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Abstract
We give an elementary illustration of symmetry reduction for central force
problems, drawing phase portraits of the reduced dynamics as the intersection
of Casimir and energy level sets in three dimensions. These systems form a
classic example of symplectic reduction which can usefully be compared to
the more commonly seen case of the free rigid body.
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1. Introduction

Euler’s equations for the motion of a free rigid body exemplify the power of the geometric
viewpoint in classical mechanics and provide a first look into the merits and subtleties of
symmetry. Indeed, Euler’s rigid body equations are a perennially popular topic in mechanics,
as they can be introduced and studied with little prior knowledge, yet present an array of
advanced phenomena and techniques. They illustrate nearly all aspects of geometric
mechanics and are repeatedly revisited each time new ideas are encountered. But, the almost
exclusive focus on these equations does seem a little disproportionate. Why are the rigid body
equations not one example amongst many, or, at least, the first in a sequence of increasing
complexity and new phenomena?
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Part of the reason is that the general theory of Hamiltonian systems with symmetry,
exemplified by the rigid body equations, is thorny and still not fully understood. Complexities
occur already in apparently simple situations, such as symmetries associated with the natural
action of a matrix group on a vector space. Even the simplest general result, the Marsden–
Weinstein–Meyer symplectic reduction theorem, is a topic for an advanced course in geo-
metric mechanics, while attempts to cover more complicated, singular group actions, such as
Ortega and Ratiu [21], are formidable and yet still incomplete.

In his lectures on physics [7, I, ch 22–1] Feynman rhetorically comments on why he has a
chapter on algebra:

Another reason for looking more carefully at algebra now, even though most of us
studied algebra in high school, is that it was the first time we studied it; all the equations
were unfamiliar, and it was hard work, just as physics is now. Every so often it is a
great pleasure to look back to see what territory has been covered, and what the great
map or plan of the whole thing is. Perhaps some day somebody in the Mathematics
Department will present a lecture on mechanics in such a way as to show what it was
we were trying to learn in the physics course!

In this paper we take a closer look at Hamiltonian symmetry reduction applied to
equations that are intimately familiar to every physicist. First the rigid body equations, and
then another example for which a concrete, elementary symplectic reduction can be carried
out: the motion of a particle under a central force. This example duplicates and reinforces
many of the features of the rigid body equations, and, like them, describes a physical system
of fundamental importance. At the same time, the central force example provides a glimpse of
a new structure of widespread importance in mathematical physics, namely the dual pair. A
special study of the ‘reduced central force equations’ thereby provides a balancing perspective
to the rigid body equations.

In our treatments of the free rigid body (section 2) and the reduction and reconstruction
of central force problems (sections 3.1 and 3.2) we have aimed to be as elementary as
possible; these sections are suitable for a first course in mechanics, the required background
being Hamilton’s equations and the chain rule. Sections 3.3 (dual pairs) and 3.4 (more
bodies in more dimensions) are more advanced and are suitable for students of geometric
mechanics.

2. The rigid body equations

The Euler equations for the motion of a triaxial free rigid body are
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where . . >I I I 01 2 3 are the principal moments of inertia of the body, and mi is the angular
momentum about the ith principal axis of the body. The total angular momentum
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are conserved quantities. Consequently, the phase portrait of (1) is given by the intersection of
the spheres, determined by =C const., and the ellipsoids, determined by =H const., as
shown in figure 1. This phase portrait shows that when the moments of inertia are distinct, i.e.
when > >I I I1 2 3, rotation about the m1- and m3-axes (the fixed points m , 0, 01( ) and

m0, 0, 3( ), respectively) are stable, while rotation about the intermediate m2-axis (the
intermediate moment of inertia axis) is unstable. Indeed, rotations that start near m0, , 02( )
will follow a so called heteroclinic orbit to a neighbourhood of -m0, , 02( ). This can be
illustrated in practice using the famous hammer throw experiment, shown in figure 2. In fact
the experiment illustrates even more; in the course of traversing the heteroclinic orbit, the

Figure 1. Phase portrait of the free rigid body. The sphere represents one level set of the
angular momentum C(m). The curves on the sphere represent several level sets of the
Hamiltonian H(m) restricted to the angular momentum sphere. Because both the
angular momentum and the Hamiltonian are conserved, these level sets constitute the
phase portrait. Notice that there are six relative equilibria: m , 0, 01( ), m0, , 02( ), and

m0, 0, 3( ). Each pair correspond to rotation, in positive or negative direction, about a
principal axis. From the diagram one directly makes out that rotations about the m1-
and m3-axes are stable, whereas rotations about the m2-axis are unstable. The hammer
throw experiment, illustrated in figure 2, is an easy way to demonstrate this
phenomenon.
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Figure 2. Simulation of the hammer throw experiment. The rotation of a hammer is
shown when it is launched with an initial rotation about each of its three principal axes.
The top rotation is unstable, resulting in the hammer undergoing a flip and landing in
the opposite orientation, while the other two are stable.

Figure 3. The phase portrait of the Euler equations of the free rigid body as drawn in
Landau and Lifshitz’s Mechanics [13].
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attitude of the hammer undergoes a rotation by π—an example of a geometric (or Hannay–
Berry) phase5.

Although most undergraduate physics text derive the Euler equations, few show the
phase portrait as in figure 1. Usually, an analytic approach is used to study small
oscillations about the stable rotation axes or to consider only symmetric rigid bodies,
those with =I I1 2. One classic physics text that does include the phase portrait is
Landau and Liftshitz, Mechanics [13], first published in Russian in 1940 and in English
in 1960. Their version is shown in figure 3. Another (although hardly a standard
undergraduate text) is Arnold’s Mathematical Methods of Classical Mechanics
[2]—see figure 121. (Arnold draws a constant-energy ellipsoid, instead of a constant-
angular-momentum sphere.) A mathematics text that includes the phase portrait is
Bender and Orszag, Advanced Mathematical Methods for Scientists and Engineers,
figure 4.31 [4].

