dimensional invariant torus with vector of basic frequencies
ω, ω� = (ω̂�, ω̃(0)�).

Moreover, if R0 is small enough (depending on σ ), then for every 0 < σ <

1, mes(V(R0) \ W∗(ε, R0)) ≤ exp
( − R

−σ
γ+1

0

)
.

In contrast to Shang’s result which gives preservation of a (full dimensional)
torus with fixed frequencies for a Cantor set’s worth of fixed step sizes, our
theorem gives preservation of a Cantor set’s worth of frequencies (close to the
initial frequencies) for a Cantor set’s worth of fixed step sizes, namely, those
step sizes that are strongly non-resonant in the sense of (6). The continuous
one-parameter family of periodic orbits of the original Hamiltonian system is
perturbed to a nearby, discontinuous one-parameter family for a Cantor set
of parameter values. The gaps in the set of parameter values correspond to
intervals where the strong non-resonance condition fails, that is, where the
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period of the orbit is resonant, or close to resonant, with the step size of the
numerical integrator. We illustrate this idea in Fig. 1.

Proof of Theorem 5 therefore requires that for a Hamiltonian (3) there
exists a modified Hamiltonian (5) with a corresponding modified vector field
as described by Theorem 4 such that the Hamiltonian (5), and in particular the
perturbation εH̃, satisfies all the necessary assumptions of Theorem 6.

Proof of Theorem 5 By Theorems 3 and 4 we have that the modified vector
field f̄ (u, t; h) = f (u) + εr1(u) + εr2(u, t; h), and hence H̃, is analytic with
respect to all its arguments and is periodic in the new time-like variable. The
C2 dependence of H̃ on ε required in Theorem 6 is not essential to us since we
only require that the second result (b) of Theorem 6 holds—this involves fixing
the perturbation size ε, not varying it as a parameter to control the normal
frequencies.

Properties (ii) and (iii) of Theorem 6 apply to the initial Hamiltonian H (i.e
(1) and (3)) hence are unaffected by the perturbation ε(r1 + r2) to the vector
field. Similarly, once the initial frequencies ω̂(0) are given the diophantine
condition (iv) is further affected only by the choice of a (strongly non-resonant)
step size h, not on the particular form of the perturbation R = r1 + r2 (though
the choice of h clearly affects the size of R). We can therefore impose condition
(iv) as an initial assumption on the frequencies of the initial torus, its normal
frequencies and on the step size of the numerical method. These frequencies
are preserved in the initial component f of the modified vector field f̄ given by
(4) and so, the perturbed Hamiltonian H = H + εH̃ satisfies those assumptions
of Theorem 6 necessary for the result (b) of that theorem. Hence, Theorem 5
holds. ��

Fig. 1 Possible one-parameter families of periodic orbits for a Hamiltonian H and an autonomous
modified Hamiltonian H1 which is an O(ε = hp) perturbation of H. The (non-autonomous)
Hamiltonian H̃ is generated by including the trajectory of a symplectic integrator in the flow of
the original Hamiltonian vector field XH̃ and my be thought of as an O(e−1/ε) perturbation of H1.
The set of periodic orbits of H̃ exist for a Cantor set of periods T̃
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Part (a) of Theorem 6 seems to suggest that it should be possible to use the
perturbation size ε of the modified vector field as a parameter and to achieve
a result similar to that of KAM theory for full dimensional tori; namely that
periodic orbits or invariant tori are preserved with their frequencies unchanged.
However, our proof does not allow for this. The parameter ε arises directly
from the step size of the symplectic integrator, it also directly affects the
frequency of the periodic non-autonomous perturbation. Hence, if one uses
the perturbation size, (and thus, the step size), as a parameter, one can no
longer ensure that the frequency of the non-autonomous perturbation is not
resonant with the existing frequency of the periodic orbit (or the vector of
existing frequencies of the lower dimensional torus).

In order to use the perturbation size as a parameter, one would need to show
that for a particular step size, the resulting perturbation size was in the Cantor
set of values of ε for which the periodic orbit/invariant torus persists and that
the frequency corresponding to that step size continued to satisfy the strong
non-resonance conditions. That is, there must be a non-empty intersection of
the Cantor set of step sizes allowed by the perturbation size, and the Cantor
set of step sizes allowed by the non-resonance requirement. It does not seem
likely that such an intersection would have positive measure.

