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Abstract

Diffeomorphic image registration, where images are
aligned using diffeomorphic warps, is a popular subject for
research in medical image analysis. We introduce a novel
algorithm for computing diffeomorphic warps that fits into
the framework of Discrete Mechanics and Optimal Con-
trol, a popular choice for optimisation methods in numer-
ical analysis. The result is an algorithm that is many times
faster than those considered previously.

1. Introduction
Image registration has received much research over the

past few years, not least because of its many applications
in medicine. For example, it is useful for removing mo-
tion artefacts caused by patient breathing, heartbeat, and
patient movement [26], for aligning to an atlas [8], for
monitoring disease progression [27], for assisting in dis-
ease diagnosis [22], and for measuring anatomical variab-
ility between subjects [28]. For further details about these
applications see [28], and for a (relatively old) survey of
medical image registration see [18]. A more general sur-
vey of image registration, highlighting its uses in synthetic
aperture radar and other applications is given in [30].

For applications in disease diagnosis and measuring ana-
tomical variability some form of measurement on the space
of images is essential, to be able to do statistical analysis
of the image warps. This generally requires using diffeo-
morphic image registration, whereby the choice of image
warps that can be used to solve the registration problem are
constrained to be diffeomorphisms, i.e., smooth functions
that have smooth inverses. There has therefore been recent
interest in the use of diffeomorphic deformations (warps)
to align medical images. One approach to this problem,
known as Computational Anatomy, is to introduce group
actions as deformable templates that are warped via the

actions of a group onto other images [9]. This work has
been fundamental to a large amount of research on aligning
images through landmark matching, where corresponding
points are defined on a set of images, and diffeomorphic
warps used to align them. The corresponding group for
image analysis is the full diffeomorphism group, not the
volume-preserving subgroup that is used in fluid mechan-
ics.

Under a right-invariant Riemannian metric, it can be
shown that the geodesics of the motion of a set of landmarks
can be computed as an optimisation problem; see [23, 22]
for an overview. In this paper we introduce a novel for-
mulation for the problem that is based on implicitly solv-
ing the partial differential equations that govern the motion.
These partial differential equations are the Euler equations
for the full diffeomorphism group, given by equations 1
and 2, for derivations see [23, 14], following [1]. We intro-
duce a particle method that enables us to use the framework
of Discrete Mechanics and Optimal Control (DMOC) —see
section 3 —to solve for the diffeomorphism directly. This
results in an algorithm that is orders of magnitude faster
than previous ones.

2. Problem Formulation
We begin by defining the problem of diffeomorphic im-

age registration:

Assume that there is a diffeomorphism φ that
takes an image T to a reference image R, i.e.,
R = T ◦ φ. The aim of diffeomorphic image
registration is to discover φ.

The diffeomorphism φ is defined on some domain Ω ∈
R2 or R3, and the images are typically greyscale, so that
R, T : R2 → R or R, T : R3 → R. The method used to
find the desired φ is generally optimisation of some norm
‖R − T ◦ φ‖. Typical choices include the L2 norm (sum-
of-squares error) and mutual information [29, 17], although



there are other alternatives, including the correlation ra-
tio [25] and the normalised gradient-bsed method in [10].

In this paper we describe a novel method of constructing
the diffeomorphisms. The standard approach in the literat-
ure is to use an energy minimisation, which produces the
diffeomorphism as a geodesic. There are effectively three
different approaches: (a) considering the problem as one of
inexact matching on the boundary values (the start and end
points of the landmarks) [15, 4]; (b) considering the prob-
lem as one of inexact matching using the initial values of
position and momentum [5]; (c) considering the problem as
one of exact matching [22]. The first approach optimises the
warp over the end points of the spline, which are not guaran-
teed to be reached precisely, the second optimises the warp
over the initial momenta of the particles, while the third ap-
proach can consider either method equally.

For the case of the full diffeomorphism group, G =
Diff(Rn), that we consider here, the Euler equations are
(see [13, 24] for further details):

ṁ + u ·∇m +∇uT ·m + m(div u) = 0, (1)

where ṁ denotes differentiation with respect to time,
u(x, t) (u, x ∈ Rn, t ∈ R) is a velocity field, and m(x, t)
its associated momentum. The velocity u and momentum
m are related by:

m = Au, (2)

where A is an elliptic operator (e.g. A = (1−∇2)k) called
the inertia operator.