A more detailed treatment would view equation (1) as the result of a symmetry reduction.
Indeed, symmetry has a claim to be the single most important unifying and organising
principle in physics. The attitude of a free rigid body is specified by a rotation matrix Q,
which gives the rotation of the body from an initial reference position. Thus, the configuration
space of the body is the set of proper 3 × 3 orthogonal matrices

�Î = = =´Q Q Q I QSO 3 : , det 1 .T3 3( ) ≔ { }
Its phase space is the space of possible attitudes together with the angular momenta of the
body, whose points can be written as (Q, m), where ÎQ SO 3( ) is the attitude of the body and

�Îm 3 is its angular momentum in the ‘body frame’, that is, in coordinates that are fixed in
the body and rotate along with it6. If w w w w= , ,1 2 3( ) is the angular velocity vector in the
body frame and w w w=m I I I, ,1 1 2 2 3 3( ) is the corresponding angular momentum, then the full,
unreduced equations of motion are
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Let us now discuss symmetry reduction of these equations. First, the space SO 3( ) of rotation
matrices form a group: if A and B are rotation matrices then their product AB is again a
rotation matrix and every rotation matrix has an inverse7. Second, to each element of the
group is associated a transformation of phase space; we say that the group acts on phase
space. Here the group SO 3( ) acts on phase space by the transformations

=A Q m AQ m, : , . 6· ( ) ( ) ( )

5 Many people know this trick, but we suspect that not many could explain why the rotation angle is π. For a
complete explanation of why a rotation by π is observed for ‘hammer-like’ objects, see Cushman and Bates [5, III.8].
6 A more classical formulation, originally by Euler, is to use three Euler angles for the attitude together with three
conjugate momenta—six variables altogether. However, the Euler angles do not cover all possible attitudes of the
body and are singular near some attitudes.
7 More precisely, SO 3( ) is a Lie group, which roughly means that it can be thought of as a smooth ‘surface’ in the
space of all 3 × 3 matrices, and that multiplication and inversion are infinitely differentiable operations. In this paper
it suffices to think of a Lie group as a subset of invertible matrices closed under matrix multiplication.
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In geometry and physics, symmetry means invariance of the phase portrait under a group of
transformations of phase space. The full rigid body system ((4) and (5)) is invariant under the
group action (6): if Q t m t,( ( ) ( )) is a solution then A Q t m t,· ( ( ) ( )) is another solution8. More
fundamentally, the symmetry of the system enters through the Hamiltonian; if H Q m,( ) is the
Hamiltonian (kinetic energy in the case of the rigid body), symmetry means that

=H A Q m H Q m, ,( · ( )) ( ) for any ÎA SO 3( ). A consequence of this is three conserved
quantities, namely the spatial angular momentum vector given by Qm. Indeed, if

= =Q Q t m m t,( ) ( ) is a solution, then
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That continuous symmetries of the Hamiltonian (or Lagrangian) implies conservation laws is
a fundamental principle in physics, first proved by the German mathematician Emmy Noether
in 1915.

Due to the symmetry, the equations of motion ((4) and (5)) for the full rigid body can
be reduced. Here is the basic idea: since the action of SO 3( ) on phase space maps solutions
to solutions, we can ‘quotient out’ equivalent solutions, so that two points (Q, m) and
Q m,( ˜ ˜ ) in the original phase space are considered the same if there exists a rotation matrix A
such that =A Q m Q m, ,· ( ) ( ˜ ˜ ). We say that (Q, m) and Q m,( ˜ ˜ ) belong to the same group
orbit. The quotient space, denoted �´SO 3 SO 33( ( ) ) ( ), is the set where each element is a
group orbit. Symmetry reduction now consists in formulating the dynamics on the quotient
space. But the quotient space is defined abstractly, so we need to equip it with coordinates
in order to ‘work with it’. This is not always easy, but for the rigid body equations it is
trivial. Indeed, the orbit containing (Q, m) consists of the points =A Q m AQ m, ,· ( ) ( ) for
every ÎA SO 3( ). In particular, taking = -A Q 1 we see that two points (Q, m) and Q m,( ˜ ˜ )
belong to the same orbit if and only if =m m̃. In other words, we may use

=m m m m, ,1 2 3( ) as coordinates for the quotient space. Since the full rigid body
equations (4) and (5) have SO 3( ) as a symmetry group, we expect the dynamics to reduce to
a system in m that is independent of Q. Voila! Equation (5) involves only m, so symmetry
reduction in this case simply means to keep equation (5) and disregard equation (4). In the
central force example, treated in section 3, it is more complicated to find coordinates for the
quotient space.

We now come to the geometry of symmetry reduction, or more precisely, symplectic
geometry. A Hamiltonian system in classical mechanics, in particular the full rigid body
equations (4) and (5), conserve a canonical symplectic structure (see [2, ch 8]). In the
simplest case of a two-dimensional phase space, it means that the phase flow preserves
area. One may ask how the symplectic structure is carried along in symmetry reduction. In
other words, does the reduced system preserve a symplectic structure? This question is at
the very heart of geometric mechanics. Canonical Hamiltonian systems are always even-
dimensional and hence the three-dimensional rigid body equations cannot possibly be
canonical—we need a generalised structure. The relevant generalisation consists in Pois-
son structures. Indeed, in essence the fundamental result is that if the action of the sym-
metry group on the phase space preserves the symplectic structure (the action is

8 We encourage the reader to verify this.
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Hamiltonian), then the reduced system is a noncanonical Hamiltonian system with respect
to a Poisson structure. This is manifested in the celebrated Marsden–Weinstein–Meyer
symplectic reduction theorem [16, 18]. We now describe what it means in the concrete case
of the rigid body.

