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Abstract

We determine optimal stability polynomials p(x) for splitting method solutions of differential equations,
building on previous work by Lépez-Marcos, Sanz-Serna and Skeel (1996). The methods have a variety of stage
numbers and are up to eighth order. Knowledge of p(z) allows construction of the most stable splitting methods
for given complexity. As an illustration, we construct symplectic corrector algorithms (C~! K'C, where the kernel
K is an m-stage splitting method) which approximate the solution of linear Hamiltonian systems. The kernels
K that realize the optimal stability polynomials are found for this case. We also discuss the construction of
correctors C, and find them for two particularly promising kernels. Numerical calculations for a time-dependent
Schrodinger equation problem confirm the methods’ usefulness. ® 1997 Elsevier Science B.V.

1. Introduction

Splitting methods for numerically integrating differential equations, while having a long history, are
still common and useful tools in many physical applications. There are two good reasons for this. First,
many such methods are simple and easy to implement, e.g., the leapfrog (Verlet, Stormer) method
which is a staple of large scale molecular dynamics simulations. Second, important mathematical and
physical properties of the differential equations can be preserved by splitting methods. In the leapfrog
example, the symplectic structure is preserved [10]. Splitting methods are based on splitting the vector
field of a differential equation into a sum of two solvable (or at least easier to handle) parts A and B,
and then approximating the exact time evolution as a composition of time evolutions of the parts.
An m-stage splitting method is of the form

Mm(T) = ]VIA(amT)]\JB(me) e ]\/fA(azT)MB(sz)MA(alT)]\fB(blT), (1)
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where M4 and Mg are the evolution operators for A and B individually. (See [5,8] for surveys of
splitting and composition methods.) If M (7) is the exact evolution operator for the full problem,
i.e., the operator that takes a vector z from time ¢ to ¢t + 7, then the 2m coefficients ay, by of the
splitting method are chosen in some fashion as to ensure M,, =~ M. It is common to choose the
coefficients such that M,,(7) = M(r) + O(r™*1), i.e., such that the method is accurate to order n
in the time step. However, another important issue is stability. Typically, (1) will be unstable for a
given A and B for 7| > 7*. Often methods with relatively high orders n, exhibit such small 7*
as to be practically useless. The aims of this paper are to show how the theoretically best possible
stability can achieved for splitting methods with a variety of orders and stages applied to a certain
class of problems, and to develop some new splitting methods for linear Hamiltonian systems using
these ideas.

To test the stability of the integrator (1) one linearizes it around some state and finds the time steps
for which all initial conditions remain bounded for all time, i.e., for which all eigenvalues A of M, ()
have |A| < 1 and if |A| = 1, then this eigenvalue has equal algebraic and geometric multiplicities.
(In practice we simply demand unit multiplicity.) However, the stability depends on the state about
which one linearizes. Simple methods, such as leapfrog, may show “average” stability when applied
to a variety of problems. If stability is optimized about a particular state, then this method may show
no better (or even worse) stability when applied to a different state. For a given state, the choice of
splitting also affects A and B and hence influences the stability.

Here we consider the stability of (1) applied to the harmonic oscillator with standard (g—p) splitting.
This leads to optimal stability methods for any problem in which A and B, when linearized about some
state, are simultaneously diagonalizable (i.c., their matrices commute). Although our motivation was
the development of efficient methods for the Schrédinger equation, given below, the ideas and methods
here apply to a wide variety of spatially discretized Hamiltonian partial differential equations (PDEs).

We are not the first to develop “maximal stability” methods in this context: Lépez-Marcos et al. [3]
developed an interesting order n = 4 method using a similar approach. Our stability polynomial results
may thus be viewed as an extension of their approach to arbitrary order n and stage number m. For
example, we find explicit “stability polynomials” up to n = 8. These polynomials determine the best
possible stability that any method of this class can have in principle; once this is known one can
search for methods that actually achieve this theoretical limit.

