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The problem of finding the flow over a finite flat plate aligned with a uniform free stream is 
revisited. Multigrid is used to obtain accurate numerical solutions up to a Reynolds number of 
4000. Fourier boundary conditions keep the computational domain small, with no loss of 
accuracy. Near the trailing edge, excellent agreement with first-order triple-deck theory is 
found. However, previous comparisons between computations, experiments, and triple-deck 
theory are shown to be misleading: In fact, triple-deck theory only accounts for half the drag 
excess (that part not due to the first-order Blasius boundary layer) even at R = 4000. The 
remainder is shown to be due to, among other things, a large displacementlike effect in the 
boundary layer, i.e., an O(R - ’ ) increase in skin friction extending over the whole plate. 

I. INTRODUCTION 

The problem of determining the flow of an incompress- 
ible, slightly viscous fluid over a finite flat plate aligned with 
a uniform free stream is literally a textbook example in 
boundary-layer theory. Unlike the flow past a semi-infinite 
plate, which is now understood and is discussed in Van 
Dyke,’ the finite plate is considerably more complicated be- 
cause of the multistructured wake and its upstream influ- 
ence. Van Dyke also reviews this problem, but our study 
suggests that previous workers were too hasty to declare the 
problem closed. As an example of high-Reynolds-number 
flow, the flat plate at first appears to be about the simplest 
problem one could think of. Both the zeroth-order solution 
(no disturbance to the free stream) and the first-order solu- 
tion (the Blasius boundary layer followed by a Goldstein 
wake) are known. Thus, problems such as selecting one of a 
multiplicity of Euler solutions as the inviscid limit, which 
must normally be considered in dealing with high-Reynolds- 
number flows, are not present here. Difficulties arise at the 
next order, where a multitude of competing effects appear, 
and when we try to explain results from finite-Reynolds- 
number calculations. 

In the course of an investigation of triple-deck phenom- 
ena (see McLachlan2*3 ), we turned to the finite flat plate as a 
case in which it was known to apply. Great success for triple- 
deck theory is often claimed here-for example, Jobe and 
Burggraf s4 Fig. 4 comparing drag coefficients is frequently 
reproduced (for example, in the review by F. T. Smith’). 
The theory at first appears to be easy to test in this case 
because it has no undetermined constants. Here, the triple 
deck is established around the trailing edge and gives the 
upstream effect on the boundary layer of the singular near 
wake, with a contribution to the drag of 2.66R - “‘, where R 
is the Reynolds number based on the free-stream speed and 
the length of the plate. This correction to the Blasius drag 
agrees with Navier-Stokes calculations (Jobe and Burg- 
gra?). However, prior to the discovery of the triple deck, the 
second-order theory of Kuo,~ which gives the correction to 
the first-order drag as 4.12R - ‘, also seemed to be in agree- 
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ment. Furthermore, a glance at the results of Dennis and 
Dunwoody’s 1966 finite-Reynolds-number calculations’ 
shows that neither theory accounts for the calculated values 
of the skin friction on the plate. We decided to do some 
Navier-Stokes calculations ourselves to see what was really 
going on. 

It turns out that finite-Reynolds-number results are 
greatly influenced by the small viscous regions at the leading 
and trailing edges in which the full Navier-Stokes equations 
hold. At moderate Reynolds numbers ( < - lOOO), these 
make it impossible to see any triple-deck trailing-edge region 
directly. However, by obtaining accurate solutions to the full 
Navier-Stokes equations up to a Reynolds number of 4000, 
and by constructing a least-squares fit between the numeri- 
cal data and a model theory, we can show that triple-deck 
theory is consistent with the data. One reason that the triple 
deck’s trailing-edge effect [of streamwise extent 0( R - 3’8) ] 
is not obvious is that there is a large displacementlike effect 
in the boundary layer, i.e., an 0( R - ’ ) increase in skin fric- 
tion extending over the whole plate. For example, at 
R = 600, this is comparable in magnitude to the triple-deck 
effect. An O(R - ‘) increase would correspond to the influ- 
ence of changes in the external flow caused by the Blasius ’ 
boundary layer. 

Finally, we construct a model of the flow that includes 
all these effects, and show that the apparent agreement in 
drag found by previous workers is, in fact, a coincidence that 
is due to near cancellation of the next smallest terms of the 
drag expansion. 