Let% denote the reduced phase space of some system (for the rigid body% �= 3 as
we have seen). A Poisson bracket ,{ } on% is an operation that satisfies the axioms

% % %´
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+ = +
= +
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for all %Î ¥F G H C, , ( ) and for all �Îa b, . Furthermore, a Poisson system with
Hamiltonian H is an equation of the form

=�m K m H m , 8( ) ( ) ( )
where the Poisson tensor K is defined by

=F G F K m G, .T{ } ( ) ( )( )
Every canonical system is a Poisson system, but not vice versa. In the case of the reduced
rigid body equations (5)
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and the Hamiltonian is given by (3). We encourage the reader to check this.
If F is a function on%, then along solutions to (8) we have

= = =�
t
F F m F K m H F H

d
d

, .T T( ) ( ) ( ) { }

Thus, F is a first integral if and only if =F H, 0{ } . Notice, in particular, that the Hamiltonian
H is a first integral, since =H H, 0{ } due to skew-symmetry of the Poisson bracket.

For noncanonical Poisson structures there are special functions C fulfilling

=C H H, 0 for any function .{ }
They are called Casimir functions and are first integrals for any choice of Hamiltonian:
they depend only on the Poisson structure. For the rigid body Poisson structure (9) there is
one Casimir function given by the total angular momentum (2). The common interpretation
in geometric mechanics is that the Casimir functions are associated with the geometry of
phase space (they only depend on the Poisson structure), whereas the Hamiltonian (total
energy) is associated with the particular dynamics of the system. Returning to figure 1, the
sphere on which the phase portrait is drawn thereby reflects the geometry of phase space,
whereas the individual curves are determined by the specific choice of Hamiltonian. Also
notice that the entire phase space �3 is foliated in angular momentum spheres; it turns out
that all Poisson structures are foliated in a similar fashion into so called symplectic
leaves [27].

Poisson systems in which% is a vector space and K(m) is a linear function of m play a
special role. This case is called Lie–Poisson, because the Poisson structure originates from a
Lie algebra [20]. Lie algebras are everywhere in modern physics. But what are they?
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Geometrically, they are infinitesimal variations of Lie groups: the Lie algebra of SO 3( ),
denoted so 3( ), consists of skew-symmetric 3 × 3 matrices9,10. Algebraically, they are vector
spaces equipped with Lie brackets: for so 3( ) the Lie bracket is given by the matrix com-
mutator = -a b ab ba,[ ] (we encourage the reader to verify that if soÎa b, 3( ) then

soÎa b, 3[ ] ( )). Often, so 3( ) is identified with �3 using the mapping w w«˜ in (4). This
makes �3 into a Lie algebra with bracket = ´u v u v,[ ] (we encourage the reader to ver-
ify this).

In general, the equations of motion for an n-dimensional Lie–Poisson system with
Hamiltonian H can be written

å=
¶
¶

= ¼
=

m c m
H
m

i n, 1, , .i
j k
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ij
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k
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˙

Here, the real numbers cij
k are the structure constants of the Lie algebra, defined by
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for all Lie algebra elements u and v. Another way of expressing this is to say that there are
square matrices ¼M M, , n1 whose Lie (commutator) brackets obey

å- =
=

M M M M M M c M, . 10i j i j j i
k

n

ij
k

k
1

[ ] ≔ ( )

Such matrices form a basis for the Lie algebra.

The reduced rigid body equations (5) are the motivating example of the large class of
Euler–Arnold equations that describe geodesics on groups with respect to an invariant
Riemannian metric. Such equations were advocated in 1966, when Arnold [1] dis-
covered that the Euler rigid body and the Euler fluid equations share this basic
structure, with the groups being SO 3( ) in the first case and the volume-preserving
diffeomorphisms in the second case. Since then, the field has grown enormously, and
now encompasses a multitude of equations in physics such as the Korteweg–de Vries,
Camassa–Holm, and Landau–Lifshitz equations [12].

In summary, the rigid body equations provide an excellent example of (i) systems with
nonlinear phase spaces; (ii) visualisation of phase portraits; (iii) noncanonical Hamiltonian
systems; (iv) Poisson systems; (v) Lie–Poisson systems; (vi) Marsden–Weinstein–Meyer
symplectic reduction; (vii) reconstruction and geometric phases; (viii) Casimirs; (ix) Euler–
Arnold systems; (x) dynamical phenomena discovered using geometric methods, without
solving any differential equations. Moreover, they apply to readily accessible everyday
experiences, notably the hammer throw experiment and the rotation of the Earth11.

9 It is not a coincidence that the matrix w̃ in equation (4) is skew-symmetric: it needs to be an element of the Lie
algebra so 3( ) in order for Q to belong to SO 3( ).
10 All groups and algebras in this paper are real; thus so so �=3 3,( ) ( ), sp sp �=2 2,( ) ( ), etc.
11 A topic of current research interest; see, e.g., [22].
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3. Central force problems

3.1. The reduced central force equations

Consider a particle moving in three-dimensions subject to a conservative central force. It has
position �Îq 3, momentum �Îp 3, and total (kinetic plus potential) energy

= +
~ & & & &H q p p V q,

1
2

. 112 2( ) ( ) ( )

The equations of motion are Hamilton’s equations
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2 . 122

˙
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The phase space is % �= 6 and the Hamiltonian is orthogonally invariant. That is, the
symmetry group consists of the orthogonal matrices

�Î = =´A A A IO 3 : ,T3 3( ) ≔ { }
which acts on% by

=A q p Aq Ap, , . 13· ( ) ( ) ( )
The symmetry applies the same rotation A to both the position q and the momentum p. The
Hamiltonian (11) is invariant under the symmetry, i.e.

