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N-particle dynamics of the Euler equations for planar diffeomorphisms
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zIIS&T, Massey University, Palmerston North, New Zealand
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The Euler equations associated with diffeomorphism groups have received much
recent study because of their links with fluid dynamics, computer vision, and
mechanics. In this article, we consider the dynamics of N point particles or
‘blobs’ moving under the action of the Euler equations associated with the
group of diffeomorphisms of the plane in a variety of different metrics. This
dynamical system is already in widespread use in the field of image registration,
where the point particles correspond to image landmarks, but its dynamical
behavior has not previously been studied. The 2-body problem is always integr-
able, and we analyze its phase portrait under different metrics. In particular, we
show that 2-body capturing orbits (in which the distances between the particles
tend to 0 as t!1) can occur when the kernel is sufficiently smooth and the
relative initial velocity of the particles is sufficiently large. We compute the
dynamics of these ‘dipoles’ with respect to other test particles, and supplement
the calculations with simulations for larger N that illustrate the different regimes.

1. Introduction

The Euler equations for planar diffeomorphisms are

_mþ u � rmþ ruT �mþmðdiv uÞ ¼ 0, ð1Þ

where _m denotes differentiation with respect to time, u(x, t) (u, x 2 R
n, t 2 R) is

a velocity field, and m(x, t) its associated momentum. The velocity u and momentum
m are related by

m ¼ Au ð2Þ

where A is an elliptic operator (e.g., A ¼ ð1� r2
Þ
k) called the inertia operator.
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Euler equations such as equations (1) and (2) have a natural geometric origin,
which we sketch here although these details are not needed in the article. Let G be a
Lie or diffeomorphism group with Lie algebra g. Let G be equipped with a left- or
right-invariant metric that restricts to a metric hh, ii on g. Typically, this metric is
defined by a linear inertia operator A : g! g

� via

hhu, vii :¼ hu,Avi: ð3Þ

The geodesic equation on TG can be reduced to give a noncanonical Hamiltonian
evolution equation on g called the Euler–Poincaré equation, or transferred (via the
Legendre transform, g! g

�, which in this case is u! m :¼ Au) to a Lie–Poisson
system on g

� called the Euler equations

_m ¼ �ad�
A
�1m

m, ð4Þ

where the sign is þ for left- and � for right-invariant metrics.
The most famous Euler equation on a Lie group is the equation of motion of a

free rigid body (G ¼ SOð3Þ, m ¼ body angular momentum). An infinite-dimensional
example is the Landau–Lifshitz equation on the loop group G ¼ C1ðR,SOð3ÞÞ.
Examples on diffeomorphism groups include the Euler fluid equations on the
group G ¼ DiffvolðR

n
Þ of volume-preserving diffeomorphisms with respect to the

L2 metric (m ¼ vorticity) [5], the Camassa–Holm equation (G ¼ DiffðS1
Þ, H1

metric) [6], and the second-grade fluid equations (G ¼ DiffvolðR
n
Þ, H1 metric) [16].

Equations (1) and (2) are the Euler equations for G ¼ DiffðRn
Þ with right-invar-

iant metric (see [7, 15] for further details). It has been used recently (as the averaged
template matching equations [13, 15] and the geodesic interpolating clamped-plate
spline [12]) to align groups of medical images for use in automatic diagnosis. Pairs of
images are smoothly interpolated by diffeomorphisms satisfying equation (1).
Various metrics have been used, including Gaussian [8] and Hk [12] metrics.

A striking feature of Euler equations on diffeomorphism groups is that they
admit (formally, at least) exact solutions in which the momentum is concentrated
at a finite set of points, which we call particles. For fluid equations these are
point vortices, which are widely studied both in their own right and as a means of
approximating the evolution of smooth or other vorticities. For the full diffeomorph-
ism group these point particle solutions are used in the image registration problem
[18, 12] and in this article we undertake an initial study of their dynamics. At first
sight it is remarkable that a PDE should have such a finite-dimensional reduction,
unrelated to symmetry or integrability. (Such a reduction, however, is not unique
to Euler equations. On the other hand, there are many particle-based numerical
methods, collectively known as Smoothed Particle Hydrodynamics [14], which are
not exact solutions of the PDE they approximate.)

For the 2D and 3D Euler fluid equations, convergence of the point vortex
solutions to solutions for smooth initial data has been established [1]. The speed
of convergence can be improved by smoothing out the point vortices to vortex blobs
[4], even though the (e.g., Gaussian) blobs are no longer an exact solution of the
Euler equations. Instead, their evolution can be regarded as that of delta-functions
under a slightly different inertia operator. Altering the shape of the blob is equivalent

270 R. I. McLachlan and S. Marsland
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to altering the metric; see section 3. In this way we are lead to consider a wide class

of metrics. For an introduction to many-body problems, particularly arising in

Newtonian and relativistic mechanics, see [2]. Point vortices defined over Dirac

delta-functions, and the regularised version, vortex blob methods, are introduced

in [4]; see [10] for a review of their use.

In contrast to the Euler fluid case, point particle solutions (as we term the solutions

of equations (1) and (2) for diffeomorphisms of the plane) do not appear to evolve

naturally from smooth initial data, and they may not constitute stable initial data.