II. HISTORY AND OVERVIEW 

We consider the two-dimensional motion of an incom- 
pressible, Newtonian fluid. Let the free stream be given by 
I( = 1, u = 0 at infinity, and let the flat plate lie on the x axis 
between x = 0 and x = 1; then the Reynolds number R is 
given by l/v, where Y is the kinematic viscosity of the fluid. 
The flow is sketched in Fig. 1. The leading-order behavior of 
the boundary layer (valid in region IV of Fig. 1) was given 
by Blasius:’ The local skin friction is 
c B, = R - ‘uy (x,0) = A(x/R) - I”, where ;1 = 0.332 06, 
and the normalized drag coefficient is Da, = 4ilR - 1’2. 
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FIG. 1. Schematic flow structure. Here, e = R -I’s is the small parameter. 
In each indicated region, distinct approximations to the Navier-Stokes 
equations are valid. I. Viscous sublayer; boundary layer equations hold. Ii. 
Continuing Blasius boundary layer; inviscid with vorticity. III. Potential 
flow, O(  8) perturbation to free-stream velocities; linearized Euler equa- 
tions hold. IV. Blasius boundary layer. V. Potentiai flow, O(8) perturba- 
tion to free-stream velocities; tends to uniform flow at infinity. VI. and VII. 
Fully viscous, Navier-Stokes equations hold. VIII. Goldstein sublayer,ver- 
tical extend 8(x - 1 )I”, similarity solution valid for x  - 1 Q  1, IX. Far 
wake, vertical extent 8(x - 1 )‘I’, similarity solution for x  - 1% 1. 

These formulas are valid when x$R - I”, close to the lead- 
ing edge, when x = 0( R - ’ ) (region VI), the boundary- 
layer approximation is not valid, and a full Navier-Stokes 
solution is required. This was calculated numerically by 
Veldman and van de Vooren,’ who found that the skin fric- 
tion near the leading edge is about 13% larger than the Bla- 
sius value. Note that these two regions unfortunately do not 
formally overlap, so that analytic matching is not possible. 

We express the skin friction and drag relative to their 
Blasius values as follows: 

r=&~,(x,O) and D=- - l 2 ludx 
s D,, R o JJ ’ 

(1) 

Goldstein” analyzed the wake just behind the plate, and 
found a two-tiered structure, consisting of the continuing, 
initially unchanged Blasius layer, and an inner layer (region 
VIII), required because of the change in boundary condi- 
tions at x = 1, in which u(x,O) grows like (x - 1) “3. For 
downstream, these two layers merge (again not formally 
overlapping) in region IX, where the flow has a similarity 
form. 

Kuo” attempted to find the next term in the boundary 
layer on the plate by assuming that the vertical velocity at the 
outer edge of the boundary layer is zero in x > 1. The dis- 
placement effect of the first-order boundary-layer on the ex- 
ternal flow can then be calculated, and finally the boundary- 
layer equations reintegrated with this new external flow, 
This procedure gives the second-order skin friction and drag 
as 

upstream influence of Goldstein’s sublayer is of streamwise 
extent O(R - ‘/*), and is described by a triple deck estab- 
lished around the trailing edge, Most of the Blasius layer 
continues largely unchanged except for a small vertical dis- 
placement (region II). Pressure perturbations in the exter- 
nal flow (region III) of order R - *” are coupled to a thin, 
viscous sublayer next to the plate (region I). There is an 
additional buffer region (not shown) established around the 
trailing edge, in which the pressure varies withy; details are 
in Messiter.” Full details of the matched asymptotic expan- 
sion that leads to the triple-deck structure are available else- 
where, for example in Stewartson’s review. I3 

The lower deck has vertical extent 0( R - 5’8) and ve- 
locities 0( R - I’*); hence the skin friction is 0( R “‘*) there, 
just as in the Blasius boundary layer, The equations that hold 
in the lower deck are the same as those found in laminar 
separation, but the boundary conditions at y = 0 and as 
Ix 1 ,y + 03 are different, Also, because the limiting solution is 
known, there are no free parameters left in the equations or 
the scalings. This simplifies matters considerably, and the 
lower-deck equations were solved by Jobe and Burggraf,4 
and later by Veldman and van de Vooren’and by Melnik and 
Chow,14 who found 

7- = 1 =+ &T(X), D = 1 f 2.OOR - 3’8, (3) 

where X = /z 5/4R 3/8(x - 1) is the inner length. (The fi 
term arises from our definition of 7. ) Jobe and Burggraf, like 
Kuo, reported excellent agreement with the drag, down to a 
Reynolds number of one (!). They reported that Dennis and 
Dunwoody’ bad found evidence in their Navier-Stokes solu- 
tions that supported the existence of an R - 3’8 region, and 
had even confirmed the value of T(O). This is difficult in 
view of the singularity in skin friction present at the trailing 
edge on the smallest 0( R - 3’4) scale analyzed by Stewart- 
son.” Since (2) and (3) are in conflict, they suggested that 
the O( II - ’ ) term in (2) was canceled by further terms in 
the triple-deck expansion. 

