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It is difficult to display complicated objects in dimensions more than three and actually add to
one’s understanding of the object. It is not clear that the reduction to three dimensions can be done
without just confusing matters. Projecting to R® creates artificial self-intersections; slicing loses
global information. Therefore we look first at simpler objects, namely invariant sets of integrable
symplectic flows or maps. The integrals tell one how to project and slice without creating self-
intersections. Understanding such pictures should help when studying near-integrable cases.

The Euler-Arnol’d equations for the motion of a free rigid body in R* are

M =[M,Q] M,Q € so™(4) (1a)
M=JQ+QJ  J=diag(Ji,Js,Js,Js) (10)

To write explicitly in Lie-Poisson form, let m = (Mjq, My3, M1y, Moz, Moy, M34)T and w the

analagous vector.for 2. The Poisson tensor is

0 —mg Mgy moy m3a 0
my 0 —meg —My 0 ma3
A= ms meg 0 0 —my —1My
— My my 0 0 —Mg ms
— 1y 0 my me 0 — MMy

0 —m3 mo —mMs my 0
with associated energy and Hamiltonian system

A= %mw = A(m)VH(m) = A(m)w.

Note that Q;; = M;;/(J; + J;). Generally rank(A) = 4 and from (1a) we see the Casimirs are
tr(M?) and tr(M*). These may be simplified to

6
Ci = Z m2 (2a)
iz=1
and Cy = mymeg — mams + mamy (2b)

The dynamics takes place on four-dimensional symplectic leaves in R® defined by the common level
sets of (2a) and (2b). Add and subtract these equations and they decouple:

(m1 + m6)2 + (my F m5)2 + (m3 + m4)2 =C1+2C, (3)

showing that the symplectic leafs are isomorphic to $2 x §2. An exception is when C; = +2C5. In

this case rank (A) = 2 and motion is restricted to two-dimensional symplectic bones, here just one




of the spheres (3). The dynamics reduces to the 3D rigid body in this case. Finally, if C; = 0 then

" A=0and M = 0.

The two dynamical integrals of motion are
I, =H = ZM,ZJ/(J, + Jj)
i>i
L=- % (tr(J2MM) + tx(MI M) + tx(MMID) = 3 ME(J? + J2)

i>i

There is a remarkable discrete version of this system, due to Veselov [1] (see also Moser and
Veselov [2]):

Mk+1 ::wkMkw;;r, Me SO*(4) (40,)
My =wlJ — Jug, we SO(4) (4b)

This defines a Poisson map Myy1 = ¢(My) with all integrals C; and I; of the original system.
Furthermore the flows coincide as M — 0, and Mgy = A~ ¢(hM}) where & is a time-step gives
a second-order symmetric integrator of (1); thus one may construct completely integrable maps
approximating (1) to any order by composing several such maps with suitable time-steps (see
Suzuki [3]). Equation (4b) may be solved by parameterizing SO(4) near the identity by six Euler
angles and solving for their sines by iteration.

Table. Fixed points of the degenerate rigid body

Fixed point m Cy Cy
(i) (0,0,0,,8,0) of + §? 0
(ii) (0,«,B,0,0,0) a? + 32 0
(i) (e,0,0,0,0,8) o? + B2 af
Gv) (0,¢,0,0,5,0) a? 4+ 2 A —af
(V) (8,7, k17, —k1fB,k2e) (L +ED)(B* +7°) + (1 + E5)a?  ki(B +77) + koo
(vi) (0,08,8%9B,~aB,0) (o +B*)(B* ++7) 1B(B* + &)

This is for J3 = J4. There is a choice of sign for k; and k,, which are complicated functions of
the J;’s. Solution (v) gives a circle of fixed points on leaves with |C3/C}| between k; /(1 + k2) and
k2/(1 + k3). The other circle of fixed points, (vi), exists for all Cy but coalesces with (i), (ii) and
(iv) for C2 = 0 or +1C;.