In particular, we develop suitable splitting methods for the discretized form of the time-dependent
Schrédinger equation [2]. Such discretized partial differential equations can be of sufficiently large
dimension that direct determination of all the eigenvalues and eigenvectors of the linear system is not
possible, which then makes numerical solutions of the linear differential equation an important tool
for determining physical observables. We study “symplectic corrector methods” [1,4,6,11]1, C"'KC,
where the kernels K and correctors C' are both of the form of (1). The advantage is that the cor-
rector need only be rarely (or, depending on the physical information desired, never) applied, and
does not affect the stability, since it is only a change of variables. Thus we first determine K to
have the known optimal stability, and then determine certain correctors C' based on accuracy require-
ments.

To sum up, we

e determine optimal stability polynomials (Section 2): these determine the best possible stability

for any splitting method applied to the Hamiltonian & = T'(p) + V(q), where the linear parts
T"(0) and V”(0) commute;
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e determine kernels K that realize this optimal stability for the time-dependent Schrodinger equation
(Section 3);
e determine correctors C' that give the whole method the desired order (Section 4).
Finally, Section 5 presents some numerical results.

2. Stability polynomials

Consider a Hamiltonian system with Hamiltonian h = T'(p) + V(g), which we solve numerically
with a splitting method of the form
Pk = Pr-1 — beTVV(gk-1), b=l m. ®
@ = Q-1+ ax7VT(p),
Suppose ¢ = p = 0 is a fixed point, and the linear parts V"/(0) and T”(0) commute. Then there are
coordinates in which they are both diagonal, and in those coordinates the linear part of the Hamiltonian
decouples into systems of the form h = J(ug? + Ap?). Assuming p, A > 0 so that the fixed point is
elliptic, we can rescale ¢, p and time to bring the Hamiltonian into the form ~ = %(q2 + p?). The new
time is z = t4/Ap. Thus, to study stability in this case it suffices to consider the harmonic oscillator.
Let z = (g, p)T and write the exact solution as

cosz sinzx
2(x) = M(x)z(0), M(z)= (_ sin 2 cosa:) 3)
and the numerical solution for an m-stage splitting method, from (1), as
m
1- aibixz a; T
(o) = Ma(@3(0), Mnla) =] (150 7). @

i=1

where we now think of x as the scaled time step.

The exact evolution operator M (z) has the following properties:

(M1) M is area preserving, i.e., det M =1 for all z;

(M2) M is elliptic, i.e., [tr M| < 2 for all z;

(M3) M has eigenvalues e*%;

(M4) M is orthogonal, i.e., MTM = I for all z.

(M1), the symplectic property, is essential in long-time integrations and is ensured by the use of the
splitting method. (M2) is also essential, for otherwise lim,_,», M™ = oo and the solution z blows up.
The numerical evolution operator M,,(x) will not satisfy this for all z, but only

ItrMm(a:)| <2, |z| < z¥, &)

where z* is the stability limit. Practically, time steps 7 for a stable numerical solution must be less
than 2* /| H|max, Where |H |pmax is the maximum eigenvalue product /Ay of the Hamiltonian. (M3) is
less important: getting the eigenvalues slightly wrong only introduces a phase error into the solution,
which is impossible to avoid in any event. (M4) is also less important: if (M1) and (M2) are satisfied,
but not (M4), then the phase portrait of the numerical solution consists of ellipses instead of circles.
In the application to the Schrodinger equation (see Section 5), this leads to errors in the norm of the
solution.
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It is easy to see that tr M, (z) is an even polynomial of order 2m. Defining the stability polynomial
as p(z) = %trMm(x), then a necessary condition for M,, to be accurate to order n is

n/2

p(z) =Z(—1)’(2—jj)!+ > g, (6)

3=0 j=n/2+1

where for simplicity we have taken n even.