(Instead, bump-like initial data appears to evolve towards momentum sheets, not

particles [8, 9].) Nevertheless, their dynamics are interesting and worthy of study not

just because of their application in image registration, but also because they are

a mathematically natural class of N-body systems that has never before been studied

and they can be used as a numerical method to approximate smooth initial data,

just as point vortices can. Indeed, convergence of this method has recently been

established in the 1D, H1 metric case (the Camassa–Holm equation) [3].

The inverse of the inertia operator A is given by convolution with the Green’s

function G of A, i.e., u ¼ G �m, where � denotes convolution and AGðxÞ ¼ �ðxÞI for
x 2 R

n. We shall only consider rotationally invariant and diagonal A; in this case

GðxÞ ¼ GðkxkÞI for a scalar function G which we call the kernel of the metric.

We begin the article by explicitly computing the Hamiltonian for the case of

N particles, and computing the equations of motion in terms of the kernel.

Following this, in section 3 we use delta-function particles and Helmholtz-style

inertia operators to find the kernels Gk corresponding to Hk metrics. The limit of

these, H1, corresponds to a Gaussian kernel for delta-function particles, where the

inertia operator tends to expð�"2r2
Þ. We show how even when blobs are required,

rather than particles, we can still consider delta-function particles through a change

in the inertia operator.

We then shift our attention to the case N ¼ 2, and examine the simplest possible

interaction of particles. This two body problem is always integrable. We derive the

reduced Hamiltonian and consider how the particle dynamics change for different

metrics. The most striking feature of the dynamics is the phenomenon of particle

capture, in which particles cohere or stick together. In a typical capture orbit, the

distance between two particles is Oðe�atÞ as t!1, but there is no actual collision.

We identify the regimes of capture and (more familiar) scattering orbits. For

different metrics, we also show the phase portraits of the dynamics, and the appear-

ance of typical scattering orbits. The analysis shows that the phase portrait depends

sensitively on the behavior of G close to r ¼ 0. Only when the kernel G is smooth at

r ¼ 0 and the relative initial velocities of the particles are sufficiently large will the

particles capture each other, otherwise they scatter. For the cases k � 2 the Green’s

function is not sufficiently smooth to typically allow capture orbits.

Following this, in section 5 we consider the case k>2, so that the kernel is

sufficiently smooth to allow capture orbits for two particles, and show how the

dynamics of a set of N particles varies as the particles approach each other.

We study the behavior of ‘dipoles’, as we term pairs of particles that reach the

limiting state of capture, and show a typical orbit for a group of 20 particles. We

conclude with a summary of the differences between the particle dynamics studied

here and that of point vortices, and identify a number of questions that remain open.

271N-particle dynamics of the Euler equations
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2. N-particle systems

The Hamiltonian for the Euler equation (4) is the kinetic energy

H ¼
1

2

ð
hhu,miidxdy ¼

1

2

ð
mA�1m dxdy: ð5Þ

Under the particle ansatz

mðx, tÞ ¼
XN
i¼1

piðtÞ�ðx� qiðtÞÞ, ð6Þ

( piðtÞ, qiðtÞ 2 R
2 for each i) the Hamiltonian becomes

H ¼
1

2

XN
i, j¼1

pi � pjGðkqi � qjkÞ: ð7Þ

Solutions to (4) of the form (6) obey Hamilton’s equations for (7), in which the
components of qi and pi are canonically conjugate variables (see [11] for further
details). Here q1, . . . , qN represent the positions of the N particles, and p1, . . . , pN
represent their momenta.

There are two immediate differences from the analogous system for point vortices
in the Euler fluid equations: the number of degrees of freedom is 2N instead of N,
and, to get well-defined ODEs, the inertia operator A must be chosen so that G(0)
is finite. (For point vortices, GðrÞ ¼ � logðrÞ=ð2�Þ, but the infinite self-energy of each
particle can be ignored.)

The equations of motion are

_qi ¼
XN
j¼1

Gðkqi � qjkÞpj,

_pi ¼ �
XN
j¼1
j 6¼i

ð pi � pjÞG
0ðkqi � qjkÞ

qi � qj
kqi � qjk

:

ð8Þ

They have four conserved quantities: the energy H, the linear momentum
PN

i¼1 pi,
and the angular momentum

Pn
i¼1 qi � pi. These are sufficient to ensure the

integrability of the two particle problem, which is discussed in section 4. However,
the dynamics of these 2-body problems are very different from more familiar ones on
flat configuration spaces, like the Kepler problem. Also note that equations (8) are
not Galilean-invariant; their dynamics depends on the linear momentum.

272 R. I. McLachlan and S. Marsland
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3. Blobs and kernels

The Euler equation for DiffðRn
Þ and inertia operator A is given by (1) and (2).

Applications to fluid mechanics often consider a related equation, the regularized
Euler equation, for both numerical and analytic purposes. The regularization can be
viewed in several different ways, but all give the same equations of motion: (i) the
delta-function particles of momentum (or vorticity) can be replaced by smooth
blobs; (ii) the kernel can be smoothed; or (iii) the inertia operator can be modified.