=
~ ~
H Aq Ap H q p, ,( ) ( )

for all orthogonal matrices A. The equations of motion, equation (12), are orthogonally
invariant as well.

Let us now ‘quotient out’ the symmetry group to obtain reduced equations and simple
phase portraits. As for the rigid body, this will be done in three steps:

1. by passing to the space of orbits of G, yielding a three-dimensional Poisson system;
2. by finding the Casimir of this system and hence passing to the corresponding two-

dimensional level set (called a symplectic leaf);
3. by obtaining the phase portrait as the level sets of the Casimir and the energy.

Each step is essentially geometric; the only calculations that are required involve the
chain rule of multivariable calculus. We will show examples of diverse dynamical behaviour
in central force problems that can be ‘read off’ without solving any differential equations.

In fact, as this procedure can be followed for any O 3( )-invariant Hamiltonian, we will
carry it out for the general case (not just for Hamiltonians of the form (11)).

Step 1. Passing to the space of group orbits, yielding a three-dimensional Poisson
system. If the Hamiltonian is O 3( )-invariant, that means it is constant on each orbit of the
group. The group action, a common rotation or reflection of q and p, preserves& &q 2 and& &p 2,
and it also preserves q p· , essentially the angle between q and p. It is easy to see that given
any two pairs (q, p) with the same values of & &q 2, q p· , and & &p 2, there must be a symmetry
operation—a common orthogonal transformation of q and p—that sends one pair into the
other. That is, we can use the values of
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as coordinates for the quotient space � O 36 ( ) of group orbits. We have thus found that any
O 3( )-invariant Hamiltonian =

~ ~
H H q p,( ) can be written in the form

=
~ & & & &H q p H q q p p, , , 152 2( ) ( · ) ( )

for some function =H H w w w, ,1 2 3( ).

The appearance of w1, w2, and w3 is no surprise, as the orthogonal group O 3( ) can be
defined to be the linear maps that preserve all dot products between vectors. However,
although we reached (15) easily, there is much more going on here, which we will
amplify in this aside.
The background to the group action (13) is the Euclidean metric on the space �3 of
positions. The action A q Aq· ≔ of ÎA O 3( ) on the position q is the isometry group
of the metric. More generally, if the configuration space of a mechanical system is a
Riemannian manifold Q, then its phase space *T Q (its space of positions and momenta)
carries a canonical Riemannian metric called the Sasaki metric [25, 26]. In coordinates
q p,i i( ), where Äg q qd dij i j is the metric on Q, the Sasaki metric is given by

Ä + Ä-g q q g p pd d d dij i j ij i j
1( ) . The action of the isometry group of Q then lifts to a

isometry (equation (13) in our case) of *T Q.
The quadratics & &q 2, q p· , and & &p 2 are invariants of the symmetry group. Any
function of these invariants, like (15), is necessarily invariant. But much more is true.
It is known for this symmetry group that any invariant polynomial in q, p must be a
polynomial in the w1, w2, and w3. This is an example of what is called a first
fundamental theorem for a symmetry group; such a theorem is known in only a few
cases. From there it is a small step to conjecture that if

~
H q p,( ) is a smooth invariant

function, then H w w w, ,1 2 3( ) will be a smooth function as well. This turns out to be
true. (A priori, one might have worried the wi being quadratic functions of q and p
might mean H w w w, ,1 2 3( ) could end up involving square roots. That cannot happen.)
This is an example of a very general and celebrated theorem of Schwartz [23] that
states that for a compact group acting on a vector space, any smooth invariant
function on the vector space is a smooth function of the invariants. In fact, it must be
a smooth function of the polynomials that generate the invariant polynomials. In our
case these generating polynomials are & &q 2, q p· , and & &p 2.
While Hilbert’s invariant theorem guarantees that for many (but not all) matrix groups
the set of invariant polynomials is finitely generated, it may not be a simple manner to
actually construct a generating set.
Furthermore, we showed above why the invariants in this example serve to uniquely
label the orbits of the symmetry group. In other examples, even when a generating set
for the invariants can be found, those invariants may not serve to uniquely label the the
orbits. For example, the one-dimensional scaling group acting on the plane has no
continuous invariants, because the orbits (open rays) have a common limit point, the
origin. So the situation considered here is actually quite special.

For the Hamiltonian = =
~ & & & &H q p H q q p p H w w w, , , , ,2 2

1 2 3( ) ( · ) ( ), Hamilton’s
equations are

Eur. J. Phys. 37 (2016) 055003 R I McLachlan et al

10



=
¶
¶

=
¶
¶

+
¶
¶

=-
¶
¶

= -
¶
¶

-
¶
¶

~

~

q
H
p

q
H
w

p
H
w

p
H
q

q
H
w

p
H
w

2 ,

2 . 16

2 3

1 2

˙

˙ ( )

As .& &q 02 , .& &p 02 , and .´ = -& & & & & &q p q p q p 02 2 2 2( · ) , not all values of
w w w, ,1 2 3( ) are realisable. Indeed, the space of group orbits is contained in the cone

� . . .Î = -w w w w w w w w, , : 0, 0, 01 2 3
3

1 3 1 3 2
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and it is easy to check that it does consist of the entire cone. This situation, in which we have
a complete description of the space of group orbits, with each orbit represented as a point in a
vector space, is quite rare.