Now, at a Reynolds number of, say, 600, the leading 
edge of the plate is at X = - 2.78, not its asymptotic value 
X = - CO, Comparing the actual skin friction with triple- 
deck theory, as in Fig. 2, shows that the latter prediction, like 

T= 1 +R -“2K(~), D= 1 +3,10R -“2. (2) : 
He found good agreement with observed and calculated val- 
ues of the drag. As this approach ignores leading-order ef- 
fects, however, it is no surprise that this agreement is a&i- 
dental. Had he not studied an iategruted flow quantity, there 
would have been no confusion. Although the displacement 
effect of the Blasius layer cannot be calculated this simply, it X 

is real, and (as determined numerically below) substantial. FIG. 2. Skin-friction discrepancy at R  = 600. The solid line is our calculat- 

The theoretical situation was revolutionized by the in- 
ed r= (skin friction)/(Blasius skin friction). The long-dashed line is 

dependent discovery by Stewartson” and Messiter” that the 
Kuo’s iu(x) and the short-dashed line is the triple deck’s &Y(x)). Neither 
one accounts for the calculated values of 7: 
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Kuo’s is also too small by a factor of about 2. The accidental 
agreement in drag must come from the inclusion in the inte- 
grated skin friction of the range from - 00 to the leading 
edge. 

III. COMPUTATIONS 
The skin friction results of Dennis and Dunwoody are 

sufficient to show that all is not well, but it is hard to extract 
detailed information from their graphs. We decided to solve 
the Navier-Stokes equations for a range of Reynolds 
numbers using an existing multigrid program. The great ad- 
vantage of multigrid is that both memory and computation 
time are linear in the number of unknowns, so that very fine 
grids can be used. However, at high Reynolds numbers, spe- 
cial techniques must be used to ensure rapid convergence 
and to prevent unwanted numerical diffusion from creeping 
in. Our experiences with various upwinding and defectsor- 
rection schemes are reported in McLachlan.2p’6 Rapid, grid- 
independent convergence can be obtained (with error reduc- 
tions, in this case, ofabout 0.2 per iteration) to solutions that 
are O( h ‘) accurate in the mesh spacing h. Errors are reduced 
below truncation errors in 3 or 4 iterations, with a total work 
requirement equivalent to about 30 Gauss-Seidel relax- 
ations. 

We use the stream function-vorticity representation of 
the flow, in which the velocities are related to the stream 
function 11, by u = *;,v = - $X and the vorticity w is de- 
fined by o = v, - u,,. Nondimensionalizing lengths by the 
length of the plate L and velocities by the undisturbed free- 
stream speed U, the Navier-Stokes equations for incom- 
pressible, steady flow are 

v**= -w, (4) . . 
V20 = Rt$p, - $.p,,, 

where the Reynolds number R = U& /Y, and v is the kine- 
matic viscosity. 

The desired high-order correction to the skin friction is 
caused by the upstream influence of the wake. We must 
therefore have an accurate solution for the flow not only on 
the plate, but in a large part of the wake, and also in the far 
field, through which upstream influences are transmitted. 
Parabolic coordinates are almost always used in flat-plate 
studies because, then, the wake remains of constant thick- 
ness as l-+03. There is also a moderate (quadratic) grid 
expansion in the far field and a contraction near the singular 
leading edge. Unfortunately, the grid is regular at the trail- 
ing edge, where the flow is singular. We return to this point 
below. 

Let 
x=6*-7*, y=2&7 (5) 

so that Eqs. (4) become 

v’+ = - J(&#‘h 

V2w = R($,p5 - $.p, 1, 
(6) 

where J(E,v) = 4(c2 + v2) is the Jacobian of the transfor- 
mation and now V2 = a,, + d,,. The half-plane y>O maps 
to the quarter plane g,~>0, with the plate at O<x< 1, y = 0 

mapping to 0~6~ 1, 7 = 0. The boundary conditions are 

*=o, on {=O and on v=O, (7a) 
w=O, on g=O and on ~=0, g>l, G’b) 
qv =0, on ~=0, OCcCl, (7c) 
++y,w-+O, as &,rl+ 00. Ud) 

In practice, we use the perturbation stream function $ - y as 
the unknown, which results in trivial modifications to the 
equations and boundary conditions. 