A striking feature of Euler equations on diffeomorph-
ism groups is that they admit (formally, at least) exact solu-
tions in which the momentum is concentrated at a finite set
of points that we call particles. For fluid equations these
are point vortices, which are widely studied both in their
own right and as a means of approximating the evolution of
smooth or other vorticities.

For the 2D and 3D Euler fluid equations, convergence
of the point vortex solutions to solutions for smooth initial
data has been established [3]. The speed of convergence
can be improved by smoothing out the point vortices to vor-
tex blobs [6], even though the (e.g., Gaussian) blobs are no
longer an exact solution of the Euler equations. Instead,
their evolution can be regarded as that of delta-functions
under a slightly different inertia operator A. The inverse
of the inertia operator A is given by convolution with the
Green’s function G of A, i.e., u = G ∗m, where ∗ denotes
convolution andAG(x, x′) = δ(x−x′) for x, x′ ∈ Rn. We
shall only consider rotationally invariant and diagonal A; in
this case G(x, x′) = G(‖x− x′‖) for a scalar function G.

3. A Particle Method for Image Registration
We are considering the deformation of an image Ω, with

the deformation defined by a set of points i (some subset

of the pixels of the image) with position and momentum
(qi(t), pi(t)), where pi = q̇i as they move from their ini-
tial state (qi

0, p
i
0) to their endpoint at t = 1. Starting from

the Euler equations on the diffeomorphism group (1 and 2)
we first compute the Hamiltonian, which is the kinetic en-
ergy, and then discretise it by introducing the particle ansatz
m(x, t) =

∑N
j=1 pj(t)δ(x−qj(t)), where δ(·) is Kronecker

delta function. In analogy with the point vortices fluid dy-
namics, we call these point particles. The evolution of the
particles is then given by the following Hamiltonian:

H =
1
2

∑

i,j

pi · pjG(qi − qj), (3)

where G(·) is the Green’s function corresponding to the
chosen metric on Diff(Ω). The most common choice in im-
age registration, and the one that we will use in this paper
is the H∞ metric, which corresponds to using a Gaussian
Green’s function G(r) = 1

ε2 exp(−r2/ε2), where ε is the
length-scale in the metric. Other choices include the thin-
plate spline and clamped-plate spline – see [22] for a review.

Solutions to (1) of this particle form obey Hamilton’s
equations for (3), in which the components of qi and pi

are canonically conjugate variables (see [19] for further de-
tails). Here q1, . . . , qN represent the positions of the N
particles that define the deformation, and p1, . . . , pN their
momenta. The equations of motion of the point particles
are:

q̇i =
N∑

j=1

G(‖qi − qj‖)pj (4)

ṗi = −
∑

j

(pi · pj)G′(‖qi − qj‖)
qi − qj

‖qi − qj‖
. (5)

Computing the diffeomorphism defined by qi and pi,
i = 1 . . . N is then simply a case of integrating the motion
forward in time using 4 and 5, and then interpolating the
motion of the rest of the image in some way. This leads us
to our complete algorithm for image registration, following
which we discuss several important implementation details.
Some examples of 2D registrations using the algorithm are
given in the next section. The section references on each
line of the algorithm give the section where this is discussed
in more detail.

• Choose point particle positions q on image T (Sec. 3.1)

• Initialise the particle momenta p randomly (Sec. 3.2)

• Optimise ‖R− T ◦ φ‖ over p (Sec. 3.3):

– For current p, integrate point particles forward in
time (Sec. 3.4)

– Integrate positions of the test particles (Sec. 3.5)



– Interpolate between the test particles (Sec. 3.5)
– Compute ‖R−T ◦φ‖ for chosen distance meas-

ure (Sec. 3.6)

• Add more point particles and iterating (Sec. 3.7)

3.1. Position of point particles
There are several possible choices for placing the point

particles. Examples include placing them in a grid, pos-
itioning them on points of interest in the image, such as
edges and corners, or using the discrepancy image to select
places where the two images do not match, based on the ob-
jective function. In line with [21], for registration of brains,
we initially place some points around the skull of head im-
ages, and after optimising them, place more points using the
discrepancy image method. For the hand images shown in
the next section, we consider both the discrepancy image
method and using a uniform grid. In all cases, the momenta
were initialised as small random numbers.