As we know that the flow of any G-invariant system, Hamiltonian or not, maps orbits to
orbits, it is clear that the wi form a reduced system independent of q and p. It can be computed
using nothing more than the chain rule:
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Probably any student confronted with (16) and comfortable with the chain rule would hit on
the idea of computing (17). However, from the general theory of symplectic reduction we
know that we have carried out the reduction � O 36 ( ) and that the resulting system (17) will
be Poisson.

Writing (17) explicitly as a Poisson system—that is, in the form of equation (8)—yields
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Note the analogy with the rigid body equations in Poisson form (equations (3), (8) and (9)).
Only the Poisson tensor is different and the Hamiltonian is arbitrary. Thus, the reduced
central force equations (18) form another and very easily accessible example of a Poisson
system.

Step 2. Finding the Casimir and passing to a two-dimensional symplectic leaf. The
Poisson tensor K(w) in (18) is linear in w so it is natural to ask which Lie algebra it is
associated with. That is (see equation (10)), we seek three matrices W1, W2, W3 such that

= = =W W W W W W W W W, 2 , , 4 , , 2 . 191 2 1 1 3 2 2 3 3[ ] [ ] [ ] ( )
The reader can check that the matrices

= = - =
-

W W W0 2
0 0

, 1 0
0 1

, 0 0
2 01 2 3( ) ( ) ( )
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obey equation (19). These matrices are a basis for the Lie algebra sp 2( ) of 2 × 2 matrices of
zero trace. We will come to the question of why this particular Lie algebra appears later, in
section 3.3.

To draw the phase portrait of the reduced central force equations (18), we first seek a
Casimir C, that is, a function such that ºK w C 0( ) . The solution is

= -C w w w w .1 3 2
2( )

The symplectic leaves are the level sets of C, which are hyperboloids for >C 0 and a cone
minus its point for C = 0. (There is also a singular leaf consisting of the single point

=w w w, , 0, 0, 01 2 3( ) ( ).) These are shown in figure 4, giving a foliation of phase space. Note
that, when written in terms of the original variables (q, p), C is the square of the total angular
momentum, = ´& &C w q p 2( ) —in close analogy with the rigid body. We point out,
however, that the foliation here is quite different from the rigid body, consisting of
hyperboloids instead of spheres.

Step 3. Obtaining the phase portrait as the level sets of the Casimir and the energy. The
orbits of (18) are the intersection of the symplectic leaves =C w( ) const. with the energy
level sets =H w( ) const.—again in analogy with the rigid body. This allows the phase
portrait to be read off, for any O 3( )-invariant Hamiltonian, for all values of the total angular
momentum at once, and to easily visualise how all the orbits fit together.

Figure 4. The reduced phase space of central force problems. Here = & &w q1
2,

=w q p2 · , and = & &w p3
2 are the reduced coordinates, and = -C w w w1 3 2

2 is the
Casimir corresponding to angular momentum. The motion is restricted to level sets of
the Casimir C. These are the symplectic leaves or symplectic reduced spaces for central
force problems. There are three types of leaves: for >C 0 the leaves are one sheet of a
two-sheeted hyperboloid (topologically a plane), and for C = 0 (i.e., for zero angular
momentum) they are the single point at the origin and the cone meeting the origin
(topologically a cylinder). All orbit types fit smoothly together.
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We have drawn such phase portraits for three systems: (i) the Kepler problem with
= -

~ & & & &H q p p q, 11
2

2( ) (shown in figures 5 and 6); (ii) a Hamiltonian that exhibits

homoclinic orbits, = + + -
~ & & & &H q p q p q p q p, 42 2 4 2( ) ( · ) ( · ) (shown in figure 7); and

(iii) a Hamiltonian with startlingly complex phase portrait, = å =H w wcosi i1
3( ) (shown in

figure 8).

Figure 5. Two views of the phase portrait for the reduced Kepler problem, given as
level sets of the reduced Hamiltonian H restricted to the coadjoint orbit C = 0.6. The
level set marked by a thicker curve corresponds to zero energy H = 0. This is the
escape energy, so orbits below it are bounded and periodic, whereas curves above it are
unbounded. Notice the stable relative equilibrium at the bottom, corresponding to the
circular solution of the Kepler problem where& &q 2 and& &p 2 are constant and =q p 0· .
The region ´ - ´0, 12 6, 6 0, 12[ ] [ ] [ ] is shown.

Figure 6. A more standard choice of reduced coordinates is w w,1 2( ). The phase portrait
of the reduced Kepler problem for C = 0.6 is shown here in these coordinates. A large
part of the phase portrait is squashed near the w2-axis, and these coordinates cannot be
used for zero angular momentum =C 0( ).
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3.2. Reconstruction

Thus far we have reduced the original set of six differential equations, equation (16), to three
differential equations, equation (18), and shown how the solutions of the reduced equations
may be visualised as the level sets of the energy and the Casimir. Strikingly, we have not yet
used the conserved quantity associated with the symmetry. In fact, we have avoided

Figure 7. Two views of the phase portrait of a central force problem with homoclinic
orbits. Here = + + -H w w w w w41

2
3
2

2
4

2
2( ) . The energy level set =H 2 (shown on

the left) intersects the Casimir level set C = 1 to create two homoclinic orbits. The
situation for is similiar on other symplectic leaves: the orbit Ça a- -H C21 1( ) ( ) is
homoclinic. The region ´ - ´0, 4 2, 2 0, 4[ ] [ ] [ ] is shown.

