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Abstract

We consider systems whose Hamiltonian is of the fdiy, p) = %pz + V(g), where the potential’ is
either cubic or quartic with no cubic terms. For most of these systems (in the measure sense) we give an explicit
numerical integration method that preserbegh phase space volume and the value of the Hamiltonian. This
is exemplified in the Hénon—Heiles system. An application is to the hybrid Monte Carlo method of statistical
mechanics, where the energy preservation means that steps are never rejected, allowing the time step to be increas:
and the autocorrelation decreased.
0 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Many useful geometric integrators are explicit methods based on splitting and composition [4]. We
consider conservative systems of ODEs. To avoid discussion of the precise nature of “conservative”
systems, we immediately declare them to be those that preserve both an energy function and phase
space volume. In this paper we study explicit numerical integration methods that preserve energy and
phase space volume: the former provides a kind of nonlinear stability, while the latter provides Poincaré
recurrence, disallows attractors, and forms the basis of ergodic theory.

A preliminary study of systems preserving volume and an integral was made in [5]. In general these
systems can be written in the “skew-gradient” form

oH
K=Y Jy(x) ax(%)’
J

J
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where J;; = —Jj;, H is the (“energy”) integral, an@i,j %g—g = 0, implying that the vector field is
divergence free and hence that Euclidean volume is preserved by its flow. Furthermore, there is much
freedom in the choice af for a given system, and in many cases we can @l«%% =0 for all j. This

is the case in all our examples and we shall assume it from now on.

Prime examples of this case, of course, are given by Hamiltonian systems, which are naturally given
in skew-gradient form with constadt Although these are normally treated with symplectic integrators,
there are also arguments for preserving energy instead [10]. Another application is to noncanonical
(‘Poisson’) systems, for which Poisson integration can be extremely expensive [7]. Also, it is not obvious
whether symplectic structure plays an important role in large ergodic systems; it is ignored in statistical
mechanics, for example. Although the methods presented here apply to limited types of systems (classe:
of polynomials), energy-preserving integration is normally implicit and expensive (see, e.g., [6] and
references therein), so we feel that any such special class is worth studying.

Our method is based or*splitting” [5], the only explicit energy and volume-preserving method for
systems of a general form. We wrife= )", , JY* where

](jk)={]1m (Im) e {(jk),(kj)},
fm 0 otherwise,
to getn(n — 1)/2 two-dimensional systems

% =JUP)VH (x), 1)
in whichx; =0fori ¢ {j, k}. Each preserves the original enerfy If, in addition,

%zo for alli, j, )

8xi

then each preserves Euclidean volume. Then each is area-preserving, hence formally integrable, so on
numerical integration method is to evaluate and compose their flows. For example, the three-dimensional
Lotka—Volterra model [8] has this form:

X Xy —Xxz 0O -1 1
Z X —2Zy -1 1 O

the three two-dimensional flows are simple exponentials.

For other systems, solving the two-dimensional systems (1) in closed form may be difficult. Here we
consider situations in which they do not need to be solved.

SupposeH (x) is a polynomial that is quadratic iy andx; for all i, j such thatJ;; # 0. Then each
system (1) is effectively linear in and can be solved in terms of elementary functions. But more is
possible: we can apply the midpoint rule to (1), which preserves area, and hence (in this case) volume

1 Interestingly, this./-splitting is identical to more conventiona -splitting applied to the system written in its second
Hamiltonian form

0 Xy —xz

(—xy 0z )V(X+y+z)-
xz —yz O

Thus it may be viewed as a Lie—Poisson, Casimir-preserving method. A similar situation holds for the free rigid body.
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in R", and also energy, sind# is a quadratic function aof [1]. In practice, the midpoint rule for linear
systems is even easier to evaluate than the exact flow, is reversible, and is effectively explicit. (The
generalised Yoshida method [9,12] can subsequently be used to increase the order as desired.)