Conditions (7a) and (7b) can be imposed directly. The 
no-slip condition (7~) is transformed using the Woods” ex- 
pansion, replacing it with a boundary condition for the vorti- 
city: 

(Jm) (&O) = (3/k2)?Mk) - $(Jo) Gk). (8) 

Here, k is the mesh spacing in the 77 direction. The far-field 
condition (7d) is the most problematical. The domain is 
truncated at finite values g, and 77,) and we want to en- 
sure that the values used have an effect on the solution that is 
less than the truncation error. Simply imposing the free- 
stream flow (7d) violates conservation of momentum and 
leads to large errors at the plate. Using the OseCn wake, given 
by Imat, ’ l8 which models the downstream wake and the sink 
inflow required to balance it, is not much better. Fornberg” 
has pointed this out in his study of the flow past a cylinder. In 
that case, there is a large irrotational effect in the far field 
caused by the trailing eddies. Here, even though there are no 
eddies, we have the same problem: The perturbation to the 
free stream decays to the Osekn source term very slowly. For 
example, in our case, the ratio of the second- to the first- 
order correction to the free stream at a distance r from the 
plate can be up to 0.26r- I”. Higher-order terms include 
powers of log r and r - I”; moreover, the radius of conver- 
gence of the OseCn expansion has not been established. With 
an OseCn boundary condition, although we found it possible 
to increase the domain to the point where the effect of do- 
main truncation appeared to be less than the discretization 
error at the plate, the solution was of course not uniformly 
valid throughout the domain-an unsatisfactory state of af- 
fairs. 

Fornberg19p20 has proposed and successfully used an ac- 
curate and economical alternative. Because the vorticity de- 
cays exponentially away from the plate (unlike the perturba- 
tion to the free stream), the stream function satisfies 
Laplace’s equation to a high degree of accuracy in the far 
field-in ~7 > r], , say. Laplace’s equation can be solved by 
Fourier decomposition in the domain 6 > 0, ~7 > V, - k, and 
the solution written down at 37 = 7, . This gives a boundary 
condition for the stream function at the outer boundary in 
terms of its values at the adjacent interior points. In this way, 
the computational domain need only cover that portion of 
the flow that contains vorticity-in our case, an O( R - “2) 
layer next to r] = 0. On an infinite 5 domain with mesh spac- 
ings h, k in the 6, v directions, A = k/h, and k&f = 7, , the 
result (from Fornberg*‘) is 

$i,M = 9 cli-jl $j,M- 1) 
j= --m 
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where 

I 

2a 
ck= e- 2rl Sin(d*)COS kz &we (10) 

0 

Fornberg gives an asymptotic expansion of ( 10) valid for 
large k. 

In parabolic coordinates, there is also a downstream 
cutoff at g = 6, . Fornberg** neglected the streamwise de- 
rivatives and used the equation $9v = - Jw there. Kow- 
ever, in our iterative solver, treating this as a two-point 
boundary-value problem with $(l, ,O) and $(t, ,YJ- ) as 
boundary conditions was not successful. Large components 
linear in 7 would enter tl, and feed back (through the top 
Fourier boundary condition) into the solution, destroying 
convergence. 

The first-order OseCn expansion has @< = 0 in the wake. 
Comparison with numerical solutions (see Fig. 4) shows 
that this is in fact highly accurate throughout the wake, even 
quite close to the plate. It is not formally valid outside the 
wake, but as the domain does not extend far in this direction, 
we use it for all r and check later that the g cutoff does not 
affect the solution. With qf: = 0 we obtained rapid conver- 
gence. 

Far-field boundary conditions for the votticity are not 
crucial. The largely parabolic nature of the vorticity trans- 
port equation means that errors are not transmitted far up- 
stream. (For example, even setting WC{, ,T) = 0 only af- 
fects the solution a few grid points upstream. ) We set w = 0 
on the top boundary, and impose the asymptotic decay of 
vorticity downstream: w a 6 - 2. 

The boundary condition $( 0,~~ ) = 0 can be incorpo- 
rated in (9 ) by an odd extension of $ into 6 < 0. At the right- 
hand boundary, we assume that $p = 0 in {, <g< ~4 and 
evaluate the infinite sum in (9) using d, = 2,~~ k~j; we 
found dk from the asymptotic expansion of the cj’s. On an 
N XM grid, Eq. (7d) is therefore implemented as 

$t,M = (dN-j -dN+j)ZltN,M- t 
N-l 

+ 2 Cc[i-jl -Ci*j)+j,M- It 'GiGN? 
j= I 

(lla) 

3Nj = *N- ,j, lGi<M (Ilb) 
@i,M = 0, l<i<N, (llc) 

@NJ = [tj- l>/jl*W,- ,j, lG<M. (lid) 

Although imposing ( 1 la) takes time O(NM), this is still 
negligible compared to the time spent on the interior equa- 
tions. 