First we derive an expression for the kernel for standard delta-function particles
in R

2. The Green’s function G(x) is defined by AGðxÞ ¼ �ðxÞ. Taking Fourier
transforms gives ~að!ÞeGð!Þ ¼ 1, where ~a is the Fourier symbol of the operator A.
Our main example will be the operators

Ak :¼ ð1� �2r2Þ
k, ð9Þ

with Fourier symbol

~að!Þ ¼ ð1þ �2k!k2Þk: ð10Þ

For rotationally-invariant A, we have that ~að!Þ is a function of k!k, and we write
(with an abuse of notation) ~að!Þ ¼ ~aðk!kÞ and GðxÞ ¼ GðkxkÞ. In this case

GðxÞ ¼
1

2�

ð1
�1

ð1
�1

1

~að!Þ
ei!�x d2!

¼ Gðkxk, 0Þ

¼
1

2�

ð1
0

ð2�
0

1

~að�Þ
eikxk� cos �� d� d�

¼

ð1
0

1

~að�Þ
J0ð�kxkÞ�d�

ð11Þ

(the last line being an inverse Hankel or Fourier–Bessel transform [17]).
Now suppose the delta-function momentum is replaced by a rotationally-

invariant blob f ðkxkÞ of momentum which induces a velocity field Gf determined
by AGf ðxÞ ¼ f ðkxkÞ. Proceeding as before gives eGf ð!Þ ¼ ~f ð!Þ= ~að!Þ and

Gf ðxÞ ¼

ð1
0

~f ð�Þ

~að�Þ
J0ð�kxkÞ�d� ð12Þ

where ~f ð!Þ is the function of � ¼ k!k given by the Hankel transform of f [17]:

~f ð�Þ ¼

ð1
0

f ðrÞJ0ð�rÞr dr: ð13Þ

273N-particle dynamics of the Euler equations
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Comparing eGð!Þ ¼ 1= ~að!Þ with eGf ð!Þ ¼ ~f ð!Þ= ~að!Þ ¼ ~f ð!ÞeGð!Þ shows that
Gf ¼ G � f; that is, replacing the delta function particles by blobs is the same as
using delta functions with a smoothed kernel.

Finally, since the Hankel transform of a delta function is 1, we have that con-
sidering an inertia operator with symbol ~að�Þ together with blobs of symbol ~f ð�Þ
is identical to considering an inertia operator with symbol ~að�Þ= ~f ð�Þ together with
delta-function particles (such operators are typically pseudo-differential). We will
therefore henceforth consider, without loss of generality, delta function particles.

For numerical simulations it is convenient to have an explicit form for G(r).
In addition, it turns out that the dynamics of the 2-body problem depends sensitively
on G(r) near r ¼ 0. G(r) is negative for all r, reaching its global minimum at r ¼ 0.
Thus, the velocity field induced by a single particle is in the direction �p. We have
found it more convenient to change the sign of all kernels, so that the induced
velocity field is in the direction þp. Since the dynamics are reversible, this does
not materially affect them.

We have worked with the family of Hk metrics with the inertia operators Ak given
in equation (9) and delta-function particles. The kernels Gk can be found explicitly in
terms of modified Bessel functions of the second kind K� from equation (11) with
~að�Þ given in equation (10). The first few are (in terms of the scaled length ~r :¼ r=�)

2��2G1ðrÞ ¼ K0ð~rÞ

¼ logð2=~rÞ � gþOðr2 log rÞ, ð14Þ

2��2G2ðrÞ ¼
1

2
~rK1ð~rÞ

¼
1

2
�
1

8
2 logð2=~rÞ � 2gþ 1ð Þ~r2

�
1

128
4 logð2=~rÞ þ 5� 4gð Þ~r4 þOðr6Þ, ð15Þ

and 2��2G3ðrÞ ¼
1

8
~r ~rK0ð~rÞ þ 2K1ð~rÞð Þ

¼
1

4
�

1

16
~r2 þ

1

256
4 logð2=~rÞ þ 3� 4gð Þ~r4 þOðr6Þ: ð16Þ

Choosing the length scale � ¼ "=
ffiffiffi
k
p

we have formally,

Ak !A1 :¼ expð�"2r2Þ,

with Fourier symbol ~aðmÞ ¼ expð�"2m2
Þ and Green’s function

2�G1ðrÞ ¼
1

2"2
exp �

r2

4"2

� �
:

That is, the Gaussian kernel is Green’s function for an H1 metric, the limit of
a family of Hk metrics. The family of kernels is shown in figure 1.

274 R. I. McLachlan and S. Marsland
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4. 2-particle systems

In this section we derive the reduced Hamiltonian for the case where there are only
two particles. This enables us to describe the phase portraits, and to consider how
they depend on the behaviour of the kernel, and hence on the metric.