3 Resonant step sizes

In this section we investigate the case of a symplectic integrator applied to
a Hamiltonian system containing a periodic orbit when the step size of the
integrator is exactly resonant with the period of the orbit (i.e. T/h ∈ Z). From
the results of the previous section we do not expect the orbit to persist in
general.

The resonant, one degree of freedom case is well understood; in fact, it
is none other than the Poincaré–Birkhoff fixed point theorem. Consider an
annulus A = {(θ, I) : 0 ≤ θ ≤ 2π, a ≤ I ≤ b} and an area-preserving twist map
T : A → A, T : (θ, I) �→ (θ + α(I), I). Let Tε be an area-preserving perturba-
tion of T; i.e.

Tε : (θ, I) �→ (θ + α(I) + f (θ, I, ε), I + g(θ, I, ε))

such that for all ε
∫

�

Idθ =
∫

Tε�

Idθ

for � any closed curve in A. Then, given any rational number m/n, satisfying
α(a)/2π ≤ n/m ≤ α(b)/2π there exist 2n fixed points of Tn

ε satisfying Tn
ε :

(θ, I) �→ (0 + 2πm, I) for ε sufficiently small. The fixed points of Tn
ε (i.e. the n-

periodic points of Tε) are alternately hyperbolic and elliptic. The eigenvalues
of Tn

ε must satisfy λλ′ = 1 since the map is area preserving. The return map of
the original periodic orbit described by T has a pair of degenerate eigenvalues
(1, 1). Under the perturbation, these split to give eigenvalues for the elliptic
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and hyperbolic fixed points which satisfy λ = λ̄′, |λ| = 1 and 0 < λ < 1 < λ′ =
1/λ respectively.

We expect the periodic orbits of Hamiltonian systems with more degrees of
freedom to behave in an analogous way when treated with a symplectic map
which is resonant with the period of the orbit. More specifically, the return
map of a periodic orbit within a d-degree of freedom Hamiltonian system
has eigenvalues with a single degenerate pair λ0 = λ′

0 = 1 and d − 1 non-
degenerate pairs satisfying λiλ

′
i = 1, for i = 1, . . . , d − 1. Applying a symplectic

integrator whose step size exactly divides the period of a closed orbit, we
expect the periodic orbit to be destroyed leaving n(= T/h) elliptic and n
hyperbolic periodic points with eigenvalues corresponding to the degenerate
pair of the original orbit splitting as either λ0 = λ̄′

0 or λ0 = 1/λ′
0 respectively.

The remaining 2(d − 1) eigenvalues are expected to remain of the same type
(elliptic or hyperbolic) as for the original periodic orbit but with a small
perturbation due to the integrator.

We take, for our symplectic integrator, the leapfrog or Störmer–Verlet
method:

qn+1/2 = qn + h
2

pn, pn+1 = pn − h∇V(qn+1/2), qn+1 = qn+1/2 + h
2

pn+1.

As a test system we use the two degree of freedom Hénon–Heiles system
given by the Hamiltonian,

H(q, p) = T(p) + V(q), q, p ∈ R
2, q� = (q1, q2), p� = (p1, p2),

with

T(p) = 1

2
‖p‖2 and V(q) = 1

2
‖q‖2 + q1q2

2 − 1

3
q3

1.

The system is non-integrable and when H < 1
6 the orbits of the system are

bounded. For higher energies there are unbounded orbits which escape.
By fixing the energy of the system (we use initial conditions satisfying

H = 0.1 throughout this section) we can reduce the system from four to three
dimensions. Then, taking a transverse section4 of the flow we can reduce the
system by a further dimension leaving a two dimensional map from the plane
to itself. Fixed points of the reduced system correspond to periodic orbits of
the full four dimensional system. The phase portrait for the reduced system is
shown in Fig. 2 where the elliptic and hyperbolic periodic orbits can be seen
near (q1, p1) = (0.27, 0) and (−0.15, 0) respectively. The periods of the orbits
are roughly 5.76 for the elliptic orbit and 6.47 for the hyperbolic.

