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a b s t r a c t

We study the unexpected disappearance of stable homoclinic orbits in regions of parameter space in
a neural field model with one spatial dimension. The usual approach of using numerical continuation
techniques and local bifurcation theory is insufficient to explain the qualitative change in the model’s
behaviour. The lack of robustness of the model to small perturbations in parameters is surprising, and
the phenomenon may be of broader significance than just our model. By exploiting the Hamiltonian
structure of the time-independent system, we develop a numerical technique with which we discover
that a small, separate solution curve exists for a range of parameter values. As the firing rate function
steepens, the small curve causes the main curve to break and stable homoclinic orbits are destroyed
in a region of parameter space. Numerically, we use level set analysis to find that a codimension-one
heteroclinic bifurcation occurs at the terminating ends of the solution curves. By replacing the firing rate
function with a step function, we show analytically that the bifurcation is related to the value of the firing
threshold. We also show the existence of heteroclinic orbits at the breakpoints using a travelling front
analysis in the time-dependent system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Pattern formation in spatially extended systems is an area
of study that has shown major progress within the last few
decades. Systems from a wide range of biological, geophysical,
ecological, physical and material sciences are studied, making
pattern formation an interdisciplinary science. Spatial patterns can
be stationary, travelling or disordered in both space and time,
i.e. spatio-temporally chaotic. Spatially localised solutions are of
importance in many different areas, such as the study of localised
buckling of long struts [1,2], nonlinear optics [3], vibrating granular
media [4], convection problems [5] and neuroscience [6,7]. In
neural field models, stationary spatially localised regions of high
activity (‘‘bumps’’) have been studied in the context of working
memory, as single-bump steady state solutions are believed
to be the analogue of short-term memory [6,8–10]. Although
these systems are quite diverse, they often display similar
behaviour. Given this, it is of interest that the systems usually
have key features in common, such as bistability, invariance
under translation and spatial reflection, and are represented by
differential equations that are at least fourth-order in space. The
time-independent system can often be written as a dynamical
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system in space, where spatially localised solutions correspond
to homoclinic orbits to the fixed point at the origin. Homoclinic
snaking is also a feature in many systems [2,11–15], with some of
the best studied examples being fourth-order partial differential
equations [1,2,15].
By exploiting the properties of higher order reversible Hamil-

tonian equations, advances have been made in the understand-
ing of homoclinic solutions in pattern forming systems. One such
example is the Swift–Hohenberg equation in both one and two
spatial dimensions [11–13,16]. We refer the reader to the work
of Champneys [1] for a review of both the theory and application
of homoclinic orbits to equilibria in even-order reversible systems
in four or more dimensions. Reversible and Hamiltonian systems
have some important propertieswhichwe briefly discuss here. In a
reversible, non-Hamiltonian system, symmetric homoclinic orbits
are codimension zero. Therefore, they persist under a perturba-
tion that preserves reversibility. However, asymmetric homoclinic
orbits are codimension one and are destroyed by a generic per-
turbation that breaks the conserved quantity but still preserves
reversibility [1]. In a non-reversible Hamiltonian system, both
symmetric and asymmetric homoclinic orbits are codimension-
zero. This is also true for a Hamiltonian-reversible system.
In this paper we extend the work of Laing and Troy [7,17] who

found multiple bump solutions of a particular neural field model.
We write the steady states of this model as solutions of a fourth-
order reversible Hamiltonian ODE, and use these properties to
investigate how steady states vary as parameters change.
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Laing and Troy [7,17] studied the integro-differential equation

∂u(x, t)
∂t

= −u(x, t)+
∫
∞

−∞

w(x− y)f [u(y, t)] dy (1)

where

f (u) = 2 exp[−r/(u− θ)2]Θ(u− θ), (2)

Θ is the Heaviside step function and

w(x) = e−b|x|(b sin |x| + cos x). (3)