The ¢; coefficients in p(z) are dependent on the particular choice of splitting method coefficients
ak, by. The best possible choice of splitting method coefficients in terms of stability, as recognized by
Lépez-Marcos et al. [3], is the one that yields ¢; coefficients such that p(x) has the largest possible
associated stability limit z*. Therefore one approach is to first determine the optimal c;, and then try
to devise splitting method coefficients that lead to these c; (as well as satisfy the order conditions).

The problem of determining the c; is a straightforward optimization problem which in principle can
be solved completely. (In practice, however, issues of numerical precision and stability can make this
task tricky when m becomes large.) To get |p(z)| < 1, one should make p(z) turn as often as possible;
but some turning points are fixed by the given Taylor series. Local optima are obtained by using the
c; to make |p(z;)| = 1 exactly at m — n/2 turning points z;, and experimenting with various values
of m and n suggests that these are global optima. That is, one first solves

p(mz) = il) p/(x’t) = 07 = 1," -,m —'n,/2, (7)

for ¢; and z; and then finds the stability of this p(z). Egs. (7) are 2m — n equations in 2m —n
unknowns. They are linear in the c;, so in practice one solves half of them analytically for the ¢; and
then searches numerically for solutions of the remaining polynomial system in the x;.

How many turning points should be fixed by (7)? Since p(z) is even and has a maximum at z = 0,
it can have at most m — 1 turning points in z > 0. The worst case is when all of these have to be fixed
by (7); but as n increases, the Taylor polynomial approximation to cos z has more turning points that
approximate those of cosx anyway.

Consider the turning point of cosz at x = 7. Note that

n/2 2 _1\n/2+1 y
Z(—l)’ (;j)‘ =cosT — g‘(nli-—l)‘ /(:c — &) cos € de. (8)
= ! b

So when ¢; = 0, p(r) < —1 if n/2 is odd and p(7) > —1 if n/2 is even. In the latter case, we can
hope that the imposition of (7) does not push p(z) below —1 near z = 7, and thus drop this minimum
from (7). This makes n = 4, 8 better than n = 2, 6. (Unfortunately the Taylor polynomial for n = 6
does not have a maximum near z = 27, so all turning points must be fixed by (7).)

Example. n = 4 (fourth order). For m = 2 we have p(z) = 1 —22/2+2*/24 so z* = V12 = 3.464.
For m = 3 we have p(z) = 1 — 22/2 + z*/24 + cz® and we solve

p(l’]) =1, pl(xl) =0, &)
giving

c=-1/1152, =z, =2V6
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Fig. 1. Optimal stability polynomials for methods of order 4. The optimal polynomials p(x) (see (6)) for m = 2, 3, 4 and
5 are shown. Points at which p(x) is constrained to + 1 are flagged.

Table 1
Optimal stability interval z* for m-stage, nth order methods
m n
2 4 6 8
2 4 3.464
3 6 5.695 2752
4 8 7.782 4.837 4.635
5 10 9.828 6.762 6.636
6 12 8.663 8.570

and stability limit z* = 2(21/3 4 22/3) = 5.695. This is the stability polynomial determined by Lépez-
Marcos et al. [3]. For m = 4, we enforce a maximum at x; = 27, a minimum at z; = 37, and find the
stability limit z* = 7.782. This p(x) has a minimum at p(2.96) = —0.874, illustrating the argument
in the previous paragraph. These polynomials, as well as that for m = 5 (which has z* = 9.828), are
shown in Fig. 1.

Note that for large z, the methods have poor phase accuracy. In the last example, at z = 2.96
the eigenvalues of the numerical evolution operator are e*>634 instead of the exact e¥2%! from
property (M3) (because cos“l(—0.874) = 2.634). Suitable applications for such a method will have
small amplitudes in the fast (large z) waves, such as discretizations of PDEs with smooth solutions.
The fast waves are only present in the discretization to ensure that the slow waves are accurately
represented. We need only ensure that they do not destabilize the whole calculation.

