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Abstract
The goal is to develop an inverse model capable of simultaneously estimating the parameters
appearing in an air pollution model for an instantaneous point source, by using measured gas
concentration data. The approach taken was to develop the inverse model as a non-linear least
squares estimation problem in which the source term is estimated using measurements of pollu-
tion concentration on the ground. The statistical basis of the least squares inverse model allows
quantification of the uncertainty of the parameter estimates, which in turn allows estimation of
the uncertainty of the simulation model predictions.

1 Introduction

Decision-making about off-site emergency actions in case of an instantaneous gas release incident
needs real-time forecasting of the concentration of gas in the atmosphere. The accuracy associated
with forecasting of the concentration of gas in the atmosphere is highly dependent on source term
parameters such as the location, timing and total amount of release. Inaccuracy in the model
source term can lead to differences between estimated and actual concentration.

The process of deducing the source term from observations of airborne concentration reduces
to estimating parameters in an air pollution model. Several papers [Edwards, 1993; Kibler, 1977;
Mulholland, 1995; Sohier, 1997] have been published in the area. They use different models, but
all depend on an intelligent first guess of the parameters and concentration measurements at many
locations.

We report on a methodology for identifing the source term based on a non-linear least squares
regression and linear regression coupled with the solution of an advection-diffusion equation for an
instantaneous point source.This method only depends on the initial guess of the release time and
the approximate value of this time can be easily calculated. Furthermore, we find that reliably es-
timating the parameters requires concentration measurements at a minimum of three downstream
locations.

2 An Advection-Diffusion Equation

A Cartesian co-ordinate system (X, Y, Z) is used with the X-axis orientated in the direction of
the mean wind, the Y -axis in the horizontal cross-wind direction, and the Z-axis in the upwards
vertical direction. Instantaneous gas release with a total mass release Q is assumed to occur at
time t = 0 at a point (0, 0, H) which is at a height H above the ground. The gas particles are
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subsequently blown by a wind with mean velocity u = (U, 0, 0). The gas molecules move with the
wind in the X direction at the same time as being dispersed by turbulence in the atmosphere. For
a cloud of gas particles, the mass concentration C(X, Y, Z, t) in time and space is governed by the
equation of mass conservation:

∂C

∂t
= −∇ · q (1)

where the pollutant mass flux per unit area q is given by:

q = Cu − K ⊗∇C (2)

where Cu is the mean mass advection by the wind and K is a dispersion tensor, which is assumed
to be of the form:

K =




Kx 0 0
0 Ky 0
0 0 Kz




where Kx, Ky, Kz are eddy diffusivities in the X, Y and Z directions respectively. Substitution
into Equation (2) gives an expression for the mass flux vector:

q =
(

CU − Kx
∂C

∂X
,−Ky

∂C

∂Y
,−Kz

∂C

∂Z

)
(3)

Substitution of the expression for q into Equation (1) gives:

∂C

∂t
+ U

∂C

∂X
=

∂

∂X

(
Kx

∂C

∂X

)
+

∂

∂Y

(
Ky

∂C

∂Y

)

+
∂

∂Z

(
Kz

∂C

∂Z

)
(4)

where C is concentration of the contaminant. Equation (4) is to be solved subject to initial and
boundary conditions. The initial conditions are represented by:

C(X, Y, Z, 0) = Qδ(X)δ(Y )δ(Z − H), (5)

where δ is the Dirac delta function, which has the following properties:

δ(X) = 0 for X �= 0 and
∫ ∞

−∞
δ(X)dX = 1.

The pollutant concentration approaches zero far from the source in the lateral direction and high
above the ground and there is zero vertical flux through the ground surface. The boundary condi-
tions are of the form:

C → 0 as X, Y → ±∞, Z → ∞

∂C
∂Z (X, Y, 0, t) = 0

(6)

3 Solution of An Advection-Diffusion Equation

Theoretical models are available to determine the wind velocity U , and the eddy diffusivities Kx, Ky

and Kz as functions of the vertical distance Z [Huang, 1979]. However, the resulting functions are
such that they make the analytical solution of Equation (4) under appropriate boundary conditions
extremely difficult. To simplify the model here, it is therefore assumed that u, Kx, Ky and Kz are
constants. Equation (4) then becomes:

∂C

∂t
+ U

∂C

∂X
= Kx

∂2C

∂X2
+ Ky

∂2C

∂Y 2
+ Kz

∂2C

∂Z2
(7)
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Figure 1: (a) Concentration distribution on the ground (b) Concentration distribution on the
ground directly downwind of the release (on Y = 0)

which is to be solved subject to the initial and boundary conditions (5) and (6). The solution of
(7) can be derived using Laplace and Fourier transforms and is:

C =
Q

8π
3
2 (KxKyKz)

1
2 t

3
2

e
− (X−Ut)2

4Kxt − Y 2
4Kyt

×
(

e−
(Z−H)2

4Kzt + e−
(Z+H)2

4Kzt

)
. (8)

Equation (8) is similar to the Gaussian model for an instantaneous point source [Seinfeld and Pandis,
1997]. Further, if we define σ2

x=2Kxt, σ2
y=2Kyt and σ2

z=2Kzt, the two models are identical. Here
the σ’s are the standard deviations of the concentration distribution in the X, Y and Z directions.
Therefore, there is a relation between the standard deviation of spread that arises in the Gaussian
distribution and the eddy diffusivities in the advection-diffusion equation. The ground distribution
of the concentration predicted using Equation (8) for the data values Q=1000 kg, Kx = Ky = 12
m2s−1, Kz = 0.2113 m2s−1, t = 100 s are shown in Figure 1. Figure 1(a) shows the concentration
distribution in the X − Y plane on the ground Z = 0, while Figure 1(b) shows the concentration
distribution directly downwind (on Y = 0), 100 seconds after the release.

4 Inverse Modelling

Inverse modelling is the extraction of model parameter information from data. It is a discipline
that provides tools for the efficient use of data in the estimation of constants appearing in the
mathematical models. In this inverse modelling problem, the structure of the equation is known;
measurement of the outputs, time (t) and concentration (C), are available. Some of the parameters
are unknown.

The aim of this section is to obtain the best or optimal estimate of the parameters (e.g, mass
release Q, lateral eddy diffusivity Kx, source height H, distance of the source from measuring
point X, Y and time of the pollutant release relative to the measurement time) appearing in
Equation (8) from measurements made at some position(s). The value of Kz can be found by us-
ing the theoretical model Kz = aZn [Yeh, 1975], and calculating a value at some reference height
(a and n are constants depend on atmospheric conditions.

Taking natural logarithms of both sides of the Equation (8) when Z = 0 (i.e. for concentra-
tion on the ground) gives:
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f = ln

(
Q

4π
3
2 (K2

xKz)
1
2

)
− 3

2
ln (T + t0)

−
(

X2

4Kx
+

Y 2

4Kx
+

H2

4Kz

)
1

T + t0

− U2 (T + t0)
4Kx

+
2UX

4Kx
(9)

where f = ln(C), T +t0 = t, t0 is the (unknown) time after pollutant release when the measurement
clock was started and T is the time (known) on that clock. It has also been assumed that lateral
eddy diffusion in the X and Y directions are equal, Ky = Kx. In simple terms, Equation (9) can be
written as f(T ;b) where T is the independent variable and b = [Q, H, X, Y, Kx, t0] is a parameter
vector.

4.1 Sensitivity Coefficients and Linear Dependence

Sensitivity coefficients are very important because they indicate the magnitude of change of the
response f due to perturbations in the values of the parameters. They also provide information
about which parameters can or cannot be estimated simultaneously. They are defined by the first
derivatives of f with respect to each parameter. The parameters can be simultaneously estimated
without ambiguity if the sensitivity coefficients over the range of observations are not linearly
dependent. Linear dependence occurs when the relation:

0 = α1
∂fi

∂Q
+ α2

∂fi

∂H
+ α3

∂fi

∂Y
+ α4

∂fi

∂X

+ α5
∂fi

∂Kx
+ α6

∂fi

∂t0

for each of the observations fi with not all αj equal to zero [Beck, 1977]. If we set α5 = α6 = 0
and α1, α2 , α3, α4 are certain non-zero constants, it can be showned that

α1
∂fi

∂Q
+ α2

∂fi

∂H
+ α3

∂fi

∂Y
+ α4

∂fi

∂X
= 0

This shows that the parameters in Equation (9) cannot be estimated simultaneously, i.e. pa-
rameters cannot be estimated simultaneously if the data is collected at one location. Therefore
measurements at more than one location are needed to estimate the parameters. Experimental
results in Section 5.2 show that measurement locations cannot lie on a straight line on the ground
to get good parameter estimates. Therefore concentration measurements taken from three differ-
ent locations on the ground were considered to estimate the parameters in the air pollution model
given by Equation (8).