Here, u(x, t) is the average voltage, or activity level, of a neuronal
population at spatial position x and time t . The coupling function
w(x) is the distance-dependent strength of connectivity between
neuronal elements and is even. The parameter b governs the rate
at which oscillations inw decaywith distance. The choice ofwwas
motivated by labelling studies showing that approximate periodic
stripes are formed by coupled groups of neurons in the prefrontal
cortex [18–20]. The firing rate function f (u)models neurons firing
once threshold is reached and tends to a maximal limit as the
stimulus is increased. Parameter θ is the firing threshold and r is
the steepness parameter.
In [7], multiple bump steady states of (1), which are homoclinic

orbits to the fixed point at the origin,were followed as bwas varied.
By plotting the L2 norm of u as a function of b, a ‘‘snaking’’ phe-
nomenon was seen in the solution branches. ‘‘Snaking’’ has been
seen previously in higher order scalar systems and in systemswith
homoclinic orbits [2,11–15]. The role of r was briefly discussed, and
it was found that increasing r by 5% led to a qualitative (although
quite minor) change in the bifurcation diagram. This was further
investigated by Elvin [21], who found large ‘‘breaks’’ in curves of
solutions when r was decreased by 5–10%. In general, we expect a
qualitative model such as (1) to be robust to small perturbations in
parameters, therefore we want to understand what is causing the
breaks. We show below that the steady states of (1)–(3) can be de-
scribed by a four dimensional reversible Hamiltonian system. Our
goal is to exploit the Hamiltonian structure and reversibility prop-
erties to explain the qualitative changes in the behaviour of the
model, using two different approaches.
Firstly, we develop a numerical technique to find all homoclinic

orbits of the system; these orbits correspond to the spatially
localised steady states of (1)–(3). Numerically, we find a separate
solution curve which exists when the firing rate function is
sufficiently steep. This curve has not been reported previously and
cannot be found using standard continuation techniques. Using
level set analysis, we show that a codimension-one bifurcation,
corresponding to the termination of solution curves, occurs at
certain parameter values.
Secondly, we replace the firing rate function in (2) by a step

function so that analytical techniques can be used to find travelling
waves in the time-dependent system. We find the speed of
travelling fronts, showing that stationary fronts exist at the same
parameter values for which break-points in the solution curves
exist. Using the Hamiltonian structure of the system we show that
heteroclinic connections between fixed points also occur at the
breakpoints.
The structure of the paper is as follows. In Section 2 we derive

the ODE governing steady states of (1)–(3) and discuss its prop-
erties. In Section 3 we take a phase space approach and derive a
map, certain solutions of which correspond to homoclinic orbits.
The Hamiltonian structure is exploited in Section 4, while in Sec-
tion5wediscuss the consequences of replacing the firing rate func-
tion by the Heaviside step function. We conclude in Section 6.

2. The model and its properties

The model in (1)–(3) supports spatially-uniform steady states,
spatially-localised solutions such as homoclinic orbits and both
stationary and travelling wave fronts (heteroclinic connections
between a resting state and an excited state), and spatially-
periodic patterns. We have previously shown the existence of
both stable and transient spatially-periodic patterns beyond a
Turing instability in (1)–(3) in one and two spatial dimensions [22].
Both the non-trivial spatially uniform steady states, spatially-
localised solutions and spatially-periodic solutions depend upon
the parameter b.
For now, we consider time-independent solutions of (1) for

which

lim
|x|→∞

(u, u′, u′′, u′′′) = (0, 0, 0, 0), (4)

i.e. stationary, spatially-localised solutions. These solutions satisfy
the integral equation

u(x) =
∫
∞

−∞

w(x− y)f [u(y)] dy. (5)

Using the particular form of w in (3), Eq. (5) can be transformed
into a differential equation by the use of Fourier transforms.