Figure 8. Two views of the phase portrait for a more complex central force problem at
zero angular momentum. Here = å =H w wcosi i1

3( ) . The interaction between the level
sets of H and of the Casimir = -C w w w1 3 2

2 creates a complex phase portrait. The
region ´ - ´0, 12 6, 6 0, 12[ ] [ ] [ ] is shown.
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mentioning it at all. Of course it is the angular momentum, = ´J q p q p,( ) . This will now
make an entrance as we reconstruct the full motion of the system.

Suppose that the reduced equations (18) have been solved to yield a reduced orbit w(t).
If this w(t) is substituted into the original, unreduced, system (16), it becomes a system of
six linear, nonautonomous equations that reconstruct the full motion. However, a much
more dramatic simplification of the full motion is possible. This is because the values of
both w(t) and of the angular momentum = = ´J q t p t J q p q p, 0 , 0 0 0( ( ) ( )) ( ( ) ( )) ( ) ( ) are
known on the solution curve q t p t, ;( ( ) ( )) these determine q t p t,( ( ) ( )) up to a single scalar
function of t. This function can be found by integrating a single function of time, as
follows.

Let q t p t,( ˜( ) ˜ ( )) be any curve in phase space that matches the known value of w(t)—that
is, such that =& & & &q t q t p t p t w t, ,2 2( ˜( ) ˜( ) · ˜ ( ) ˜ ( ) ) ( ). Such a curve can be determined using
only algebra. The desired solution, q t p t,( ( ) ( )), shares the same values of w and J. Since w1,
w2, and w3 are the defining invariants of the symmetry group, for each time t there must be
an element of the symmetry group O 3( ), say A, that maps q t p t,( ˜( ) ˜ ( )) to q t p t,( ( ) ( )). But
this map also has to preserve the angular momentum J. The O 3( ) action is

6q p Aq Ap, ,( ) ( ), so the action on angular momentum is
´ ´ = ´6q p Aq Ap A A q pdet( ) ( ) ( ) ( ). If the angular momentum is nonzero, the

orthogonal matrices A that preserve q × p are exactly the rotations about the axis q × p.
(We focus on the case of nonzero angular momentum; if the angular momentum is zero,
then q and p are collinear and remain pointing in the same direction forever, and are easily
determined from w.) That is, the solution can be written in the form

=
=

q t A t q t
p t A t p t

,
,

( ) ( ) ˜( )
( ) ( ) ˜ ( )

where ÎA t SO 3( ) ( ) is some rotation about the fixed axis ´q t p t( ) ( ). Substituting this
ansatz into the equations of motion (16) determines A(t).

This is an instance of a general result that the reduced motion and the conserved
momentum together determine the full motion up to an element of a certain subgroup
Gμ of the symmetry group G. This is the isotropy subgroup associated with the value μ
of the momentum map J. The symmetry group G has a natural action on values of the
momentum, called the coadjoint action; in this case we can write

�m= ´ ÎJ q p q p, 3( ) ≕ and the coadjoint action is m m=A A Adet· ( ) . So in
this case, the group elements that fix μ are the rotations about the axis μ.

To find this rotation A(t), let w(0) be the initial value of w(t). We can choose coordinates
on �3 so that

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
= = -q

w
p w0

0
0
0

, 0 0

0

.

w
w

w
w

1

0
0

3
0
0

2

1

2
2

1

( )
( )

( ) ( )

( )
( )

( )
( )

Here the coordinates have been chosen to match the given value of w(0) and so that μ is
aligned with the z-axis. Therefore it remains aligned with the z-axis for all time and the
solution can be written
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
= = -q t A t

w t
p t A t w t0

0

,

0

, 20

w t
w t

w t
w t

1

3

2

1

2
2

1

( ) ( )
( )

( ) ( ) ( ) ( )

( )
( )

( )
( )

where

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q q
q q=

-
A t

t t
t t

cos sin 0
sin cos 0
0 0 1

( )
( ) ( )
( ) ( )

represents the unknown rotation about the z-axis by an angle q t( ) which is to be determined.
(Equivalently, we can rotate the initial condition so that it lies in the (x, y) plane with q(0)
lying on the positive x-axis.)

Now inserting the ansatz (20) into the equations of motion (16), and using the reduced
central force equations (18) that are satisfied by w(t), yields the reconstruction equation

q
m

=
¶
¶

& &H
w w

2 . 21
3 1

˙ ( )

As the right-hand side is a known function of t, the solution to (21) is the phase

òq
m

=
¶
¶

& &
T

H
w

w t
w t

t2 d . 22
T

0 3 1
( ) ( ( )) ( ) ( )

Note that the formula for the phase is not unique as it depends on the choice of coordinates
in (20).

Thus we see directly that the central force problem is integrable for all H . Orbits for
which w(t) is a constant are called ‘relative equilibria’: the full motion is periodic with period
p m¶

¶
& &w2 2 H

w1
3( ). Orbits for which w(t) is periodic are called ‘relative periodic orbits’: the full

motion is quasiperiodic with second period p q T2 ( ), where T is the period of w(t). Relative
periodic orbits can be seen in figures 5, 7, and 8 as closed curves in the reduced phase space.
After one period, T, of the reduced dynamics, the full motion does not return to its starting
point but instead picks up a phase q T( ) (in this case, a rotation in the plane of the motion)—
an example of a geometric phase, analogous to the flip in the hammer toss experiment shown
in figure 2.

3.3. Dual pairs

(We remind the reader that this and forthcoming sections use some introductory concepts
from geometric mechanics, found, for example, in Arnold’s treatise [2].)