The two dimensional system in Fig. 2 also shows invariant curves—these
correspond to full dimensional invariant tori of the four dimensional system.
The tori bound the chaotic regions of the system, leading to bands of chaos
trapped between areas of regular motion.

4We choose q1 = 0, p2 > 0
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Fig. 2 The Poincaré section
of the Hénon–Heiles system
calculated with the leapfrog
method for H = 0.1, with step
size h = 0.1. The section
shows two fixed points
(indicated by arrows)—the
approximate locations of two
periodic orbits of the full
system—a hyperbolic point
near (q1, p1) = (−0.15, 0) and
an elliptic point near
(q1, p1) = (0.27, 0)

Table 1 Periodic points corresponding to one elliptic and one hyperbolic perioic orbit of the
Hénon–Heiles system after discretisation with n = 6 and with n = 12 steps of size h per period

n h q1 q2 p1 p2 Eigenvalues

Ellip. 6 5.67/6 0.24947 0 0 0.40239 −0.26057 ± 0.96545i
0.99278 ± 0.11993i

Ellip. 6 5.76/6 0.21945 −0.15126 0.09332 0.31512 −0.18830 ± 0.98211i
1.12557
0.88844

Hyp. 6 6.47/6 −0.16707 0.24590 0.18003 0.45607 7.47324
0.13381
1.34600
0.74294

Hyp. 6 6.47/6 −0.14100 0.24422 −0.13168 0.22807 0.59441 ± 0.80416i
1.38670
0.72114

Ellip. 12 6.03/12 0.26409 −0.00000 0.00000 0.37047 1.00000 ± 0.00004i
0.04451 ± 0.99901i

Ellip. 12 6.03/12 0.25775 0.088842 −0.04954 0.35192 1.00003
0.99997
0.04451 ± 0.99901i

Hyp. 12 6.77/12 −0.17440 −0.00000 −0.00000 0.45137 3.63872
0.27482
1.00050
0.99950

Hyp. 12 6.77/12 −0.16637 0.12413 0.06132 0.44055 3.63872
0.27482
1.00000 ± 0.00050i

Eigenvalues are given for the corresponding return map, �n
h , n = 6, 12. Figures are rounded to 5

d.p. but in all cases the pairs of eigenvalues satisfied the property λλ′ = 1 before rounding. A value
of 0 indicates zero to machine precision
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After using the reduced system to estimate good starting points, we return
to the full four-dimensional system and use a combination of nonlinear least
squares minimisation and Newton iterations to minimise �n

h (x) − x for n =
6, 12, where �n

h means taking n steps of size h using the leapfrog method.
That is, we find period six and twelve points near the original periodic orbits.
The points, along with the eigenvalues of their return maps �n

h , n = 6, 12 are
summarised in Table 1.

The results in Table 1 show that in each case the periodic orbits of the
original system give rise to pairs of sets of n-periodic points. As expected from
the one degree of freedom case, the (1, 1) pair of degenerate eigenvalues cor-
responding to the original periodic orbit splits into an elliptic and a hyperbolic
pair; one pair associated with each of the sets of n-periodic points. Results
in the table are rounded to five decimal places. In all cases, the un-rounded
eigenvalues satisfy the property λλ′ = 1 to machine precision—as required for
the exact preservation of the symplectic property of the system.

Numerical searches in the vicinity of the periodic points and along the
line segments joining them found only one elliptic and one hyperbolic set
of periodic points per orbit, suggesting that the sets are unique and that the
periodic orbit is indeed destroyed by the resonant discretisation.

It is worth noting also, the rapid convergence of the eigenvalues of the six
and twelve step return maps towards the eigenvalues of the original periodic
orbit. With only 12 steps per period, the eigenvalues corresponding to the
degenerate pair differed from one only in the fifth decimal place or, more
frequently, smaller. This made it necessary to consider also six steps per period
in order to be confident that the results seen were not due to loss of accuracy
during numerical calculations.

A full description of the numerical flow in the neighbourhood of a periodic
orbit under resonant symplectic discretization, and a proof of the behaviour
conjectured here on the basis of our numerical study, remains to be un-
dertaken. Apart from the direct application (to time integration) considered
here, there are others that we plan to develop in the future. For example, a
steady state or travelling wave of a Hamiltonian PDE with periodic boundary
conditions can correspond to a periodic orbit of a Hamiltonian ODE with fixed
period. Under spatial semi-discretization the step size is necessarily resonant
and the situation we have developed in this section applies.