Simple mechanical systems are our main example. These are Hamiltonia (jtlp) = %pz +
V(g), g, p € R", and canonical = (f’, g). Then the two-dimensional systems (1) take the form

gi=pi» pi=—0V/dq, q;=p;=0 forj#i
For these systems the above requirement is equivalent to the condition that the pétéeptikle bi-
quadratic. (We use the woltidlquadraticeven whem > 2, i.e., to mean multiquadratic.) Systems with
biquadratic potential¥ (¢) are already a large class of systems which can be studied using this method.
For example, the famous Hamiltoniddi = p? + p3 + ¢2¢2, which was long thought to have energy
surfaces on which the flow is ergodic, erroneously as it turns out [3], is biquadratic. When energy surfaces
are unbounded (as in that case) and wheH | varies widely on an energy surface, energy preservation
may be important for long-time stability.

Now the biquadratic requirement is not such as a big restriction as it might appear, for one may be
able to apply a linear change of variables to bring more general potentials into biquadratic form. We
demonstrate below that this can be done for most (in the measure sense) cubics wi2erand for
many whem = 2—the Hénon—Heiles Hamiltonian being an example. Even for quartic potentials with
no cubic part, a large set (of codimension 1 (foe 2) or 2 (forn = 2)) can be made biquadratic.
Although expressed in terms of mechanical systems, these results also apply to any system with such ¢
polynomial integral, provided J;;/dx; =0 for alli and .

The explicit numerical integration method, where it applies, is summarised as:

(1) Write the system as = J(x)VH (x), whereH (x) is the first integralp J;; /dx; = 0 for all i, j, and
H (x) is quadratic iny; andx; for all i, j such that/;; # 0;

(2) Apply J-splitting to get two-dimensional linear systems;

(3) Integrate each with the midpoint rule, which is effectively explicit;

(4) Increase the order of the method by composition, if necessary.

2. Cubic potentials

First note that we need only examine the homogeneous cubic terms in the potential. Any quadratic
terms remain quadratic after a linear change of variables, and the kinetic energy term will transform by
the symplectic cotangent lifiy, p) — (v,2),q = Ay, p=A""z.

Proposition 1. The homogeneous real cubi@g) in n variables can be brought into biquadratic form by
a linear change of variables iff hasn real rootsay, ..., a,, linearly independent itR". This condition
holds unlesd’ takes one of the two ‘bad’ forms

Vv =(c'q)(q' Q) (3)
whereQ is a(positive or negativedefinite matrix, or
3
V=(cq)", (4)

wherec € R". The codimension of the bad cubics in the space of all cubié@ai& 2Y(n -1+ 3).
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Proof. Let V(g) = ¥, c*q:q;q¢. Under the linear change of variables = Y, a;;y;, V(y) =
V(@) =D iikimn %1 Qin Y1 ym yn, Which is biquadratic ik c*a;1a ;a1 = 0 for all 1. But this

is V(a;), whereg; is thelth column of the matrixA = (a;;). The transformation must be invertible, so
any set ofz linearly independent roots df (¢) = 0 makesV (y) biquadratic.

The set{q: V(g) =0} is a real affine variety [2]. Because the degreeVofs odd, it always has
dimensionn — 1. It always containg linearly independent points unless it is @n— 1)-plane, in which
caseV must have a linear factor, sayy. For such av to be bad, the remaining quadratic factor must
yield no new zeros. If it factors, this gives Eq. (4); if it does not factor, it must be a definite quadratic
form, giving Eq. (3).

The space of homogeneous cubics in projective space has dime(r‘@&) — 1. The linear factors

¢'q have dimensiom — 1, and the quadratic%:n(n + 1) — 1, giving the final result for the codimension
of the bad set. O

Whenn = 1, the only cubicV = ¢3 is bad.

Whenn = 2, the good and bad cubics both have dimension 3. All cubics have a linear factor, while
the remaining quadratic form may have eigenvalues of the same (bad) or opposite (good) sign. So we car
say that roughly half of the cubics are good and half bad. The cubic part of the Hénon—Heiles potential,

1 1 1
V=dtg2 — 395 = 392(345 — 43) = 302(V341— 02) (V31 + 02),
is good. For example, a convenient change of variables is generated by thelr@tsnd (1, +/3). The
full transformation and the resulting Hénon—Heiles Hamiltonian are

q=((l) k)y pz(_l/lﬁ l/oﬁ)z,

~ 1 1
H(y,2):=H(q.p) = 5(4z§ — 27120+ 23) + Eyf + Y132 + 2y3 + v/3(¥2y2 + 2y1)3).