Now consider an experiment in which data are generated at three different locations on the ground
P1 = (X0, Y0, 0), P2 = (X0 + x1, Y0 + y1, 0) and P3 = (X0 + x2, Y0 + y2, 0). Therefore Equation
(9) will become:

f = ln

(
2Q

8π
3
2 (K2

xKz)
1
2

)
− 3

2
ln (T + t0)

−
(

(X0 + x)2

4Kx
+

(Y0 + y)2

4Kx
+

H2

4Kz

)
1

T + t0

− U2 (T + t0)
4Kx

+
2U (X0 + x)

4Kx
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where (x, y) = (0, 0), (x1, y1) or (x2, y2). This may be rearranged in the form:

f = β0 + β1
x

T + t0
+ β2

y

T + t0
+ β3

1
T + t0

+ β4

(
−

(
x2 + y2

)
4 (T + t0)

+
Ux

2
− U2 (T + t0)

4

)

− 3
2

ln (T + t0) (10)

where:

β0 = ln

(
2Q

8π
3
2 (K2

xKz)
1
2

)
+

2UX0

4Kx
,

β1 = − X0

2Kx
, β2 = − Y0

2Kx

β3 =
(

X2
0 + Y 2

0

4Kx
+

H2

4Kz

)
, β4 =

1
Kx

.

4.2 Computation of Parameters

The output of Equation (10) is a logarithm of pollution concentration as a function of time, space
and a set of unknown parameters. On the other hand, pollution concentration measurements
are available. The method, then, is to find estimates of the unknown parameters that best fit the
measured data. If f is the log of measured concentration and f̂ is the log of modelled concentration,
the error in the fit of the measurement and the model, δ, is:

δ =

√√√√ 3n∑
i=1

(
fi − f̂i (b)

)2

where 3n is the number of measurements and b = [β0, β1, β2, β3, β4, t0].

For the best match b must be varied to minimise δ. This result can be achieved using the
Gauss-Newton method. Essentially, the procedure is iterative and requires good starting value
estimates for all the parameters. If the starting values are not reasonably good, the iteration may
not converge or may converge to a local minimum.

An alternative approach to this problem of parameter estimation is now considered. This is to
transform both the data and the function so that there is a multiple linear relationship between
the transformed data and transformed unknown coefficients within the minimisation iteration loop.
This procedure requires a good starting value of t0 only. This can be calculated using the method
outlined later in this section. If the data values are transformed by letting:

W = f +
3
2

ln (T + t0) , W1 =
x

T + t0
, W2 =

y

T + t0
,

W3 =
1

T + t0
, and W4 = − x2 + y2

4 (T + t0)

then the Equation 10 becomes:

W = β0 + β1W1 + β2W2 + β3W3 + β4W4 (11)
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The step then is to form estimates of β’s using multiple linear regression that best fit the measured
values Wi. If Ŵi are the modelled values, the error δ in the fit of measurements and the model is:

δ =

√√√√ 3n∑
i=1

(Wi − Ŵi)2 (12)

For the best match t0 must be varied in the region [T0 − ε, T0 + ε] to minimise δ. Here T0 is the
approximation of t0 and ε is an error. This minimisation result can be achieved using fmin in
MATLAB. For the new t0 value β0, β1, β2, β3 and β4 can be calculated from Equation (11). Then,
by substituting these values into Equation (10), all the required parameters H, Q,X0, Y0 and Kx

can be calculated.

4.3 Calculations of Initial Guess t0

Concentration distributions at the points P1 and P2 can be written as:

CP1 =
2Q

8 (πt)
3
2 (K2

xKz)
1
2
e
− (Xa−Ut)2

4Kxt − Y 2
a

4Kyt− H2
4Kzt (13)

CP2 =
2Q

8 (πt)
3
2 (K2

xKz)
1
2
e
− (Xb−Ut)2

4Kxt −
Y 2

b
4Kyt− H2

4Kzt (14)

where t = t0 + T , Xa=X0, Xb=X0+x1, Ya=Y0, and Yb=Y0+y1. Dividing Equation (13) by
Equation (14) and then differentiating w.r.t. T followed by taking natural logarithms of both sides
gives:

lnF + T
F ′

F
= −t0

F ′

F
− 2x1

4Kx

where F = CP1
CP2

and F ′ = dF
dT . The graph of lnF + T F ′

F plotted against F ′

F is a straight line,

with a gradient of m = −t0 and intercept = − 2x1
4Kx

(when T = 0). Note: The logarithms of
concentration distributions at P1 and P2 have to be smoothed using polynomial fits for noisy data
before applying the method.