All of our final computations used 4, = 4, or x m = 16. 
Clearly it is inefficient to cover the whole domain with a 
uniformly fine grid, because most of the activity in the flow 
field occurs near the plate. In multigrid, this problem can 
conveniently be avoided by only relining the grid in a subdo- 
main, or in a set of subdomains. Ideally, one would like to 
minimize the discretization error for a given amount of com- 
putational work; however, the multitude of possibilities 
(nested subdomains, etc.) preclude this. We first ascer- 
tained that two refinements in [0, I.41 X [0, v, ] gave al- 
most the same accuracy as two refinements covering the 

whole domain, but that, with further refinement, accuracy 
was limited by the unrefined part of the domain. Then we 
kept the two-refinement strategy fixed and tested the overall 
accuracy by halving the mesh spacing over the entire domain 
(subdomains included). A sample domain is shown in Fig. 
3. 

The finest grids used had N = 256 grid points in 0+$<4 
and M= 64 points in O<q<v,. The finest subdomain had 
360 points in OC&-< 1.406 (or 256 points on the plate) and 
120 points vertically. (The subdomain stopped a few grid 
points short of 7;1, for ease of implementing the Fourier 
boundary condition.) We generally took 17, - 5R - lit, 
which assured that 101 < 10e4 at 7 = 71, - k [where the 
boundary condition ( 1 la) is evaluated] for all ,$. (If the 
domain was any smaller, the vorticity did not decay expon- 
entially for large 7.) At R = 600, increasing (4, ,q, ) from 
(4,0.2) to (4,0,3), (4,0.4), and (5,0.2) (keeping the mesh 
spacings constant in each case) altered the drag by less than 
0.005%. In fact, 6, could be reduced to 2 before the domain 
truncation error became comparable with the discretization 
error on the finest grid. The Fourier boundary condition 
( 1 la) is thus extremely successful at allowing reduction of 
the computational domain, while the outflow condition 
( 1 lb) does not significantly affect the solution. In addition, 
the decrease in vertical mesh size k as the Reynolds number 
increases stops the errors growing rapidly. Here, we found 
that the relative discretization error in the drag grows rough- 
ly like R o.5, in contrast to the R ‘,5 growth seen with constant 
mesh sizes. As the grid aspect ratio ;E decreases (to 0.08 at 
R = 4000), the anisotropy of the grid slows the asymptotic 
convergence rate of our multigrid algorithm. This could be 
avoided by using line instead of point relaxations on 
v*qfl = - fw. However, as the initial rapid convergence was 
not affected, it was easiest to just run a few more iterations. 
Twelve iterations always gave convergence to within a few 
percent of the discretization error. 

Far downstream, the wake rapidly assumes the Gold- 
stein form. The near wake is more problematical, and, in 
fact, at the Reynolds numbers considered, there is no clear 
region in which the u (x,0) -xt, I” Goldstein similarity solu- 
tion dominates. For moderate xt, = x - 1, higher-order 
terms (x::” etc. ) are significant and there is a smooth recov- 
ery of the flow to tt = 1 downstream; but for x,, -0, the full 
Navier-Stokes equations apply and u(x,O) -xl,‘” instead. 
The expected scaling (see Sec. IV) was verified and we fmd 

I- 

1 
Y 1 

FIG. 3. Computational grid. Shown here for Re = 1000, N = 32,6, = 4, 
,and 7t, = 0.142. The actual finest grid used has 1 the mesh spacing every- 
where. 
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u&,0) = R "4X;c/2[O.46 - 0.027X,, + 0 (XQ)], 
(12) 

whereX,, = R 3'4 (x - 1). We therefore studied the flow on 
the plate in detail rather than the wake. 

The perturbation from uniform flow is shown in Fig. 4 
for R = 1000. Table I gives the actual and relative drag coef- 
ficients, and r is shown in Fig. 5 for Reynolds numbers from 
25-4000. The pressure gradient at the plate is shown in Fig. 
6. (For Reynolds numbers greater than 4000, the grid could 
not be refined sufficiently to avoid mesh-size oscillations in 
the pressure gradient.) Although the error in the drag is less 
than 0. l%, relative errors can be magnified when consider- 
ing tiny remainder terms (as in Fig. 8 and the last line of 
Table III to up to 5% at R = 4000. Various features are 
evident, which are discussed tentatively below. But caution 
is advised: Just as it is easy to err in considering only integral 
properties like the drag, so it is easy to mistake one weak 
asymptotic feature for another. 