Now we come to the apparently surprising entrance of sp 2( ), the 2 × 2 matrices of zero
trace. The key to this is that in writing the Hamiltonian in the form & & & &H q q p p, ,2 2( · ), we
are being given a lot of extra information about the system compared to the default situation,
in which all we know is that the Hamiltonian is invariant under a given group action. Namely,
we are being given

i. the reduced Hamiltonian explicitly; and
ii. the function 6 & & & &q p q q p p, , ,2 2( ) ( · ).

In this section we will explore the consequences of this extra information.
Let G2 be a matrix group with a Hamiltonian action on *�T n and momentum map

g* *�=J T:2
3

2 . Functions of the form H J2◦ are called collective Hamiltonians and play
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an important and useful role in Hamiltonian dynamics, although they seem to be much less
well known than symmetric Hamiltonians and their associated tools of Noether’s theorem and
symplectic reduction. Collective motion is covered in section 28 of Guillemin and Sternberg
[9] and section 12.4 of Marsden and Ratiu [15], for example. The key facts are that

i. J2 is a Poisson map, i.e. g* *�=F G J F J G J, , T2 2 2 n
2

{ } ◦ { ◦ ◦ } for all functions
*� �=F G T, : ;n and

ii. the Hamiltonian vector field of H J2◦ on *�T n descends to the Hamiltonian vector field
of H on g*2 .

In the treatment of the central force problem above, we have verified these facts ‘by
hand’ for this example.

In the central force problem, = & & & &J q q p p, ,2
2 2( · ) is the momentum map for the

action of Sp 2( ) on *�T 3 given by

- =6
q
p

a b
c d

q
p ad bc, 1.( )( ) ( )

This can be checked by writing down the Hamiltonian vector fields of the components of J2,
which are the generators of this action, or by evaluating their Poisson brackets,
e.g. =& & & &q p q p, 42 2{ } · .

Thus, the dynamics of collective Hamiltonians are exceptionally easy to reduce. The
reduced system is always Lie–Poisson system and can be written down explicitly. In the
central force problem, not only do we have a collective Hamiltonian, but we know even more,
namely that all O 3( )-invariant Hamiltonians are collective.

A second reason for the appearance of sp 2( ) is that the matrix groups

=

= + +

G A q p Aq Ap

G a b
c d

q p aq bp cq dp

O 3 , , ,

Sp 2 , , , 23

1

2 ( )
≔ ( ) · ( ) ( )

≔ ( ) · ( ) ( ) ( )

are mutual centralizers within the group Sp 6( ) of all symplectic linear maps on *�T 3. That is,
G2 consists of those matrices in Sp 6( ) that commute with all matrices in G1, and vice versa.
This is an example of a dual pair. Amongst its remarkable consequences [11, 21] are that the
momentum maps J1 and J2 are quadratic functions that generate all polynomial invariants of
G2 and G1, respectively; that G1 is a symmetry group of J2 and vice versa; and that the
Hamiltonian H J2◦ is G1-invariant (as we used above) and vice versa. The dual pair was
introduced into representation theory by Roger Howe [11], who gave examples of its
widespread occurrence in mathematical physics, including fundamental formalism, massless
particles, classical equations (wave, Laplace, Maxwell, and Dirac) and supersymmetry.

With this in mind, we can see another motivation for the appearance of Sp 2( ), namely
that it is a symmetry of the angular momentum level sets, for

+ ´ + = - ´ = ´aq bp cq dp ad bc q p q p.( ) ( ) ( )( )

Remarkably, Howe [11] was able to classify the main dual pairs (the ‘irreducible reductive’
ones). There are just seven families of these, with =G G n F m F, GL , , GL ,1 2( ) ( ( ) ( )), where
the field F is the real numbers, the complex numbers, or the quarternions;

p q F k FO , , , Sp 2 ,( ( ) ( )) (the groups preserving a Hermitian (resp. skew-Hermitian) bilinear
form; this is the type that arises in the central force problem); and p q r sU , , U ,( ( ) ( )).

We close this discussion of the geometry of central force problems by comparing in
table 1 the relevant structures for the free rigid body and for central force problems.

Eur. J. Phys. 37 (2016) 055003 R I McLachlan et al

17



3.4. More bodies in more dimensions

In our discussion of the dynamics of one body moving in three dimensions under a central
force, it is easy to see that the three-dimensionality of space does not play any significant role
in the reduction procedure. Similarly we can guess that with more than one body, one should
replace q q q p p p, ,( · · · ) by the dot products of all pairs of qs and ps. This is in fact the
case, and the resulting reduction is an application of the Howe dual pair

� �n kO , , Sp 2 ,( ( ) ( )). The O 3( )-invariant motion of k = 1 body in n = 3 dimensions reduces
to a Lie–Poisson system in sp 2 ;( ) the nO( )-invariant motion of k bodies in any dimension n
reduces to a Lie–Poisson system in sp k2( ). The resulting structure was explored by Sadetov
in 2002 [24].

First, note that mechanical systems with pairwise interactions typically have Hamilto-
nians of the form

- -
å å= + -
= <

& & & &H q p
m

p V q q,
1

2
, 24

i

k

i
i

i j k
i j

1

2

1

2( ) ( ) ( )

where the positions of the bodies are ¼q q, , k1 , where �Îqi
n and their momenta are ¼p p, , k1 .

Such systems are invariant under nE( ), the Euclidean group of translations and rotations. The
translation degrees of freedom, being commutative, are easy to eliminate using centre-of-mass
coordinates. An explicit expression for canonical coordinates on the reduced phase space is
provided by Jacobi–Bertrand–Haretu coordinates [15, 19, 24], having been fully worked out
in Spiru Haretuʼs 1878 PhD thesis [10]; we will assume this has been done so that we are
given an nO( )-invariant Hamiltonian.