4.1. The reduced Hamiltonian

Let N ¼ 2, so that the Hamiltonian (equation (7)) is

H ¼ p1 � p2Gðkq1 � q2kÞ þ
1

2

�
kp1k

2 þ kp2k
2
�
Gð0Þ: ð17Þ

We first change to the canonical Jacobi–Haretu center of mass coordinates [11] in
order to reduce by the translational symmetry. Let

d ¼ p1 þ p2, P ¼ ð p1 � p2Þ=2, c ¼ ðq1 þ q2Þ=2, Q ¼ q1 � q2,

or

p1 ¼
1

2
dþ P, p2 ¼

1

2
d� P, q1 ¼ cþ

1

2
Q, q2 ¼ c�

1

2
Q:

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

r

2p
 G

k(
r)

1

2

3

4

∞

Figure 1. Kernels Gk(r) found in section 3 for a family of Hk metrics
(k ¼ 1, 2, 3, 4,1) with delta-function momentum.

275N-particle dynamics of the Euler equations



D
ow

nl
oa

de
d 

B
y:

 [M
as

se
y 

U
ni

ve
rs

ity
] A

t: 
22

:4
8 

3 
S

ep
te

m
be

r 2
00

7 

Then

H ¼
1

4
kdk2 � kPk2

� �
GðQÞ þ

1

4
kdk2 þ kPk2

� �
Gð0Þ: ð18Þ

Changing to symplectic polar coordinates with

Q ¼ ðr cos �, r sin �Þ, P ¼ ð p cos � � p� sin �=r, p sin � þ p� cos �=rÞ,

where (r, p) and ð�, p�Þ are conjugate variables, the reduced Hamiltonian becomes

H ¼
1

4
kdk2ðGð0Þ þ GðrÞÞ þ p2 þ

p2�
r2

� �
ðGð0Þ � GðrÞÞ: ð19Þ

The conserved quantities are the momentum of the center of mass, d, and the angular
momentum p� ¼: �. The phase portrait of this Hamiltonian in the reduced (r, p)
phase space depends very sensitively on the behavior of G near r ¼ 0.

First, consider the case when G is smooth at r ¼ 0, so that GðrÞ ¼ Gð0Þ þ
ð1=2ÞG00ð0Þr2 þ ð1=24ÞGð4Þð0Þr4 þOðr6Þ: In this case, near r ¼ 0, the Hamiltonian is

H ¼
1

2
Gð0Þkdk2 � G00ð0Þ�2
� �

þ
1

24
3G00ð0Þ kdk2 � 4p2

� �
� Gð4Þð0Þ�2

� �
r2 þOðr4Þ: ð20Þ

The p axis is invariant and consists entirely of fixed points. Typically, two other
orbits intersect the p axis where the coefficient of r2 in equation (20) vanishes, i.e., at

p2 ¼
1

4
kdk2 �

Gð4Þð0Þ

12G00ð0Þ
�2: ð21Þ

(Typically, and in all the examples of this article, G00ð0Þ < 0 and Gð4Þð0Þ > 0.) These
orbits form separatrices that divide the phase space into different behavior regimes.
This can be clearly seen in figure 2, where the phase portrait is given for the 2-body
problem under the A1 Gaussian kernel. The phase portraits of the 2-body problem
under other metrics are given in figures 4 and 7 and discussed in section 4.2. The
energy on the p-axis, and hence on the separatrices, is ð1=2ÞðGð0Þkdk2 � G00ð0Þ�2

Þ.
As r!1, GðrÞ ! 0 so H � Gð0Þð p2 þ ð1=4Þkdk2Þ and the separatrices have horizon-
tal asymptotes at

p2 ¼
1

4
kdk2 �

G00ð0Þ

2Gð0Þ
�2: ð22Þ

There are three principal behaviours of pairs of particles:

Scattering Both particles are free as t!�1
Capture Distance between particles r! 0 as t!1
Ejection Distance between particles r! 0 as t!�1

276 R. I. McLachlan and S. Marsland
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as well as degenerate capture/ejection orbits given by the separatrices. Inside the
separatrices the two particles scatter, while outside the separatrices they either
capture (pG00ð0Þ < 0) or eject (pG00ð0Þ > 0) each other.

We now consider the criterion for a capture to take place. Equation (22) tells us
that two particles initially very far apart will capture each other if p2 > ð1=4Þkdk2�
ðG00ð0ÞÞ=ð2Gð0ÞÞ�2. This criterion, depending on the three parameters p, kdk, and �,
can be expressed more intuitively as follows. We introduce the angle of approach
 :¼ ff p1p2, the speed ratio kp1k=kp2k, and the separation distance D. D is the
distance of closest approach of two particles initially at q1, 2 moving in straight
lines with velocities p1, 2. Clearly, as D increases then the particles cease to interact,
so we will seek the critical value of D for a capture to occur.