IV. FLOW STRUCTURE AT THE EDGES OF THE PLATE 

The increase in r near the leading edge, which is sharper 
for higher Reynolds numbers, is a local viscous effect identi- 
cal to that seen in the semi-infinite plate, as noted by Van 
Dyke.’ Although formally confined to the viscous length 
scale R - ‘, it is still about 0.05 at Rx = 100, which is why it 
shows up here. The amount of increase can be taken from the 
Navier-Stokes solution for flow past a semi-infinite flat plate 

Y 
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0.1 

0.0 
0.0 1.0 2.0 3.0 
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0.0 

xi 

-W 

FIG. 4. Perturbed tlow at R = 1000. Contours of $ - y and - o are shown FIG. 5. Higher-order skin friction on a flat plate. p = (skin friction)/(Bla- 
close to the plate. The contours levels are $ = - 0.0420(0.002)0 and sius skin friction) is shown here for R = 25, 50, 100, 200,400, 600, 1000, 
- o = 0.5(0.5)2,4(4)40. 2000, 3000, and 4oo0, r decreases with increasing Reynolds number. 

TABLE I. Drag of a finite flat plate. Here the “fine” grid has N points in 
0<<<4 and Npoints (in the refined subgrid) on the plate; the “coarse” grid 
has N/2. The error in the fine grid solution is about l/3 of the difference A 
between the two solutions. The relative drag coefficient D has been calculat- 
ed using Richardson extrapolation. 

R N $;o dx A D 
Coarse Fine 

25 128 5.097 5.098 0.01% 1.5352 
50 128 6.704 6.695 0.13% 1.4250 

100 128 8.912 8.889 0.26% 1.3373 
200 128 11.956 11.912 0.37% 1.2667 
400 256 16.180 16.098 0.18% 1.2099 
600 256 19.372 19.269 0.21% 1.1812 

loo0 256 24.256 24.194 0.26% 1.1510 
2000 256 33.347 33.238 0.33% 1.1179 
3ooo 256 40.25 40.12 0.33% 1.1015 
40@3 256 46.08 45.91 0.37% 1.0917 

of van de Vooren and Dijkstra;” the values we used are given 
in Table II. Sure enough, if this effect is subtracted off, r 
looks similar near the leading edge for all Reynolds 
numbers-compare the leading-edge region in Figs. 5 and 8. 
The remaining discrepancy is a higher-order effect, due to 
the fact that the external velocity is not exactly 1 at the lead- 
ing edge. 

At the trailing edge, the square root singularity of Car- 
rier and Lin2’ applies locally, which explains the blow-up in 
Fig. 5 as x-r 1. However, it is known to apply only in a region 
of extent R - 3’4 (region VII in Fig. 1). In parabolic coordi- 
nates, the trailing-edge singularity is not well resolved; we 
therefore performed some separate computations of the 
same flow in elliptic coordinates (x = cash 5 cos 7, 
y = sinh g sin 7) which have quadratic contraction at both 

2.0 

1.8 

7- 

1.6 

1.4 
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0.0 

PX 

-.l 

-.2 C 

I 1 1 b Stewartson; we do not know the reason for this discrepancy. 
The trailing-edge singularity frustrates efforts to find 

the rest ofthetlow near there. It cannot simply be subtracted 
off (like the leading edge) because it is not a small effect, and 
is not known a priori, We shall simply have to rely on its 
small lateral extent not to confuse matters. 

V. THE TRIPLE-DECK EFFECT 

Recall from (3) that to first order, the triple-deck effect 
in r is of constant magnitude and O(R - “‘) spatial extent. 
It appears from Fig, 5 that not all the variation is going to be 
explained by this, altbough the 0( 1) increase in skin friction 
at the trailing edge is clear, At x = 0.2 and I? = 600, for 
example, the relative fir(X) is only about 0.03-0.04. Con- 
sequently, our first step was to assume that the triple deck 
was in fact present, subtract it off, and see what was left. The 
values of T(X) used are given in Table II. The remainder 
turns out to be proportional to R -1’2 everywhere on the 
plate, which would correspond to an overall displacement 
effect of the boundary layer and wake. This is shown in Figs. 
7 and 8, Over most of the plate, there is only a small addi- 
tional decrease of about 20% as R increases by a factor of 80, 
and an increase closer to the trailing edge. The trailing-edge 
singularity is seen to the right, The data thus suggest that 
other effects, such as successive terms in the triple-deck ex- 
pansion [the first of which would be O( R - ‘I’) 1, must be 
relatively small. 

FIG. 6. Pressure gradient at the plate. Reynolds numbers are as in Fig. $; 
px = w,,/R increases with increasing Reynolds number, The trailing-edge 
singularity is not shown. 

edges (now at x = f 1). Although the far field and the 
wake are not as well represented, the flow near the trailing 
edge rapidly converged (on the R - 3’4 scale) and was found 
to be given by 

where X,, = (x - 1) R 3’4. (The coefficient of the quadratic 
term is about - 0.027.) Stewartson” solved the linearized 
problem and found the constants in ( 13 ) to be 0.59 and 0.15, 
(Since this region is entirely contained in the innermost lay- 
er of the triple deck, his Iinear shear il has been replaced here 
by theincreasedvame 1.343 X0.3321 due to the triple deck,) 
The equality of the constants in ( 12 ) and ( 13 ) can be shown 
from the Carrier-Lin solution $ = &“(sin $0 + sin $9)) 
where r and 6 are poIar coordinates measured from the trail- 
ing edge. 