2.1. Derivation of ODE

Noting that (5) involves a spatial convolution and taking the
Fourier transform in space of this equation we obtain

F [u] = F [w]F [f (u)] (6)

where F [·] denotes the Fourier transform. Forw as given by (3),

F [w] =
4b(b2 + 1)

s4 + 2s2(b2 − 1)+ (b2 + 1)2
(7)

where s ∈ R is the transform variable. Substituting (7) into (6) and
rearranging we obtain(
s4 + 2s2(b2 − 1)+ (b2 + 1)2

)
F [u] = 4b(b2 + 1)F [f (u)]

which using Fourier transform identities can be written

F [u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u] = F [4b(b2 + 1)f (u)] (8)

where prime indicates derivative with respect to x. Applying
inverse Fourier transforms to (8) we obtain the ODE

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f (u) (9)

subject to the boundary conditions in (4). Solutions of (9)which are
homoclinic to the origin correspond to spatially-localised steady
states of (1). This technique of using Fourier transforms to convert
integral equations to differential equations has been used several
times before [6,17,23–26]. Eq. (9) has a number of important
properties which we now discuss.

2.2. Hamiltonian structure and reversibility

Firstly, writing (9) as a system of four first-order ODEs and
linearising them about the origin, we find that the Jacobian of this
system has the four eigenvalues±b± i, i.e. the origin is a bifocus,
with a two-dimensional unstable manifold and a two-dimensional
stablemanifold. Now (9) can bewritten as a reversibleHamiltonian
system. For simplicity, write (9) as

u′′′′ + a1u′′ + a2u+ g(u) = 0 (10)
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where a1 = 2(1−b2), a2 = (b2+1)2 and g(u) = −4b(b2+1)f (u).
Defining the variables v, pu and pv via

u′ = v (11)

v′ = pv (12)

p′u = a2u+ g(u) (13)

p′v = −pu − a1v (14)

and defining the Hamiltonian

H(u, v, pu, pv) = puv +
p2v
2
+
a1v2

2
−
a2u2

2
− G(u) (15)

where

G(u) ≡ −8b(b2 + 1)
∫ u

0
exp[−r/(z − θ)2]Θ(z − θ) dz,

we see that the Hamiltonian is conserved (H ′ = 0) and the
dynamics are given by

u′ =
∂H
∂pu

(16)

v′ =
∂H
∂pv

(17)

p′u = −
∂H
∂u

(18)

p′v = −
∂H
∂v
. (19)

Note that G′(u) = g(u). The system in (16)–(19) is invariant under
the space-reversing symmetry

R(x, u, v, pu, pv) 7→ (−x, u,−v,−pu, pv),

that is, it is reversible.

3. Using a map

Having established the Hamiltonian structure of (9), we take a
phase space approach and derive a two-dimensional map, certain
solutions of which correspond to homoclinic orbits to the origin
of (9). By doing this, we reduce the problem of finding single-bump
homoclinic orbits to finding the zeros of a real scalar function.

3.1. Derivation of a map

We are interested in homoclinic orbits to the fixed point at
the origin of (9). Homoclinic orbits of interest lie in W s ∩ W u
whereW s andW u denote the stable and unstable manifolds of the
origin, respectively. In a Hamiltonian system, energy is conserved
and the orbits of the system must lie on the energy surfaces.
Therefore homoclinic orbits lie on the energy surfaces, or level sets,
H(u) = e ∈ R, where e is a constant. Since H = 0 at the origin,
we only consider solutions on the zero energy surface, H = 0,
which reduces the dimension of the system under consideration
from four to three. Since (9) is linear for u < θ we have explicit
expressions for both the stable and unstable manifolds of the
origin, and thus we need only consider the solutions of (9) for
θ < u. We choose two sections that effectively reduce the system
dimension from three to two. Let Σ0 be the two-dimensional
section

Σ0 = {(u, v, pu, pv)|u = θ, v > 0,H = 0}.