We have D ¼ kQksinðffQPÞ and � ¼ Q� P ¼ kQkkPk sinðffQPÞ ¼ DkPk. As
r!1, p2! kPk2 ¼ ð1=4Þkp1 � p2k

2, so the capture criterion becomes

�p1 � p2 ¼ �kp1kkp2kcos > �
G00ð0Þ

2Gð0Þ
D2kPk2, ð23Þ

1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

r r

p
p

d = 1, m = 1

1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

p

d = 1, m = 0

1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

r r

d = 0, m = 1

Ejection orbits

Scattering orbits 

Capture orbits 

1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

p

d = 0, m = 0

Figure 2. Phase portrait for the 2-body problem with Gaussian kernel GðrÞ ¼
expð�r2=4Þ. The Hamiltonian is given by equation (19). Top: nonzero linear
momentum d. Bottom: zero linear momentum. Left: nonzero angular
momentum �. Right: zero angular momentum, for which the motion is confined
to a line.
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or, using the law of cosines k2Pk2 ¼ kp1 � p2k
2
¼ kp1k

2
þ kp2k

2
� 2kp1kkp2kcos ,

cos <
eD

1þ 2eD kp1k

kp2k
þ
kp2k

kp1k

� �
, �

1

4
< eD < 0,

where

eD ¼ G00ð0Þ

8Gð0Þ
D2:

That is, a separation distance D of less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Gð0Þ=G00ð0Þ

p
is necessary for

a capture to be possible. Particles with D ¼ 0 (equivalently, � ¼ 0) are captured
when j j > �=2 (a ‘head-on’ approach) and scattered when j j < �=2 (a ‘glancing’
approach), for all kp1k=kp2k; increasing D and kp1j=kp2k moving away from 1 both
restrict captures to more nearly head-on approaches. Figure 3 shows the minimum
required approach angle  for each D.

During a capture the particles get infinitely close, r! 0. Although p!�1, the
actual speed of approach of the particles, _r, tends to 0. The particles do not collide in
a finite time but rather become bound together, or stick to each other. For large p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.6

1.8

2

2.2

2.4

2.6

2.8

3

D

ψ  

||p1|| / ||p2|| = 0.1 0.2 0.3 

||p1|| / ||p2|| = 1 

Figure 3. Minimum required approach angle  2 ðð�=2Þ,�Þ for a capture to take
place for a pair of initially distant particles with speeds kp1, 2k and separation
distance D. Here we have taken GðrÞ ¼ e�r

2=4, for which the maximum possible
separation distance in a capture is 2. That this equals the range of G is something
of a coincidence, because the critical D depends only on G(0) and G00ð0Þ.
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and small r, we can use the approximate form of the Hamiltonian for r 	 0 to get the
approximate equations of motion:

_r ¼ �G00ð0Þpr2, _p ¼ G00ð0Þp2r,

with solution

rðtÞ ¼ r0e
��t, pðtÞ ¼ p0e

�t, ð24Þ

where the constant � ¼ G00ð0Þp0r0, corresponding to a capturing orbit for p0G
00
ð0Þ < 0

and an ejecting orbit for p0G
00
ð0Þ > 0. We call a pair of particles in the limiting state

of (24) a dipole, and explore them further in section 5.
For a scattering orbit, using

_� ¼
@H

@p�
¼ 2�

Gð0Þ � GðrÞ

r2
,

we see that the scattering angle �j1�1 ranges over ð0,1Þ as the minimum separation
of the particles decreases from 1 to 0. (As r! 0, _� ¼ Oð1Þ and _p ¼ OðrÞ, so the
phase � accumulates without bound.) Again, because close particles move very
slowly, there can be an arbitrarily long delay during the close approach – the
particles appear to stick together for a while.

4.2. Particle dynamics under different metrics

We can consider different kernels (i.e., different functions G(r)) and use them to
discuss the particle dynamics for each metric in turn. In all cases, we consider the
Helmholtz-style inertia operator described previously: Ak :¼ ð1� �2r2

Þ
k. We begin

with the H1 metric, and progress through the different Hk metrics.
Delta-function particles for the inertia operator A1 (H1 metric) are not

well-defined because they do not have a finite self-induced velocity (the same
situation occurs in the 3D Euler fluid equations when the vorticity is concentrated
on a curved filament). To use the delta-function particles, it is necessary to regularize
the equations. One approach to this would be to simply set Gð0Þ ¼ 0, so that the
self-induced velocity of each particle is 0. We consider this subsequently (section 4.3),
but we first consider the standard regularization of introducing a smooth blob
function f ðkxkÞ, so that we consider the operator with symbol ~að�Þ= ~fð�Þ, where
~að�Þ is the Fourier symbol of the inertia operator A, as we described in section 3.
We consider the Gaussian blob f ðxÞ ¼ ð1=�Þe�x

2="2="2, which tends to �(x) as
"! 0. In this case, ~f ð�Þ ¼ ð1=2�Þe�"

2�2=4. The kernel for this blob is smooth with
the inertia operator A1 ¼ 1� r2, so we apply the results of section 4.1 and expand
for small x as:

2�GðrÞ ¼ Cþ �
1

2"2
þ
1

4
C

� �
x2 þ

1

8"4
�

1

32"2
þ

1

64
C

� �
x4 þOðx6Þ, ð25Þ

where C ¼ ð1=2Þ expðð1=4Þ"2ÞEi1ðð1=4Þ"
2
Þ.
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As "! 0 we have Gð0Þ � ð�2 log "� gþ log 4Þ=ð4�Þ, G00ð0Þ � �1=ð2�"2Þ, and

G0000ð0Þ � 3=ð2�"4Þ, and so the separatrix intersects r ¼ 0 at p ¼ Oð�="Þ, with a

horizontal asymptote at p ¼ Oð�=ð"ðlog j"jÞ1=2Þ. As "! 0, providing that � 6¼ 0,

the separatrix moves outward and particle captures become rarer.