The effect in ( 13) is significant out to X,, - 2.8, which is 
similar to the extent seen in the local Navier-Stokes solution 
of Schneider and Denny22 at R = lo*, although they did not 
tit a singularity. The drag due to ( 13) is difficult to calculate 
because of the smooth merging with the rest of the flow. 
However, the increased drag due to the excess skin friction is 
clearly positive, in contrast to the - 0.11 R - 5'4 given by 

To see if there was a priori evidence in the data for a 
trailing-edge region of the triple-deck kind, a least squares fit 
to r was made of the form 

r(xipRi 1 = 1 + R j- “‘g(X, 1 + J;;;h [X(X, ,Rj 11, 

l<iSN, 1 gxp, (14) 

whereX = /z 5’4t9 “(x - 1) . The unknowns are the displace- 
ment effect g(Jc;) and the triple-deck effect h(X, ), 1 <k<M. 
Here, fi is linearly interpolated from its values at X, to get a 
value at X(xi ,R, > t This helps to couple the unknowns if M is 
not too large. The x,‘s and Xkfs are equally spaced. Of 
course, ( 14) is already quite restrictive (i.e., the R depend- 
encies of the effects are assumed), but we don’t want to have 
too many unknowns and over& the data. With a = 3/8, the 
mean error in ( 14) is 0,002, and we do indeed tind the triple- 
deck effect: \h (X) - T(X) ] < 0.01 for - 4 < X < 0. At large 
X, there are less data and the error is larger, as it is at X = 0, 

TABLE II. Magnitudes of leading-edge and triple-deck effects. Values taken from van de Yooren and Dijkstra ( i970) and Jobe and Burggraf ( 19741, 
respectively. 

log,, Rx 
URx) 

-x 
T(X) 

-x 
T(X) 

0 0.5 l i1316 1.5 2 3 3.5 
0.1524 0.1518 0.0901 0,0488 0.0087 0.0030 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
0.343 0.266 0.216 0.182 0,160 0.140 0.124 0.114 0.102 0.092 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 
0.086 0.078 0.072 0.066 0.062 0.058 0.054 0.050 0.048 0.046 

T-0,3106( -X) -W as X-t CO 
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FIG. 7. Excess skin friction. The remainder T(X) - L(Rx) - Tcy(x)) is 
shown (decreasing with Reynolds number), where L is the leading-edge 
and T the triple-deck effect. The slow wiggles in the lower curves are caused 
by linear interpolation of T. 

since here, h has been extrapolated, and we found 
fi (0) = 0.329 as compared to T( 0) = 0.343. Possibly a simi- 
lar procedure was used by Dennis and Dunwoody’ as quoted 
by Jobe and Burggraf.4 The fit is shown in Fig. 9 when 

If cz is increased or decreased from its triple-deck value 
of 3/8, the mean error of the best fit increases. Thus we 

N= 19, M= 23,~ = 8, and Rj = 100,200,400,600, 1000, 

conclude that triple-deck theory correctly gives the first cor- 
rection to the Blasius boundary layer, but that at moderate 

2000,3000, and 4000. 

Reynolds numbers it is disguised by a comparably large ef- 
fect of extent O( 1) which is not associated with the trailing 
edge. 

Unfortunately, despite our accurate solutions, there 
seems to be no way to decompose the remainder of the vari- 
ation in Fig. 8. The multiple length scales acting, none of 
whose effects are known a priori, mean that we cannot just 
graph, say, r (0.5) against R and hope to extract the higher- 
order behavior. Best fits, as above, can lend credibility to 
theories but cannot separate one weak effect from another, 
especially when the exponents are so small. For example, 
one higher-order correction is the next term in the triple- 
deck expansion, which is of relative order 0( R - “8). It is 
probably responsible for the extra increase in skin friction 

5.0 

,I II 

4x1 
3.0 

2.0 

1.0 

I . I 
O.Oo.0 

I I I I 
0.2 0.4 0.6 0.8 1.0 

X  

FIG. 8. Displacement effect on the boundary layer. The remainder (see Fig. 
7) is here scaled by R “’ for R (2000. Arrows show the direction ofdecreas- 
ing R. The trailing-edge singularity is seen to the right. The dashed line is 
Kuo’s displacement effect K(x). 