When m is large, solving (7) becomes difficult. We used a mixture of analytic and numerical solution
procedures, namely Newton’s method and a continuous variable simulated annealing algorithm [9].

Table 1 gives the optimal stability limits =* for various m and n, and Table 2 gives the stability
polynomials themselves. For order n = 2, the best one can do is to take m steps of leapfrog. For
fixed m, increasing the order n probably always makes the stability worse, as more control is needed at
z = 0 and we have one turning point less to play with. Conversely, for fixed order n, but increasing m,
one can achieve greater stability.

More significantly, consider m /z*, the last column of Table 2. m/z* is proportional to the amount of
work to integrate for a unit time with maximum stable time step, and represents the relative minimum
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Table 2

Various m-stage, nth order stability polynomial coefficients ¢;, j = n/2+1,...,m, their associated optimal stabilities, z*,
and relative minimum efforts, m /x>

n m ¢ z” m/x”
2 m 2m 0.500
4 2 none 3.464 0.577
4 3 —1/1152 5.695 0.527
4 4 —0.110982534333366 - 1072 7.782 0.514

0.921635062636551 - 1075
4 5 —0.121407893685527 - 10~2 9.828 0.509
0.144168151282747 - 10™*

—0.598566579684913 - 10~

6 3 none 2.752 1.090
6 4 0.2228473740133193 - 10~* 4.837 0.827
6 5 0.2421736241649607 - 10~* 6.762 0.739

~0.1968158553850286 - 10~°
6 6 0.246107452341319 - 10~* 8.663 0.693
—0.247651892109466 - 10~

0.111265369266638 - 108

8 4 none 4.635 0.863
8 5 —0.2140483644066403 - 10™° 6.636 0.753
8 6 —0.2556649778998596 - 10~¢ 8.570 0.700

0.1190911947435882 - 1078

effort of the method. For example, the method with the smallest m/z* can be run with the least
numerical work. The theoretical limit for m/z* is %, which is achieved by the leapfrog method, and
this is another important reason for the popularity of the leapfrog method. However, leapfrog is only
of order n = 2, and Table 2 shows that we can find quite reasonable m/z* values with n = 4, 6
and 8. For example, m/z* is only slightly greater than % for the n = 4 cases, and we can find
n = 6 and 8 cases with just a 40% increase in m/z* to about 0.7. For comparison, note that m/z*
is typically greater than unity for many high order splitting methods (see [2, Table II]). Table 2 also
shows that for fixed n, m/x* decreases as m increases. (Indeed, it is interesting to conjecture that as

m — 0o, m/x* — %.)
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3. Determination of kernels

We now restrict our attention to linear systems, because of our planned application in Section 5.
We identify linear maps with the matrices that represent them in the chosen coordinates.

The symplectic corrector algorithm [1,4,6,11] approximates the time evolution of a Hamiltonian
system by C~! KC, where the kernel K is a symplectic mapping but C, the corrector, may or may not
be symplectic. Because C~!KC is similar to K, the eigenvalues and the stability of such a method
are determined only by the kernel K. Therefore in generating a suitable algorithm, one might wish to
first determine kernels K with the same stability as the stability polynomials discussed above. In fact,
the eigenvalues are the only invariants of the method, so if we get these correct to order n, there exists
a corrector C to give the whole method order n. The minimum number of stages for a given order,
namely n/2, is much smaller than in the general composition problem. At n = 8 we need 4 stages
instead of the 15 required in general. This is because we consider only linear Hamiltonians, and use
correctors.

We now discuss how to obtain the 2m coefficients ay, by if the kernel K is taken to be the
m-stage algorithm (2). Recall that tr M,,(z) is an even polynomial of degree 2m with m independent
coefficients (its constant term is always 1). These coefficients are functions of the 2m parameters
ar and b;. Matching %trMm(as) to (6) (with known coefficients from Section 2), gives m equa-
tions. Solutions lie on m-manifolds, but we found that there was no harm in imposing the symme-

try [5.7]
ag :bm+l—k’ k= 11-~'am7 10)

which leads to isolated real solutions. The above symmetry leads to K(—z) = K(z)T.