5 Modelling Application

5.1 Source Term Estimation

To illustrate this inverse modelling application, consider an input of environmental data generated
from an instantaneous point source of strength 1000 kg located at (0, 0, 20 m) in the Cartesian
co-ordinate system. Figure 2 shows the concentration signal against time T at the points P1, P2

and P3, where P1 = (5000, 100, 0), P2 = (5480, 230, 0) and P3 = (5130, 580, 0), i.e. P1, P2 and P3

are on the vertices of a equilateral triangle of side 500 m. For illustrative purposes Kz and U are
taken as 0.211 and 1.80 respectively. The results of the source term estimation for the pollution
concentration in Figure 2(a) are tabulated in Table 1. Then random relative noise of 1%, 2%, 3%,
4% and 5% were added to the simulated signal and the calculation of error in the source term was
repeated for one hundred times for each case. Average error values of parameters are tabulated in
rows 1 to 5 of Table 2.

5.2 Selection of Measurement Locations

The results of numerical experiments show that the accuracy of the parameter estimates depends on
the location of the pollution measurement points. To analyse the effect three cases were considered.
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Figure 2: (a) Concentration signal at the points P1, P2 and P3 on the ground with no noise, (b)
Concentration signal at the points P1, P2 and P3 on the ground with noise of 5%.

Table 1. Source term estimates

t0 Kx X0 Y0 Q H
0.72 12 5000 100 1000 20

Table 2. Percentage errors in calculated parameters of the source term, for various relative noise
levels.

Noise t0 Kx X0 Y0 Q H
1 % 0.8 0.7 0.8 0.4 2.7 8.5
2 % 1.6 1.4 1.5 0.7 5.8 18.6
3 % 2.5 2.2 2.4 1.1 8.0 25.2
4 % 3.1 2.7 2.9 1.6 11.0 33.0
5 % 4.3 3.7 4.0 1.9 12.3 33.8

(i) All three stations P1, P2 and P3 lie on a straight line. (In Figure 4, P3 is on the line P1P2.)

(ii) Stations P1, P2 and P3 are on the vertices of a perpendicular isoscles triangle. (In Figure 4,
α = 90◦ and L1 = L2.)

(iii) P1, P2, and P3 are on the vertices of an equilateral triangle. (In figure 4, α = 60◦ and
L1 = L2.)

In the first case whatever the values of θ, L1, L2 and L3, the calculated parameter values were
wrong even in the case of perfect simulated data. The error in parameter estimates Q and X0 of
the other two cases are plotted against the distance between the points in Figures 3(a) and 3(b)
respectively. In each case, parameter values were calculated when the angle (θ) between P1P2 and
X-axis is equal to 0◦,15◦ and 30◦. The above experiments demonstrate how the distance and angle
between the measurement locations affects the accuracy of the source term estimation results.
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Figure 3: (a) Error in Q Vs distance between points, (b) Error in X0 Vs distance between points.
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Figure 4: Locations of the points P1,P2 and P3 on the ground.
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6 Summary and Discussion

The goal of the work presented here was to develop an inverse model capable of simultaneously
estimating the parameters appearing in the air pollution model for an instantaneous point source.
The approach taken was to develop the inverse model as a non-linear least squares estimation
problem in which the source term was estimated using pollution concentration measurements on
the ground. The statistical basis of the least square inverse model allows for quantifying the un-
certainty of the parameter estimates, which in turn allows for quantifying the uncertainty of the
simulation model predictions.

First in the process, it has been demonstrated that data from at least three spatial locations
are needed to reliably estimate the parameters in the model. Secondly, we formulated the inverse
model as a least squares minimization problem, and then we tested the methodology using artificial
data generated from the forward problem.

The accuracy of the calculated parameter values varies with the distance between the measurement
locations. Therefore the optimal design of the locations for pollution measurement on the ground
is important. This is one possibility for improvement of the model.

This paper is a report of an initial study using both linear and nonlinear least squares estima-
tion techniques for calculating source term parameters from an inverse model. The next phase
of this study is to find estimates of source terms of pollution from steady and non-steady point
sources of unknown time duration.
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