The action of nO( ) on the positions and momenta of k bodies is given by

¼ ¼ = ¼ ¼A q q p p Aq Aq Ap Ap, , , , , , , , , , .k k k k1 1 1 1· ( ) ( )

The invariants of this action are the pairwise dot products of the positions and momenta,
which we collect into a map

Table 1. Analogous concepts for the rigid body and the cental force problem.

Rigid body Central force

Symmetry group SO 3( ) O 3( )
Phase space �´SO 3 3( ) � �´3 3

Dual group SO 3( ) Sp 2( )
Action =A Q m AQ m, ,· ( ) ( ) =A q p Aq Ap, ,· ( ) ( )
Momentum m = Qm m = ´q p
Coadjoint action mA mA Adet( )
Casimir m = + +& & m m m2

1
2

2
2

3
2 m = -& & w w w2

1 3 2
2

Reduced coordinates m = & & & &w q q p p, ,2 2( · )
Reduced basis ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

-
-

-

m m
m m
m m

0
0

0

3 2

3 1

2 1

⎛
⎝⎜

⎞
⎠⎟

-
-

w w
w w

2
2

2 1

3 2

Poisson structure ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

-
-

-

m m
m m
m m

0
0

0

3 2

3 1

2 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟-

- -

w w
w w
w w

0 2 4
2 0 2
4 2 0

1 2

1 3

2 3

Eur. J. Phys. 37 (2016) 055003 R I McLachlan et al

18



⎜ ⎟⎛
⎝

⎞
⎠

F
j ¼ ¼ = = -q q p p X M L

K M
, , , , , ,k k1 1( )

where the k × k matrices M, L, and K are given by

= = =M q p L q q K p p, , .ij j i ij i j ij i j· · ·
As we can guess from the one-body case, j is the momentum map for the action of kSp 2( ) on
*� ´T n k given by

¼ ¼ = ¼ ¼B q q p p q q p p B, , , , , , , , , , .k k k k1 1 1 1· ( ) [ ]
All nO( )-invariant Hamiltonians H are collective and can be written in the form j=H H ◦ .
(If the original problem was of type (24), then H is already known explicitly.) Thus, their
equations of motion reduce to Lie–Poisson systems

=X X H,˙ { }
on sp *k2( ) . The Lie algebra sp k2( ) consists of all ´k k2 2 matrices of the form

⎛
⎝⎜

⎞
⎠⎟

Fa b
g a
-x ≔ , where a b g, , are k × k matrices and β, γ are symmetric. The dual

sp *k2( ) can be identified with sp k2( ) by the inner product F=X x X x, tr1
2

⟨ ⟩ ( ).
The unreduced system, on *� ´T n k, has dimension nk2 . The reduced system, (3.4), has

phase space a vector space of dimension sp * = +k k kdim 2 2 1( ) ( ). At first sight it is sur-
prising that the dimension of the phase space has not been itself ‘reduced’ when .k n. For
example, for the three-body problem (24) we have k = 2 and n = 2; the original phase space
(in centre-of-mass coordinates) has dimension =nk2 8 and sp * =dim 4 10( ) . Some
reduction!

The first point to note is that the map j does not map onto all of sp *k2( ) . Its range is the

positive semi-definite matrices of rank -n times ⎜ ⎟
⎛
⎝

⎞
⎠-

I
I

0
0

. (In the one-body example, this is

the solid cone .-w w w 01 3 2
2 in �3 shown in figure 4.) This submanifold has dimension

- -nk n n2 11
2

( ), which is a reduction in dimension. The ‘extra variables’ in which the
reduced system is written in (3.4) is the price we pay for embedding the reduced system, with
all its complicated topology of symplectic leaves, in a vector space. Second, the symplectic
leaves themselves have still lower dimension. The Casimirs are Xtr j2 , = ¼j n1, , 2⌊ ⌋, so the
top-dimensional leaves have dimension - - -nk n n n2 1 21

2
( ) ⌊ ⌋. For n = 3, this is

-k6 4, that is, symplectic reduction has lowered the dimension by 4.
In the classic three-body problem, the original phase space including the centre of mass

has dimension 18; removing the centre of mass drops to dimension 12; the Lie–Poisson
system (3.4) has dimension 10; the image of j has dimension 9; and the top-dimensional
symplectic leaves have dimension 8. There are also lower-dimensional leaves corresponding
to planar motions, zero-angular-momentum motions, and motions in which some of the
bodies coincide.

4. Discussion

The use of invariants to work with quotients by symmetry groups is extremely well estab-
lished, being the main reason that invariants were originally introduced in the 19th century. In
dynamical systems, it has become a powerful tool in bifurcation theory [8], but is less well
established in geometric mechanics [17]. Perhaps one reason for this is that while it can be
powerful in specific examples, as here, it is not universally applicable (orbits are not always
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specified by the values of invariants) and the geometry of the orbits and invariants has to be
worked out in each case. Cushman and Bates [5] work out many examples of reduction in
detail in this way, for example. Olver [20] in examples 6.43 and 6.50 treats the central force
problem much as we have done here. Lerman, Montgomery, and Sjamaar [14] treat the case
of k bodies in n-dimensions, noting the connection with dual pairs. The full description of the
reduction to sp *k2( ) is due to Sadetov [24] and is also covered by Dullin [6]. The brevity of
Howe’s list of dual pairs [11] suggests that there will not be many examples arising naturally
in physics that possess the same elegant structure as the central force problem; one example is
the reduced regularised Kepler n-body problem, which involves u *m m,( ) , where

= -m n n 1 2( ) [3].
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