(One can also consider another symmetry, often known as time-symmetry, namely K(z) =
K(~z)~! [3,12]. This can be imposed instead of (10). It turns out that (m + 1)-stage time-symmetric
methods can have an a; = 0 or b, = 0 so that the (m + 1)-stage method is comparable in effort to
an m-stage method of the form (10). It seems that the best m-stage solutions with (10) are compara-
ble to the best (m + 1)-stage time-symmetric solutions, although we have not explored this point in
detail.)

As with the determination of the stability polynomial coefficients, some care must be exercised in
solving the polynomial equations, particularly for m > 6. For a given m, n combination, there can be
several isolated solutions. We choose those with smallest max |bg|, i.e., solutions with relatively small
time steps between stages, for further study. Table 3 lists several interesting kernels we have found in
this manner.

We would like to draw the reader’s particular attention to the method with m = 3 stages and
order n = 4. This is a very stable and accurate method with very simple coefficients (£1/1/24 and 1)
which we have found very useful in applications (see Section 5).

4. Determination of correctors
Now that we have determined several kernels K suitable for use in a symplectic corrector algorithm,

we move on to illustrate one approach to finding correctors C. For simplicity, we choose C' to also
be of the form of an m.-stage composition method: for k = 1,...,m,
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Table 3
Selected m-stage, nth order kernels. Only the m by values are listed since ax = bpt1_k. The stability «* and relative
minimum effort m/z* are also listed for reference

n m bx z* m/z*
4 3 1/v24, —1/v24, 1 5.695 0.527
6 3 ~0.1591975399846911 2.752 1.090
0.5098105229662746
0.6493870170184167
6 5 0.308242839898840 6.762 0.739

0.193663909022838

0.112814793505401
0.317306586332861

0.293601458250863

8 4 —0.1105491302584067 4.635 0.863
0.927118860716406
—0.1860052895683256

0.3694355591103265

8 5 —0.0569276507744276 6.636 0.753
—0.3591147800584599
0.1709468364771231
1.070147265470851

0.1749483288849129

Pk = Pk—1 — TBxVV (gr—1),

1n
gk = Qk—1 + TAVT (pr).

This has two advantages. First, C ! is then also an explicit method of the same form as above.
(It is merely the reverse.) The second advantage is that then the full symplectic corrector algorithm
C~1KC may also be re-expressed as an (m +2m,)-stage splitting method [2], so that relatively minor
modifications of our codes for finding K may be employed. Note, of course, that the kernel coefficients
will be fixed at their (optimal) values, and only the 2m, corrector coefficients are unknown. (We do
not force any symmetries on the coefficients of the correctors.)

In related work, Gray and Manolopoulos [2] carried out some very similar manipulations, and fit
the corresponding M, 2m, to the exact evolution operator M to various orders n. Another approach,
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Table 4
Correctors for two of our n, m kernels. In both cases we chose m. = 2 so that only four
parameters define each corrector

n m Ag By

4 3 0.4597304329110349 0.1701630351972254
0.1513593913470135 0.532678498596960

6 5 0.965578471522036 - 1072 0.382873441436599
0.214834477794471 —0.309293457591468

which is simpler in several ways, is to recall property (M4) above and fit R = MTM = I. Essentially,
this uses the fact that any elliptic area-preserving map of the plane can be conjugated by a change
of variables to a rotation. The change of variables we seek is the corrector, C. The elements of R
are polynomials in x. Since the overall method is symplectic (det My, 42,,. = 1), and has the correct
trace to order n, one need only fit Rj; to 1 and Ry to 0 to some order ngr in x, with the other
two components then automatically satisfying the order conditions. The details of this procedure are
straightforward and similar in spirit to fitting to the components of M [2].