The H2 metric is smooth enough for delta-function particles to be well-defined,

with a finite self-induced velocity. The phase portrait for this case is shown in

figure 4. However, G2(r) is not twice differentiable at r ¼ 0 and so the above analysis

of the phase portrait of the two body problem is not valid. In fact, the singularity of

G2(r) is sufficient to prevent the occurrence of capture orbits; when � 6¼ 0 all orbits

are scattering (see figure 4). However, two particles with large initial relative

momentum p can approach arbitrarily closely, and achieve arbitrarily high p

during the close encounter (which makes them behave a lot like capturing orbits);

but they do eventually separate. A typical such encounter is shown in figure 5.

The H3 metric is smoother, but G3(r) is still not four times differentiable at r ¼ 0,

so the above separatrix analysis is still not valid. However, one can check that the

1 2 3 4 5 6 7 8
−5
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p

d = 1, m = 1

all orbits scattering 
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p

d = 1, m = 0

Ejection orbits

Scattering orbits

Capture orbits

1 2 3 4 5 6 7 8
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p

d = 0, m = 1

1 2 3 4 5 6 7 8
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r

p

d = 0, m = 0

Figure 4. Phase portrait for the 2-body problem with inertia operator A2 ¼

ð1� r2
Þ
2. The Hamiltonian is given in equation (19). Unless the angular momentum

� is zero (in which case the motion is confined to a line), all orbits are scattering.
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2-body problem does now have a separatrix that divides capture and scattering
orbits, although it is not a smooth curve at r ¼ 0.

For Hk (k 
 4) and H1, the separatrix is as described earlier. Figure 2 shows the
phase portrait for the H1 metric. A typical scattering orbit is shown in figure 6;
in contrast to the H2 case, the relative momentum 2P ¼ p1 � p2 is bounded over all
scattering orbits. In no case are there any periodic orbits in the two body problem.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

x1

x2

−0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

x1

x2

Figure 5. A typical scattering orbit for the 2-body problem with inertia operator A2

(corresponding to the phase portrait in the top left plot of figure 4). The figure below
shows a magnification of the point of closest interaction between the particles.
The relative momentum 2P ¼ p1 � p2 can become arbitrarily large during close
approaches.
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4.3. An alternative regularization for H1

As was mentioned earlier, there is another possible regularization of the N-particle

problem with the H1 metric, which we consider briefly here. This is simply to set
the self-induced velocity of each particle to zero, i.e., Gð0Þ ¼ 0. This seems drastic,

when the ‘correct’ self-induced velocity of a delta-function is infinite, but it still

corresponds to a consistent discretization of the PDE (4) in the limit of a large
number of particles spaced over a curve or an area. (The contribution to the

velocity at a point from nearby momentum p is
Ð "
0 pðrÞG1ðrÞr dr for a curve, andÐ "

0

Ð 2�
0 pðr, �ÞG1ðrÞr

2 dr for an area; in both cases the logarithmic singularity in G1(r)
is weak enough that both integrals tend to zero as "! 0 and the nearby momentum

does not contribute to the local velocity.)
However, setting Gð0Þ ¼ 0 changes the character of the 2-body problem

completely. It now features periodic orbits and scattering orbits, but no capturing

orbits (figure 7). We initially thought that the lack of capturing orbits was a good
thing and that this regularization might be suitable for simulations with large N and

for approximating smooth momentum distributions (as in the point vortex method).

However, numerical simulations of the 3-body problem in this case (not shown)

−1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

x1

x2

Figure 6. A typical scattering orbit for the 2-body problem with inertia
operator A1. The relative momentum 2P ¼ p1 � p2 remains bounded during the
close approach.
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indicates that orbits can reach a singularity in a finite time, via a curious mechanism
in which two particles orbit closer and closer, under regulation from the approach
of the third particle. It appears that there is no long-time existence for solutions of
the N-body problem under this regularization. Because of this singularity we have
not considered the dynamics of this N-particle system further.

5. Capture orbits and dipoles

Consider the N-body problem together with a smooth kernel so that 2-body
captures are possible. Suppose that particles 1 and 2 become close enough to
capture each other and that there are no other nearby particles. We will call the
limiting state of such a captured pair of particles a ‘dipole’. In center-of-mass
coordinates for particles 1 and 2 only, the dipole is described by its center of mass
c, its momentum d, and its orientation Q (equivalently ðr, �Þ) with conjugate
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Figure 7. Phase portrait for the 2-body problem with inertia operator A1 and
regularization Gð0Þ ¼ 0. The dynamics is somewhat reminiscent of traditional
2-body problems like the Kepler problem of Newtonian gravity: there are no capture
orbits; for nonzero angular momentum (left) there are scattering and periodic orbits,
while for zero angular momentum (right) genuine collisions are possible.
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momentum P (equivalently ð p, p�Þ). To obtain the Hamiltonian H1, 2 of a lone dipole
we take the limit of the 2-particle Hamitonian, equation (19), when r! 0, p!1
with rp held fixed. From equation (20), this is