Acknowledgements D. O’Neale acknowledges the support of the NZ Institute of Mathematics
and its Applications.

Appendix: The P1, P2 and NDC conditions

In order to describe the conditions P1, P2 and NDC in Theorems 5 and 6 it
is necessary to give a brief description of the method by which Theorem 6 is
arrived at. (For a more detailed description see [11].)
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The first step is to rearrange (1), the initial Hamiltonian H(θ̂ , x, Î, y) =
ω̂(0)� Î + 1

2 z�Bz + H∗(θ̂ , x, Î, y), into a suitable form. This involves expanding
the H∗ term in a power series about the origin with respect to z and Î. We get

H∗ =
∑

p≥2

H(0)
p ,

where the degree p of a monomial zl Î j is defined as p = |l|1 + 2| j|1 and where
H(0)

p are homogeneous polynomials of degree p;

H(0)
p =

∑

l∈N
2m, j∈N

r,
|l|1+2| j|1=p

h(0)

l, j (θ̂)zl Î j.

The periodic coefficients are defined by their Fourier series,

h(0)

l, j (θ̂) =
∑

k∈Zr

h(0)

l, j,k exp(ik�θ̂ ). (7)

It is then possible to use three steps of an iterative KAM-like procedure to
rewrite the initial Hamiltonian (1) in the form

H = ω̂(0)� Î + 1

2
z�Bz + 1

2
Î�C Î + H∗(θ̂ , x, Î, y). (8)

Each step involves a generating function of the form

S(n)(θ̂ , x, Î, y) =
∑

l∈N
2m, j∈N

r,
|l|1+2| j|1=n

s(n)

l, j (θ̂)zl Î j, n = 3, 4, 5, (9)

where the periodic coefficients s(n)

l, j (θ̂ ) are defined by their Fourier coefficients
allowing us to give an expansion for S(n) based on H(n−3)

n ;

s(n)

l, j,k = h(n−3)

l, j,k

ik�ω̂(0) + l�λ
. (10)

At each step S(n) is constructed so that the term H∗ satisfies the two following
conditions hold for monomials of degree= 3, 4, 5:

P1 The coefficients of the monomials (z, Î) (degree 3) and (z, Î, Î) (degree
5) are zero.

P2 The coefficients of the monomials (z, z, Î) and ( Î, Î) (both of degree 4)
do not depend on θ̂ and the coefficients of (z, z, Î) vanish, except for the
trivial resonant terms.

The Diophantine condition (6) of (iv) Theorem 5 must hold in order that the
procedure converges and that the above two conditions can be satisfied.

The condition NDC requires yet more details of the procedure used in [11]
before it can be stated. We begin by recalling the perturbed Hamiltonian (5):

H(θ, x, I, y, ε) = ω(0)� I + 1

2
z�Bz + 1

2
Î�C Î + H∗(θ̂ , x, Î, y) + εH̃(θ, x, I, y, ε)
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and expanding the perturbation in a power series about Î = 0, z = 0. Doing
so allows us to group together the terms of the initial Hamiltonian and the
perturbation giving the following expression for the Hamiltonian (without
explicitly writing the ε dependence)

H(θ, x, I, y) = ω̃(0)� Ĩ + H∗(θ, x, Î, y), (11)

where

H∗ = a(θ) + b(θ)�z + c(θ)� Î

+1

2
z� B(θ)z + Î�E(θ)z + 1

2
Î�C(θ) Î + �(θ, x, Î, y), (12)

and where � includes all the higher order term in the expansion. The terms
a − ā,5 b , c − ω̂(0), B − B, C − C and E are all of order ε.

The idea is to then use a generating function to give a canonical change
of coordinates and to kill one power of ε with a procedure similar to that of
Kolmogorov [13]. (Although the terms in (12) don’t initially depend on θ they
do during the iteration.) The smallness of ε and the diophantine condition (6)
satisfied by the initial torus means the first step of the procedure can be taken
with no small divisor problems. The resulting Hamiltonian is

H(1) = H ◦ XS = ω̃(0)� Ĩ + H(1)∗(θ, x, Î, y), (13)

with

H(1)∗(θ, x, Î, y) = a(1)(θ) + b (1)(θ)�z + c(1)(θ)� Î

+1

2
z� B(1)(θ)z + Î�E(1)(θ) + 1

2
Î�C(1)(θ) Î + �(1)(θ, x, Î, y).