For general J;, on a general leaf, there are 12 fixed points which are elliptic or elliptic-hyperbolic
depending on the J;’s; there is also a one-parameter family of fixed points which may be elliptic
or hyperbolic. To help reduce the number of dimensions, we consider the degenerate case J3 = Jy,
so that mg = 0, and we have an extra integral Is = mg. All orbits are still not periodic, however,

because I; and I are no longer functionally independent on a leaf. In the whole phase space there



are four two-parameter and two three-parameter families of fixed points (see the Table). We further
restrict to Cy = 1, Cy = 0, so that they coalesce to give twelve fixed points +e;. From Table 1
we see that ej 3 4 5 have four zero eigenvalues and the rest have only two, corresponding to the Cy
and Cy directions. For the visualizations, we have taken Jy = 1, J, = 0.6, and J3 = J4 = 0.3; this
make e; and eg elliptic, e; and ez hyperbolic-zero, es and ej elliptic-zero. Figure 1 shows some
orbits on the symplectic leaf §% x §2%, with mg = 0.1 and the initial condition moving farther away
from the fixed point e;. Note H(e;) = -15—6 <HL g— = H(eg) for these J’s.

It is hard to reduce to R3 without creating intersections—e.g., one cannot just put angles on
S5? x §? and drop one of them. We stick to the original coordinates (m,, m3, m4) and can restrict
intersections to the my = 0 plane. Our construction is as follows. First slice by C;, C; and I3,
giving a three-dimensional set ¥. Project to R® by (my,mg, m3, my, ms, ms) = (ma,mz, my).
Given (mgq, m3,™my4), egs. (2) give two solutions for my; then ms may be recovered from (2b). Thus
the I3-slice of the symplectic leaf may be visualized as two solid objects pinned together at their

surface (where (2a) has only one solution for m;) which we call X'

(1 — (m} + m} + md)) (md + ml)

P m2 =
? m3 + m +m}

This surface is shown in Figure 2a. The dynamics takes place in the interior of two such objects,
and moves from one sphere to the other through its surface. By drawing only the part of any object
~which corresponds to one root of (2a) for m;, we avoid self-intersections except when my = 0, in
which case one can no longer recover ms.

Case 1. Iy = mg = 0. In this case one case solve the C;-Cy-I3- H equations to get the constant-
energy tori explicitly—they are graphs over an ellipse in the mz = 0 plane, which makes them easy
to draw (see Figure 2b). Their m; > 0 parts foliate the interior of £'. For H < H(ey), they stay in
the illustrated half of 2, for H > H(ey), they cross over. The largest surface shown has H = H(ez)
and connects the fixed points e, and tej3.

This I3-slice is further degenerate in that we have two more (not functionally independent)

integrals, Iy = mg/m3 and Is = ms/my. Thus all orbits are periodic and can be shown to follow 3D
rigid body dynamics. For example, Figure 3 shows the slice mg = 0, which is just the projection of
the 3D rigid body’s phase portrait, and Figure 4 shows different orbits on one of the constant-energy
tori.
Case 2. I3 = mg # 0. Now the orbits are only quasi-periodic, as shown in Figure 1. Unfortunately
our graphics run into problems here—the Cy-C,-Ia-H equations are unwieldy to solve in such a way
that one can draw the solutions. Two possible approaches would be to diagonalize the equations
into the form z%+y? = 1, w?+2? = 1 giving nice coordinates on the tori (which is also impractical),
or to draw the surfaces numerically as constant-H isosurfaces, which only requires solving the first
three equations, but this software is not available to me.

Figure 5 shows ¥’ in the case mg = 0.1 and one orbit, fairly close to the elliptic fixed point
e;. Note its two false intersections where it crosses my = 0.
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Figure captions
Figure 1. Orbits on a symplectic leaf = §? x §2. Here mg = 0.1, and the initial condition is

mg = ms = 0, my, ma, and my recovered from the integrals C; = 1, C3 = 0, and H.

Figure 2. (top) Surface X' when mg = 0; (bottom) foliation of the interior of £’ by constant-
energy surfaces. Three of the fixed points e;, e3, and e4, are marked; e; is at the origin in this

projection.

Figure 3. Energy surfaces in the mg = 0 plane—these are just the orbits of a 3D rigid body in
orthogonal projection. Notice how this figure fits into the cutaway section of Figure 2b.

Figure 4. Orbits on the surface mg = 0, H = 0.34.

Figure 5. (top) Surface ¥’ when mg = 0.1 (it is no longer pinched, but the projection to
(mg, m3, my) is still singular on my = 0); (bottom) an orbit as in Figure 1 but with mg = 0.1—a

piece of ¥/ is also shown.
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