T - 
0.3 - 

0.2 - 

0.1 - 

0.0-q 
I I, s I I I, I I I I 

-3 -2 -1 x 0 

FIG. 9. Least squares fit of the triple-deck effect. The points are the fitted 
values h(X, ),l <kc 17, and the solid line is the triple-deck solution of Jobe 
and Burggraf ( 1974). 

near the trailing edge, shown in Fig. 8. Although its coeffi- 
cient must be small, we cannot determine it reliably. 

The two proposed contributions are also evident in the 
pressure gradient, shown in Fig. 6. In the first approxima- 
tion, it is zero in the boundary layer. The displacement 
[O(R -“2)] and triple-deck 0( Re”‘) terms can both be 
seen. Here, however, the edge singularities are even more 
severe. 

VI. DECOMPOSITION OF SKIN FRICTION AND DRAG 

Our final proposed approximation is now clear. For 
( 1 - x)R 3’4 less than about 2.8, cf is given by ( 13); other- 
wise, we have 

r=: 1 + L(Rx) + &T(X) + R - 1’2 d(x), (15) 
where L is the visccjus contribution from the leading edge 
and we suggest that d(x) is a displacement effect. 

Any evaluation of asymptotic results at finite Reynolds 
numbers is arbitrary to some extent. For example, the triple 
deck does not include the leading edge, but we must, to be 
consistent with the numerics. We simple define the drag as in 
( 1) and evaluate the integral at finite Reynolds numbers. 

In Table III, we have decomposed the drag at four 
Reynolds numbers. Notice that even at R = 4000, the triple 
deck only accounts for half of the correction to the drag. 

The contribution to the drag from L is asymptotically 
2.326 R - I. (Van Dyke’ apparently includes only half of 
this.) Relative to the Blasius drag, this is 1.75R -I”. At 
finite R, the contribution is given by van de Vooren and 
Dijkstra. 2o The contribution from the triple deck can be 
found from numerical integration for finite R; for large R we 
have 
1 ’ 

TO s 
T I.-w) ldx 

1 =- 
P 2x(O) X(O) 

T(X)dX 

N- T(X)dX 

s X(O) - 0.3106( - X) - 4’3 dX as R+CQ 

= 2.m; “_ 3/8 

> 
- 2.93R - “2, (16) 
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TABLE III. Contributions to the drag, 

Effect 

Actual drag 
Blasius 
Triple deck 
Leading edge 
Remainder D,, 
Power IawJit to D,, : R - ‘.” 
R ““D rem 
Linear bestfit: 12.6 4 0.28R -‘I’ 

R=50' R =200 R=1000 R=4OOO 

1.4250 1.2667 1.1510 1.0917 
1 1 1 1 
0.1033 0.0837 0.0613 0.0451 
0.1203 0.0840 0.0463 0.0252 
0.2014 0.0990 0.0434 0.0214 

1.424 l+%O 1.372 1.353 

Table III shows that D,, , the part of D not accounted 
by these two terms, is proportional to R - 1’2. Higher-order 
terms (due to the triple deck and to the trailing-edge region ) 
will ascend in powers of E = R - 1’8. Sure enough, we find 
that R “‘D rem shows a linear dependence on E (where E var- 
ies by a factor of 2) ; we therefore tentatively ignore higher- 
order [O(R - 3’4) ] terms and fit R “2Drem = a + be. This 
gives a = 1.26 and b = 0.28. 

The reason for the good agreement with the drag found 
by Jobe and Burggraf’ is now clear: The terms of order 
R -“* (1.75, 1.26, and - 2.93) almost cancel, and their 
total, 0.08, is much smaller than the R - 3/8 term even for 
moderate Reynolds numbers. 

VII. THE DISPLACEMENT EFFECT 

It is not possible to be absolutely sure that we have iden- 
tified the correct asymptotic behavior of r over the whole 
range ofx based on results at finite Reynolds numbers. How- 
ever, the existence of the triple-deck effect is clear; the main 
problem concerns the cause of d(x). As seen in Fig. 8, it is 
completely different from the displacement effect calculated 
by KLIO;~ in fact, it is roughly constant over the whole plate 
(away from the trailing edge singularity). Unfortunately, to 
calculate d(x) from boundary-layer theory would require 
extending the expansions in the trailing-edge region to third 
order (that is, to find the vertical velocity 
u+v,E2 + u,E3 + u2e4 at the outer edge of region II) even 
though its main contribution is from the body of the plate 
(where x is bounded away from 1) . 

In any event, it is clear that although the triple-deck 
effect is the leading-order correction to the Blasius boundary 
layer, it becomes the numerically dominant contribution 

only for much larger Reynolds number than previously real- 
ized. 
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