It is worth noting that there is no reason why one cannot
optimise the point locations as well as their momenta. We
have done some initial experiments with this, and it some-
times gives a better solution. Certainly, it can resolve smal-
ler image features, but it is also significantly more prone to
getting stuck in poor local minimas, because the optimisa-
tion is hugely more complex. Finding suitable implement-
ation methods to get around this problem, possibly using
multiple scales of resolution, is one of our current areas of
research.

3.2. Initialisation of point momenta
In the current implementation, the momenta of each

point particle are initialised with a uniformly random dir-
ection, and with a small uniform random magnitude for the
warp. One option that does appear to improve the results,
although at a moderate computational cost, is to perform a
coarse search over this relatively small number of paramet-
ers (2 for each of the point particles, of which there may be
10-20 on the initial pass). The question of how to initialise
the momenta for additional point particles is discussed in
section 3.7.

3.3. Optimisation method
The choice of a suitable optimiser is obviously crucial.

In the current implementation we are using the sum-of-
squares distance measure, which leads fairly naturally to a
least-squares non-linear optimiser. We are currently using
the lsqnonlin function in Matlab 7.1, which is a sub-
space trust region method based on the interior-reflective
Newton method. Experimentation has found that allowing
100 iterations is usually sufficient for the algorithm to con-
verge reasonably, although further work will investigate this
more thoroughly.

3.4. Choice of integrator
The principal component of our method is the compu-

tation of the current geodesic, based on q and the current
p. This is calculated by numerically integrating the particle
dynamics forward in time. The Hamiltonian ordinary differ-
ential equations are discretised in time, and then integrated
forward. We can choose a timestep for the integration, and
the method of numerical integration. The standard choices
would generally be Euler’s method, or a second-order im-
provement, such as second-order Runge-Kutta.

The factors that affect the computation of the dif-
feomorphism are the number of point particles and test
particles, the number of timesteps, and the order of the in-
tegrator (how errors accumulate during the integration). In
consideration of the last two of these points, in section 5
we discuss the possible benefits and disadvantages of using
a symplectic integrator. We also discuss a possible reduc-
tion in the computational complexity of the algorithm – if
there are N point particles and M test particles, the cost of
evaluating the vector field is O(N2 + NM).

3.5. Test particles and interpolation
We can induce the value of the actual diffeomorphism

φ(x) by the current geodesic by placing particles with zero
momentum (so q(0) = x, p(0) = 0) at the centre point
of each pixel in the image, and computing its trajectory
under the induced velocity field (i.e., solving the ODE
q̇ = f(q, t)). These are known as test particles.

In fact, assuming that the deformation is not too large (so
that ‖Tφ−1‖ is reasonably small), we can make some com-
putational savings by placing a test particle every k pixels,
and interpolating φ between the test particles. This saves a
factor of k2 computations, but changes the computed dif-
feomorphism from the exact one that relates to the flow (in-
deed, it may actually stop the warp being diffeomorphic,
although this does not seem to be a problem in general).
We have found that using k = 4 and bi-linear interpolation
has negligible effect on the accuracy in real registrations, as
is demonstrated in table 1 in section 4.

3.6. Choice of metric
Inherent in the choice of Green’s function G(r) is a

choice of the metric under which the particle dynamics oc-
cur. There is complete freedom of choice over this metric.
By far the most common choice to date for image registra-
tion has been to use a Gaussian metric, i.e., Green’s function

G(r) =
1
ε2

exp(−r2/ε2), (6)

where ε is the length-scale in the metric. The role of this
length-scale is important. Clearly, if it is set too small (say
smaller than the pixel spacing) then the kernels will not



overlap, and the movement of each particle will be entirely
independent of the rest of the image. This will require the
number of point particles to tend to infinity to represent an
arbitrary diffeomorphism. One way around this problem
is to use a function such as the clamped-plate spline [22],
which uses a bounded domain with strict boundary condi-
tions to avoid the problem of defining a length-scale; effect-
ively the length-scale is the size of the image. The metric
used for the clamped-plate spline is of the form∇2k. We do
not consider the question of how to choose the length-scale
in this paper. It may be that starting with a large value of ε
and allowing it to shrink is a useful method of refining the
solution iteratively, but we have not yet looked into this. In
the results reported in section 4, a value of ε = 1 was used,
which is half the width of the image (which is scaled into
[−1, 1]2).