H1, 2 :¼ �
1

2
G00ð0Þðr2p2 þ p2�Þ þ

1

2
Gð0Þkdk2: ð26Þ

The motion of a lone dipole is given by

cðtÞ ¼ c0 þ tGð0Þd0, dðtÞ ¼ d0, rðtÞ ¼ r0e
��t, pðtÞ ¼ p0e

�t, �ðtÞ ¼ �0 þ !t,

ð27Þ

where the frequency ! ¼ �G00ð0Þ� and � ¼ G00ð0Þp0r0 > 0 (G00ð0Þ < 0, p0<0). The
terms neglected in passing from the 2-particle Hamiltonian to H1, 2 are Oðe�2�tÞ.

We will now show that the presence of other particles, i.e., N>2, affects all of
the degrees of freedom of the dipole, causing the internal dipole parameters (� and
r0p0) to evolve.

Writing H1,...,N for the Hamiltonian of particles 1 through N, the terms in H1,...,N

coupling the dipole to particle j are:

Hd
j :¼ pj �

1

2
dþ P

� �
G

���c� qj þ
1

2
Q
���� �
þ

1

2
d� P

� �
G

���c� qj �
1

2
Q
���� �	 


¼ ðd � pjÞGðkc� qjkÞ þ ð pj � PÞððc� qjÞ �QÞ
G0ðkc� qjkÞ

kc� qjk
, ð28Þ

plus terms of order Oðe��tÞ, which we omit if the dipole is taken to be in its limiting
state. The first term in Hd

j is the Hamiltonian for a single particle at position c with
momentum d, while the second (dipole) term generates an Oð1Þ contribution to all
of _d, _pj, _qj, _Q=Q, and _P=P. Identifying qNþ1 � c and pNþ1 � d, the Hamiltonian for
a dipole and N� 2 singleton particles is

H1,...,N ¼
1

2

XN
i, j¼1

pi � pjGðkqi � qjkÞ

¼
1

2
H1, 2 þ

1

2
H3,...,Nþ1 þ

1

2

XN
j¼3

Hd
j :

This suggests that the overall evolution of N particles with a smooth kernel is
described by (i) free, straight-line motion of all particles when all particles are
well-separated; (ii) scattering and interactions when distances are moderate; and
(iii) capture or sticking together of two particles when they come within range,
after which they continue to evolve as a dipole (and interact with the other particles).
It is also possible for more than two particles to simultaneously capture each other.
We have not analyzed this situation but it seems to follow the same course as the
2-body capture, with all inter-particle distances tending to 0 exponentially fast.
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It may also be possible for the influence of the other particles to cause a dipole to
separate, although we never observed this happening.

If the boundary conditions are taken to be periodic, this indicates that most orbits
of the N-particle problem end up with all particles stuck together in one lump.

A typical orbit for 20 particles in the plane is shown in figure 8. The initial
positions and velocities are (normally) randomly distributed. Here, the particles
have been captured into groups of 9, 3 (with a 4th about to join), 2 (with 2 more
possible captures), and 3 singletons.

We now analyze the influence of a dipole on a third particle with zero
momentum – a ‘test particle’. The test particle does not affect the motion of the
dipole. We only have to find the position q of the test particle, which obeys

_q ¼ dðtÞGð�Þ þ PððcðtÞ � qÞ �QÞ f ð�Þ, ð29Þ

where c(t) and d(t) are given by equation (27), � ¼ kc� qk is the distance from the
dipole to the test particle, and f ð�Þ ¼ G0ð�Þ=�.

One solution of (29) is q(t) ¼ c(t), in which the test particle sits on top of the
dipole. We shall see that dipoles can capture test particles into this state.

First consider the case d ¼ 0 of a motionless dipole located at c ¼ 0. We compute

rP ¼
p0r0cos!t� �sin!t

p0r0sin!tþ �cos!t

 !

¼ A�1
�sin �

cos�

 !

Q ¼
rcos!t

rsin!t

 !
,

where A2
¼ p20r

2
0 þ �

2 and � ¼ !tþ 	, and the phase 	 is defined by cos	 ¼ �=A,
sin	 ¼ �p0r0=A. Equation (29) becomes

_q ¼ �A�1ðq1cos!tþ q2sin!tÞf ð�Þ
�sin �
cos�

� �
;

note the e�t factors cancel out and the interaction is characterized by the parameters
r0p0 and � of the dipole. The form of these equations suggests going into a rotating
frame by

y ¼
cos� sin�
�sin� cos�

� �
q,

which leads to a drastic simplification to the planar, autonomous system

_y1 ¼ !y2,

_y2 ¼ �ð�y1 þ r0p0y2Þf ð�Þ � !y1:
ð30Þ

Note � ¼ kqk ¼ kyk. The phase portrait of this system is shown in figure 10.
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Figure 8. Typical orbit for 20 randomly placed particles under a Gaussian kernel.
(Top: particle paths, with final particle positions indicated by a dot; bottom:
snapshots of the particle positions at 16 different times.)
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We now investigate the stability of the fixed point y ¼ 0 under the assumption
that G is smooth, so that f ð�Þ ¼ G00ð0Þ þ ð1=6ÞGð4Þð0Þ�2 þ � � � and (30) becomes