There is considerable flexibility in defining correctors C. One must decide on a suitable number of
corrector stages, m., and the order to which the method will be approximately orthogonal, np. For
simplicity, we choose m. and np to give isolated solutions. If we find several solutions for a given
m. and n g, we take the one which minimizes |R(z) — I| over the whole interval 0 < x < z*.

Table 4 lists correctors found for our m = 3, n =4 and m = 5, n = 6 kernels. In both cases we
chose m, = 2, which then turns out to imply that ng = 5 for the corrector solutions to be isolated.
Considerably more work could be devoted to choosing correctors for these kernels. Even without this,
we obtained excellent accuracies (and of course stabilities) in our test application in Section 5.

5. Application: discretized time-dependent Schriodinger equation

For development of the stability polynomials of interest, it suffices to consider the linear Hamiltonian
system of 2N equations,

P= _Hq7
—g=H
di b,
which is generated from the (conserved) Hamiltonian
h(g,p) = 3(p"Hp+q"Hqg). (13)

The column vectors ¢ and p each have N components, and H is assumed to be an N x N real
symmetric matrix. (The discretized time-dependent Schrodinger equation can be written in the above
form [2].)

A splitting method solution, (2), in this case is of the form, for k =1,...,m,
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Fig. 2. Accuracy/effort plots associated with the test problem of [2]. Effort is taken to be the number of stages, m, multiplied
by the number of time steps to propagate over a time period 7.. The accuracy measure is the root mean square error associated
with a time correlation function, and is a measure of the phase error. Curve A corresponds to the usual leapfrog method,
curve B is our m = 3, n = 4 symplectic corrector and curve C is our m = 5, n = 6 symplectic corrector. (The leapfrog
results, of course, are calculated by assuming an effective stage number of one.)

Pk = Pk—1 — ThHgp—1,
! ! (14)

gk = qk—1 + TapHpy.

The stability limit will be 7 < £*/|H|max, Where |H|max is the maximum absolute magnitude eigen-
value of H.
As discussed in detail in [2], the discretized time-dependent Schrodinger equation,

.d
i< (t) = Hy(), (15)

is equivalent to the Hamiltonian system h = %(pTH p + qT Hq) when one identifies Re ¢/ with ¢ and
Re with p. H is an N x N symmetric matrix that results from the discretization of the underlying
partial differential equation. We implemented the test problem given in [2], which is a relatively small
problem with N = 128 that results when a particle in a certain one-dimensional potential problem is
discretized.
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We considered the time evolution of an initial condition corresponding to a Gaussian function
displaced from the equilibrium position of the potential [2]. The resulting wave packet ¥(t) then
exhibits beat frequencies consistent with the twenty-four bound states in the problem. A measure
of the phase error is obtained by considering the correlation function, S(t) = (¥(0) | ¥(t)), and
calculating the corresponding root mean square error relative to a completely converged calculation
over a time span from 0 to 507, where 7. is the period of oscillation associated with the harmonic
approximation to the potential [2]. Fig. 2 displays the corresponding phase error calculated when the
above equation is solved with the leapfrog method, the m = 3, n =4 andthe m =5, n =6
symplectic correctors defined in Tables 3 and 4. The m = 3, n = 4 symplectic corrector has a
minimum effort on the scale shown that is almost indistinguishable from that of leapfrog, yet provides
more than an order of improvement in accuracy. Actually, the n = 4 method of Lépez-Marcos et al. [3]
gives almost identical performance in this example, and the m = 3, n = 4 symplectic corrector of
Gray and Manolopoulos [2], while not optimal, is also similar. Our work shows, however, that higher
orders and significantly greater accuracy can be achieved with surprisingly modest increases in effort.
For example, Fig. 2 also shows our m =5, n = 6 symplectic corrector results, which show a further
order of magnitude improvement.
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