The Gaussian is by no means the only possible choice
of metric. One fairly general formulation, which includes
the Gaussian as the limit as k → ∞, are the Hk metrics,
(1 − ε2∇2)k. Finally, it may well be useful to choose the
metric so that it vanishes on some set of motions that are
not important. Examples could be affine or rigid motions.

3.7. Adding more points
In our implementation we position new point particles

for further levels of optimisation using the discrepancy im-
age. This uses the objective function (here the sum-of-
squares error) to find regions where the two images do not
match, and then placing new point particles there. Given
that, there are two choices of how to initialise the momenta
of these new particles: (i) as zero, and (ii) as small random
numbers. We have tried both schemes, and found that the
first was the most effective. This is not surprising, because
points with zero momentum are carried along with the flow,
which is a reasonable initial guess for how they should be-
have, and the optimiser then improves on this.

4. Experiments
We present four experiments in this paper. The first con-

siders how far apart the spacing should be between the test
particles. As was discussed in section 3.5, the wider apart
they are spaced, the faster the implementation, but the less
accurate the results. In order to decide a suitable spacing,
we took a series of 10 registrations of hands, as used for
the registration shown in figure 3 and described below, and
tested out different spacings between the test particles for
two different numbers of point particles (with the initial val-
ues for the momenta of the point particles fixed between
the runs). The average results over the 10 registrations are
shown in table 1, and show that a spacing of 4 between test
particles provides a reasonable compromise between com-
putational time and final function value, hence we have used

Figure 1. The initial discrepancy between the two hands to be re-
gistered. The final result can be seen in figures 1 and 3.

Figure 3. The registration of the two hands. The initial pair are
shown in the top row, with the final version of the free image
shown on the bottom left, together with the discrepancy image.
It can be seen that the registration has been successful.

a spacing of 4 for all the computations used in this paper.
For the second experiment, we investigated how the

performance of the integrators change as the number of
timesteps is varied. Table 2 shows the results for registra-
tions of the two hands. The times shown are for a 1.5GHz
Apple Powerbook G4. It can be seen that the number of
timesteps does not appear to significantly affect the results
of the integration.

Finally, we present two different image registrations.
The first is of a pair of hand images, while the second are
two 2D T1-weighted MR scans of the human brain. Fig-
ure 1 shows the initial discrepancy between the two hands
to be registered, while figure 3 shows the images and the fi-



Figure 2. The registration of the two hands. The initial pair are shown in the top row, with the final version of the free image shown on the
bottom left, together with the discrepancy image. It can be seen that the registration has been successful.

Figure 4. Chequer-board plots showing the different between the initial images of the hands (left), the final images (centre), and the change
between the initial and final versions of the free image (right).

Table 1. Comparison of changing the spacing between the test
particles. Results are the average of 10 values. A spacing of 4
appears to give a reasonable compromise between computational
cost and the final diffeomorphism.

Spacing Time (s) Final function value
9 point particles

12 39.13 7.78e7
8 43.13 7.43e7
4 47.71 7.08e7
1 112.6 6.95e7

25 point particles
12 123.17 1.06e8
8 133.95 9.82e7
4 163.05 9.37e7
1 944.72 8.85e7

nal discrepancy. These results were computed using 9 knot-
points, positioned in a 3× 3 grid on the image. The optim-
iser ran for 40 iterations before converging, and then an ad-
ditional 7 points were added to the image using the method
described in [21], which adds points where the error is cur-
rently large. Another 37 iterations were then performed by
the optimiser, with the final result being that shown. Fig-
ure 2 shows the positions of the points and the initial mo-
menta on the reference image, the final output, and the ef-
fect of the warp on a regular grid. Figure 4 provides a dif-
ferent way to interpret the results, showing a chequer-board
overlay of the two images before and after the registration,
as well as the change. It can be seen that even after this
relatively small amount of computation, the registration is
very good. Computing this registration took 251.4 seconds
on a 1.8GHz G5 Apple Macintosh.

Figure 5 show a sample registration of 2 brains. A set
of 10 points were positioned evenly around the skull, and
the result optimised for 20 iterations. Following this, an



Table 2. Changing the number timesteps does not appear to sig-
nificantly affect the results of the registration, but using more
timesteps fastly increases the computational cost.