_y1 ¼ !y2 ¼ �G
00ð0Þ�y2 ð31Þ

_y2 ¼ r0p0G
00ð0Þy2 �

1

6
Gð4Þð0Þ

�
y21 þ y22

�
þ o kyk2

� �
: ð32Þ

The eigenvalues of the fixed point y ¼ 0 are 0 (eigenvector ð1, 0ÞT) and
�p0r0G

00
ð0Þ < 0 (eigenvector ð�, p0r0Þ

T). The fixed point is nonhyperbolic, but
a routine application of center manifold theory then gives a center manifold located
at y2 ¼ gy31 þOð y

4
1Þ with g ¼ ��Gð4Þð0Þ=ð6p0r0G

00
ð0ÞÞ, and, on the center manifold,

the dynamics is governed by the reduced equation

_y1 ¼ �y
3
1, � ¼ !g ¼

�2Gð4Þð0Þ

6p0r0
:

Recalling that p0<0 for a dipole, we have that y ¼ 0 is asymptotically stable if
Gð4Þð0Þ > 0 and unstable if Gð4Þð0Þ < 0. The fixed point is stable for the Gaussian
kernel Gð�Þ ¼ e��

2

.
That is, the dipole for a Gaussian kernel attracts nearby test particles, albeit very

slowly, since y1ðtÞ ¼ ðy1ð0Þ
�2
� 2�tÞ�1=2. A typical test particle far from the dipole

moves initially slowly (since the velocity field is exponentially small there), then
quickly falls onto the centre manifold, then orbits the dipole at the same frequency
as the dipole itself, maintaining a phase shift of 	, at a gradually diminishing
distance (figures 9 and 10).

Finally, we consider a moving dipole, which we take (e.g., by rotating space and
by scaling time) to be moving along the x-axis at unit speed, cðtÞ ¼ tð1, 0Þ. A test
particle with sufficiently large jq2ð0Þj (i.e., with the test particle far enough from the
path of the dipole) will not be entrained as the dipole passes. However, the critical
value of q2ð0Þ will also depend on q1ð0Þ, which determines the phase of the dipole as

0 0.5 1 1.5 2

0

0.2

0.4

0.6

x1

x2

Figure 9. Attraction of a test particle to a dipole at the origin. {The particle moves
[under equation (28)] in the direction of the rotating direction vector of the dipole,
with the cusps corresponding to the dipole pointing directly at the particle.}
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it approaches. A numerical simulation (figure 11) reveals a surprising asymmetry
where, for an anticlockwise (�>0) dipole, the entrainment is independent of the
phase for q2ð0Þ < 0 and strongly dependent on the phase for q2ð0Þ > 0. All particles
out to q2 ¼ �1:536, on the right of the dipole, are entrained, but on the left the
critical initial distance varies from 0.6 to 1.15.

6. Discussion

The particle dynamics in DiffðR2
Þ with a Hk metric (k 
 2) that we have considered

in this article show striking contrasts to the more familiar dynamics of point vortices
for DiffvolðR

2
Þ with an L2 metric. Of particular note are:

. our particles are vector particles, point vortices are point particles;

. for our particles, the 2-body problem is integrable, for point vortices the
3-body problem is integrable;

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y1

y 2

Figure 10. Phase portrait of equation (30) for a test particle in the field of a
motionless dipole in rotating coordinates. Here, � ¼ 1, r0p0 ¼ �1, and Gð�Þ ¼ e��

2

.
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. our particles exhibit short-range interactions uðrÞ � e�rrk�1=2 (r!1), point
vortices exhibit long-range interactions uðrÞ � 1=r;

. our particles have no periodic 2-body orbits, whereas most 2-body orbits are
periodic for point vortices; and

. the 2-body dynamics of DiffðR2
Þ depend sensitively on the metric, whereas

for point vortices, the qualitative 2-body dynamics are independent of the
metric.

Clearly, we have only scratched the surface of the rich dynamics of the system (8).
Further dynamical questions to be considered include

. a full study of the 3-body problem;

. determination of the long-time existence of solutions;

. a classification of the limiting states of the N-body problem;

. a study of the limiting (‘N pole’) state of the capture of N particles; and

. a consideration of the geometry of the Riemannian manifold whose geodesics
are governed by (8),
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Figure 11. Entrainment of a field of test particles by a moving dipole. The dipole
(whose direction is indicated by a stick) is moving to the right with speed 1. Particles
shown as small dots are entrained by the dipole, while particles shown as larger dots
are left behind.
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while broader questions include

. the significance of the sensitivity to the metric for image matching
applications;

. the significance of particle dynamics for solutions of the PDE (1, 2); and

. the convergence of the point particle approximation to solutions of the
PDE (1, 2), including the role of regularization of the metric (especially in

the H1 case).
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