After splitting, the two 2D linear systems are

(8)-(amn @) () (L3me) (2)-(0)
<§§>:<—4—2\/§y1 163) (Z)Jr(—yl_fl{/%yf)’ <§i>:<8>

Numerical experiments with the simplest, second order method applied to the Hénon—Heiles system
in this form confirm that it behaves as expected, and that volume and energy preservation lead to the
persistence of invariant 2-tori in the numerics.

We also did experiments on the system with= p? + p3 + g2¢3, interesting because all orbits are
bounded but can make arbitrarily large excursions from the origin. Symplectic leapfrog always blew up
when a large enough excursion happened: this occurreg=at20, 230, 170, and 1200 for time step
At =0.2, 0.1, 0.05, and 0.025, respectively, with initial conditions on the leveHset2. The explicit
energy- and volume-preserving method, however, gave qualitatively correct results for all time and for
all time steps, only degrading gradually Asincreased. (We tested up fr = 2.)

and
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Whenn = 3, the bad cubics have codimension 2 in the 9-dimensional space of cubicsypwhén
they have codimension 7 in the 19-dimensional space of cubics. Notice that the bad set is much larger
than simply counting terms:f — 1 free parameters i to be used to remove onlybad termsqf’) would
suggest.

3. Quartics

We consider Hamiltonians with quartic but no cubic terms. As above, only the homogeneous quartic
part need be considered.

Proposition 2. The homogeneous real quarfi®(q) in n variables can be brought into biquadratic form
by a linear change of variables iff hasn real critical pointsas, ..., a,, linearly independent iiR". The
codimension of the submanifold of the space of quartics where this condition hdl@sris # 2 and 2
forn=2.

Proof. Let V(g) = Y, /" qiqjquqi. There aren® ‘bad’ termsy2y, and y,, whereq = Ay. Their
coefficients are

ijkl
E cV Aim A jm A Aip = VVi(an) “dp.
ijkl

Since, for invertibility, the directions;, must be independent, we see that we n&&d(a,,) = 0,
m=1,...,n. The derivative®)V /dq; aren homogeneous cubics im variables, which do not have a
simultaneous zero unless their resultant is zero [2]. Ferwhose coefficients lie on the codimension

one submanifold where the resultant is zero, if none ofdthig¢og;’s factor (a generic condition when

n > 2), the number of zeros 67V in complex projective space is the Bézout numbert3There are

linearly independent real zeros on an open subset of this submanifold of coefficientsn\A4#Breach

of the two cubics has three (possibly complex) factors, and a vanishing resultant only means that the two
cubics have a factor in common. This, however, is not enough, as having two independent critical points
requirestwo common factors, which is codimension two in the four-dimensional space of homogeneous
quartics. O

Here is another way to view the situation. We hatéad terms to remove, and only — 1 parameters
in A to remove them with (since we operate in projective space). Thus, a codimension one ‘good’ set is the
best we can hope for. When= 2, the only good quartics aé.g: + b»q»)%(bzg1 + bago)?, which have
projective dimension 2 in the 4-dimensional space of quattigé + c1g3q2 + c2g2q2 + c3q1qs + caqs.
It is interesting that if the potential has no linear or quadratic terms, then the critical points used in
Proposition 2 are actual critical points (equilibria) of the system. The transformation locates these at the
n elementary unit vectors (e.d1,0,...,0)").

Example. Consider the family of quartics

1 1
V=7(al +4z +ag3) + 5 (aqta; + bazas + casal),
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a = £1. One factor of the resultant &V is

2abc — (aa® + b + %) — 1,
which vanishes on a codimension one set of parameters, say=an(b, ¢). On that set, when = —1
one finds thal’ has up to 4 real lines of critical points, and for open sets of valuésaoidc, V can be
put in biquadratric form. When = 1 we must distinguish two cases. If two @f b, ¢ are equal to-1,

thenV has 4 lines of real critical points and can be made biquadratic. Apart from this (codimension 2)
case, there are no real nonzero critical points Brchnnot be put in biquadratic form.