Euler RK2
Timesteps Func Val Time Func Val Time

9 point particles
1 6.72e6 61.64 6.88e6 65.81
2 6.82e6 66.38 6.92e6 74.48
4 6.87e6 74.74 6.93e6 91.91
8 6.87e6 92.05 6.96e6 126.50

16 6.86e6 128.46 6.96e6 193.91
25 point particles

1 5.97e6 186.59 6.33e6 217.76
2 6.02e6 222.07 6.35e6 284.80
4 5.86e6 292.61 6.43e6 412.43
8 6.01e6 417.34 6.32e6 666.75

16 6.13e6 696.1 6.17e6 1258.5

additional set of 11 knotpoints, with 50 iterations of optim-
isation then being performed. This registration took under 7
minutes on the same computer, and it can be see that the fi-
nal result is not too bad. There is still work to be done on the
interior (and further optimisations do indeed correct this),
but the skull and major structures have all been brought into
alignment.

5. Use of Symplectic Integrators
The equations of motion (4, 5) are Hamiltonian and their

flow is therefore symplectic [11]. In long-time simulations
of Hamiltonian systems (in celestial and molecular mechan-
ics, for example) it has been found extremely advantageous
to use symplectic integrators, which preserve the symplectic
structure. This leads to good energy behaviour and a lack
of dissipation. Therefore it is natural to consider their use
here; it is also in accord with the ‘Discrete Mechanics and
Optimal Control’ philosophy in which both the cost func-
tion and dynamics are discretized in a parallel, Hamiltonian
way [16]. In fact, some implementations of image regis-
tration by diffeomorphisms have used symplectic integrat-
ors, because calculating geodesics by minimizing a discrete
path length does give a symplectic integrator [22]. How-
ever, the diffeomorphism itself, calculated from the motion
of the test particles, has never been done symplectically. We
give a preliminary analysis of the cost and benefits of using
a symplectic integrator in image registration.

At first sight, the cost is a problem. The cheapest, expli-
cit symplectic integrators apply to separable Hamiltonians
of the form T (p)+V (q); Eq. (3) is not separable. Only im-
plicit symplectic integrators, notably the Gaussian Runge-
Kuttas [11], are available. These involve solving a set of

equations for s internal stages; when s = 1, we have the
midpoint rule

xk+1 = xk + ∆tf(x̄k), x̄k = (xk + xk+1)/2.

Moreover, to ensure exact symplecticity and that the solu-
tion varies smoothly with respect to the initial conditions,
the equations must be solved extremely accurately, gener-
ally down to round-off error. In most situations, it is best to
simply solve the equations by iteration

xl+1
k+1 = xk + ∆tf((xk + xl

k+1)/2), l = 0, 1, 2, . . .

after choosing some initial guess x0
k+1. If m iterations are

required then the cost per time step is ms times the cost of
Euler’s method. In initial value problems with a large time
step, as we want to use here, m can be quite large, say 5–15.

In fact, this cost penalty for initial value problems van-
ishes for optimization problems, in which we want to re-
peatedly solve the same initial value problem for a sequence
of nearby initial values. We simply store the internal stage
values as part of the orbit segment and use this as initial
guesses (e.g. x0

k+1 for the midpoint rule) when the ini-
tial conditions are changed. Most optimization algorithms
estimate the derivatives of the objective function using fi-
nite differences, which requires repeatedly altering the ini-
tial conditions by about 10−6; for these evaluations we can
solve the implicit equations in a single iteration. The er-
ror constants of the Gaussian Runge-Kutta methods are ex-
tremely small so we expect that this method could be su-
perior both for cost and accuracy. The situation is similar
to that of boundary value problems, for which Gaussian
Runge-Kutta methods are already the method of choice [2],
even for general (non-Hamiltonian) first-order systems.