(14)

If we rewrite the Hamiltonian (13) in the original form (5) we have

H(1) = ω(0)� I + 1

2
z�B(0)(ε)z + 1

2
Î�C(0)(θ, ε) Î

+H(0)
∗ (θ̂ , x, Î, y) + ε2H̃(θ, x, I, y, ε), (15)

where B − B(0), C − C(0) and H∗ − H∗(0) are all of order ε and where the
properties P1 and P2 no longer hold for H∗(0). The dependence of B(0) and
C(0) on ε is due to the perturbation size affecting the choice of the generating
function and, hence, the coefficient matrices of the new system. However, ε

has been fixed throughout this procedure, that is, the C2 dependence of the
Hamiltonian perturbation on ε has not played a role so far. (If the dependence
was initially C2, however, this property is preserved by the step above.)

We would now like to repeat the step above in order to further reduce
the size of the perturbation, however, since the normal frequencies change

5 f̄ (θ) denotes the angular average of the periodic function f .
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during each step, we can no longer be sure that the diophantine property which
allows convergence by preventing the small divisor problem will hold for the
eigenvalues of JmB(0). In order to control these eigenvalues at each step we
introduce a new parameter. One possible parameter is the perturbation size ε.
ε is one possibility for this (and one we want to avoid since it is dependent
on the step size h). We introduce the frequencies of the invariant torus as
a parameter ω̂, or, more precisely, the difference between the perturbed
frequencies and the initial frequencies ω̂ − ω̂(0). We also introduce the change
of variables Î �→ Î + C−1(ω̂ − ω̂(0)) and the parameter vector ϕ� = (ω̂�, ε),
ϕ�(0) = (ω̂(0)�, 0). With the change of variables (15) becomes

H(1)(θ, x, I, y, ϕ) = ω̃(0)� Ĩ + ω̂(0)�( Î + C−1(ω̂ − ω̂(0))) + 1

2
z�B(0)z

+1

2
( Î + C−1(ω̂ − ω̂(0)))�C(0)( Î + C−1(ω̂ − ω̂(0)))

+H(0)
∗ (θ, x, Î + C−1(ω̂ − ω̂(0)), y, ε)

+ε2H(0)(θ, x, Î + C−1(ω̂ − ω̂(0)), y, ε).

Now, if we expand and use the fact that H(0)∗ is ε-close to H∗ which is in semi-
normal form we get

H(1) = φ(1)(ϕ) + ω� I + 1

2
z�B(1)(ϕ)z + 1

2
Î�C(1)(θ, ϕ) Î

+H(1)
∗ (θ, x, Î, y, ϕ) + H̃(1) (16)

where H̃(1) contains all the terms that are of order (ϕ − ϕ(0))2 and higher.
By construction, the matrix JmB(1) is diagonal. Using the C2 differentiability

with respect to ϕ its eigenvalues can be written as

λ
(1)

j (ϕ) = λ j + iu jε + iv�
j (ω̂ − hw(0)) + λ̃

(1)

j (ϕ), (17)

for j = 1, . . . , 2m with u j ∈ C and v j ∈ C
r and where the Lipschitz constant of

λ̃
(1)

j on the set E (1) := {ϕ ∈ R
r+1 : |ϕ − ϕ(0)| ≤ ν, 0 ≤ ν ≤ 1} is of O(ν). (If we

don’t have C2 differentiability with respect to the ε component of ϕ then the ε

term can be fixed to give an ε independent result.6)
The remaining condition from Theorem 5 can now be given explicitly.

NDC For any j such that Re(λ j) = 0 we have u j �= 0 and Re(v j) �∈ Z
r. More-

over, these same conditions hold for u j,l := u j − ul and V j,l := v j − vl

for any j �= l such that Re(λ j − λl) = 0.

6In [11] it is claimed that even with C1 dependence on ϕ the results still hold though the details
are more tedious.
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