4. Application to the hybrid Monte Carlo method

In the words of Sokal [11], “Correlation functions in classical equilibrium statistical mechanics or
Euclidean quantum field theory are expectation values with respect to the Boltzmann—Gibbs probability
measurgueq(q) =e "9/ [ ¢~V @ dg.” Here V (q) is the Hamiltonian of the system. (We calMt not 4,
for compatibility with the previous sections.) The popular hybrid Monte Carlo (HMC) method produces
samples; ) by simulating the classical dynamics of the artificial Hamiltonian

1 2
H(q,p)=V(q)+§p .

(Other choices off are possible.) Referring the reader to [11] for details, the crucial features for us are
that the update proceduge (¢, p) — (¢, p’) must satisfy

(1) volume preservation, i.e., dép = 1;

(2) time-reversal symmetry, i.eRp = ¢ R whereR: (g, p) — (g, —p);

(3) Metropolis acceptance, i.€q’, p’) is accepted with probability m{, exp(H (¢, p) — H(q', p))),
otherwise it is rejected.

The acceptance step ensures that, regardless of energy errors, the sample sequence has the corre
probability distributionueq. However, if energy errors are large, then many steps will be rejected.

The final essential criterion relates to the autocorrelation tinoéthe samples. (This is the time, if it
exists, such that the autocorrelatiap,¢,:) — (gn)%> = O(e~"/*) ast — 00.) Small time steps\t may
give small energy errors and hence low rejection rates, but the samples will be highly correlated. With
samples, sampling errors af¥(z./n)?), son = O(t.) samples are required for a given level of error.

The most popular updating procedure is symplectic leapfrog. Higher order schemes are possible, as
in symplectic integration, but have not so far proved useful. With leapfrog, to keep acceptance rates
bounded means decreasing the time stepadis’4, whereVol = L? is the volume and. the linear size
of the system with dimensio#. To stopz. increasing too much, samples are only taken e@@¢y/ Ar)
time steps, at which point the momenta are ‘refreshed’ (replaced with new Gaussian random values).

Our primary observations are that

e it is not necessary that the update be symplectic, merely volume-preserving (for the effect of
symplecticity becomes decreasingly importanfas- oo for ergodic systems); and

e it is not necessary that the update follow the classical dynamiés aff all; this is only a device for
staying close to the energy surfalle= const.
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Therefore, a volume and energy preserving update, such as the one presented here, has two enormot
advantages:

e energy preservation means that steps are never rejected (the energy does not even need to b
evaluated); and

o the time step can take any value, since the errors in the classical dynamics due to the finite time step
are irrelevant.

This allows enormously much larger time steps, resulting in much less correlation between samples. One
can also use different (e.g., large and random) time steps on each piéde thfe J-splitting, to further
decorrelate the samples. Any refinement which applies to leapfrog HMC may apply here too.

Assessing the value of this method is difficult because of the difficulty of measuring autocorrelation
times accurately [11]. At present we have only tested the method on the Gaussian modgl wwith
> (gis1 — g1)%, g0 = —qn+1, fOr whichz. can be evaluated analytically. (If the updateis= Aq + Bp,
thent, = —1/In Amax(A).) In this case we find that usingsplitting, and minimising, with respect to the
time stepAr, gives autocorrelation times very close to those using the exact flow of the HamiltBhian
In such a case

e Steps are never rejected, giving a speedup factor of about 2; and
e One large Ar = O(1)) time step can be taken, giving a speedup facta® 6fol/4).

The great limitation of this method, of course, is that it only applies to special systems. It does not apply
to theg* model, for example, for the potenti®il(q) = 3" ¢ has only the trivial critical point and hence
cannot be made biquadratic. (One could still update using the exact flows of the 2D systems resulting
from J-splitting; these involve inverse elliptic functions.) However, when it does apply, we essentially
have the advantages of an infinite-order method with no increase in cost. The potential gains are great, sc
we suggest that it may be worth studying the statistical mechanics of systems with biquadratic potentials
in their own right via this method.
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