For very large numbers of point particles, the cost
O(N2 + NM) of evaluating the vector field may be too
expensive. The cost can be reduced to O(N +M) using the
marker-and-cell method [12], while still using symplectic
integrators for the particle paths [7]. A regular grid with
O(N) grid points is laid over the domain and the particle
momenta interpolated to the grid. Then the velocity field
induced by the momentum field is calculated on the grid
using a fast algorithm, such as multigrid (O(N)) or Fourier
transforms (O(N log N)). This velocity field is interpolated
back to the particle positions which are then updated. This
algorithm has been implemented with enormous numbers
(more than 1 million) particles in an initial value problem
in atmospheric dynamics [7]. However, very large numbers
of point particles, which may well be required for conver-
gence to an arbitrary diffeomorphism, will introduce new
difficulties for the optimization has the problem has now
become ill-posed. Some degree of regularization, enforcing
smoothness of the initial momentum field, will be required.

As well as cost benefits, does the symplectic condition it-
self yield superior numerical properties for this problem? It



Figure 5. Chequer-board plots showing the different between the initial images of the T1-weighted brains(left), the final images (centre),
and the change between the initial and final versions of the free image (right). The registration has lined up the skulls and the major
structures within the brain, but there is still more fine-scale work to be done.

is known that it does for optimization problems in space-
craft mission design ([20]) where the integration time is
long, the displacements are large, and the errors have a
chance to build up. In image registration the integration
time is small and is held fixed; integration errors do not ac-
cumulate much, so their favourable accumulation by sym-
plectic integrators is less relevant. On the other hand, our
experiments indicate (see Figs. ?) that the error of the integ-
rator is a factor in the quality of the registration. Moreover,
the symplectic condition specifically constrains the vari-
ation of the final particle positions with respect to changes
in the initial conditions, which is exactly what we are study-
ing in the optimization problem.

Apart from symplecticity, a major benefit of the Gaus-
sian Runge-Kutta methods in other applications is their un-
conditional stability for linear problems. This often allows
the use of a larger time-step, which is exactly what we want
to achieve here.

A critical part of the whole algorithm is to generate dif-
feomorphisms. For the midpoint rule, this diffeomorphism
is given by x0 *→ x1, where x1 = x0+∆tf(q̄, p̄, x̄). There-
fore, if the midpoint rule always generates diffeomorphisms
of phase space, in this application it will generate a diffeo-
morphism of physical space. However, this is not the case.
Applied to the 1-dimensional linear test problem ẋ = λx,
the midpoint rule fails to produce a diffeomorphism when
λ∆t = ±2. (Euler’s method fails when λ∆t = −1).

To sum up, the cost considerations of using symplectic
Gaussian Runge-Kutta methods in image registration look
very promising, and these alone may turn out to support
their use. The benefits of the symplectic condition itself
are less clear; we have given several positive and negative
factors, whose relative importance we plan to determine via
experimentation.

6. Conclusions and Open Questions
We have presented a method of performing diffeo-

morphic image registration using the methods of discrete
mechanics and optimal control. The implementation de-
scribed in this paper has been demonstrated to perform
high quality registrations in reasonably short computational
time – orders of magnitude less than using energy minim-
isation methods. It is still a matter for debate whether dif-
feomorphic methods are suitable for general image regis-
tration. However, for applications where it is variation that
is of interest, for example in disease diagnosis or meas-
urement of anatomical variability, the access to a right-
invariant Riemannian metric on the diffeomorphism group
makes diffeomorphic registration methods essential.

There are a great many unanswered questions and areas
for future research. We are particularly interested in the
dynamical behaviour of the Euler equations on the diffeo-
morphism group, and how it relates to point vortices in fluid
dynamics, which act on the volume-preserving subgroups.
We have papers in preparation on precisely this topic.

However, with regard to using the method for image
registration, there are also several areas for further work.
Firstly, we are currently investigating the use of the mid-
point rule symplectic integrator, as discussed above, and a
second question that we highlighted earlier in the paper is
that of a suitable choice of metric. In this paper we have
used the Gaussian metric, which is equivalent to Hk, k →
∞. These Hk metrics have the form (1 − ε2∇2)k, which
has an inherent length-scale ε. The role of both the met-
ric and the length-scale need further investigation – there is
no guarantee that the Gaussian and any chosen length-scale
are the correct choices for any particular problem, and some
methods of comparing the results of using different metrics
on a set of different problems is currently under investiga-
tion.
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Poincaré equations and semidirect products, with applic-
ations to continuum theories. Advances in Mathematics,
137(1):1–81, 1998. 2

[14] D. D. Holm, J. T. Ratnanather, A. Trouvé, and L. Younes.
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