Now the value of (v, pv) defines a unique point on Σ0, since if
H = 0 then pu can be found in terms of u, v and pv , using (15).
We also define the sectionΣ1 by

Σ1 = {(u, v, pu, pv)|u = θ, v < 0,H = 0}.

Wu

Ws

y0

y1

Σ1 Σ0

Fig. 1. Schematic of a homoclinic orbit. The orbit intersects the section Σ0
transversally at the point y0 and the section Σ1 transversally at the point y1 . The
stable and unstable manifolds of the fixed point areW s andW u respectively.

Note that Σ0 and Σ1 are two halves of a single plane (see Fig. 1).
Now for u < θ , solutions on the unstable manifold of the origin,
W u, can be written as

u(x) = ebx(A sin x+ B cos x)

for some A, B ∈ R. Using the translational invariance of the system
we can choose u(0) = θ , i.e. solutions onW u ∩Σ0 can be written

u(x) = ebx(A sin x+ θ cos x) (20)

with −bθ < A, since we need 0 < v on Σ0. Note that only one
parameter, A, is needed to describe a point onW u ∩Σ0.
We define the mapping P : Σ0 → Σ1 for all y0 ∈ Σ0 as result-

ing from numerically integrating (9) with y0 as an initial condition
until the solution hitsΣ1 for the first time, at the pointwe define to
be y1. In practicewewill only consider points y0 ∈ W u∩Σ0, where
W u ∩ Σ0 is a one-dimensional manifold. For such points, as long
as −bθ < A, the solution of (9) through y0 will always transver-
sally meet Σ1 for some x > 0, and thus P is defined for these y0.
From (20) our initial condition for (9) is u(0)u′(0)
u′′(0)
u′′′(0)

 =


θ
A+ bθ

−θ + 2Ab+ b2θ
−A− 3bθ + 3b2A+ b3θ

 (21)

which can be written in Hamiltonian coordinates using (11)–(14)
as u(0)v(0)
pu(0)
pv(0)

 =
 u(0)

u′(0)
−a1u′(0)− u′′′(0)

u′′(0)

 . (22)

Using (21)–(22) we can write

W u ∩Σ0 = {(u, v, pu, pv)|u = θ, v > 0,H = 0,
pv = 2bv − θ(b2 + 1)}

which can be visualised as a straight line in the right half of the
(v, pv) plane. Because of the reversibility of the system, the stable
manifold of the origin,W s, is given byW s = R(W u). Thus

W s ∩Σ1 = {(u, v, pu, pv)|u = θ, v < 0,H = 0,
pv = −2bv − θ(b2 + 1)}
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Fig. 2. Mapping of initial conditions onW u ∩ Σ0 for parameter values (b, r, θ) =
(0.25, 0.095, 1.5). The circles onW u ∩ Σ0 indicate the two initial conditions that
map to the two circles onW s ∩Σ1 . The two initial conditions lie on two symmetric
homoclinic orbits.

which forms another straight line in the left half of the (v, pv)
plane.
To find homoclinic orbits to the origin with u > θ over only one

interval (a 1-bump solution), we choose a y0 ∈ W u ∩ Σ0 and let
y1 = P(y0). If y1 ∈ W s∩Σ1 then y0 lies on such a homoclinic orbit,
as shown in Fig. 1. Let the coordinates of y0 ∈ W u ∩Σ0 be (v0, p0v)
and y1 ∈ W s ∩ Σ1 be (v1, p1v), and suppose that these points lie
on a homoclinic orbit to the origin. If v0 = −v1 then y0 lies on a
symmetric homoclinic orbit, otherwise it is on an asymmetric orbit.
In practice for a general y0 ∈ W u ∩ Σ0 we calculate the signed
vertical distance, h, between P(y0) andW s ∩Σ1:

h = p1v − [−2bv
1
− θ(b2 + 1)] = p1v + 2bv

1
+ θ(b2 + 1).

Recalling that a point onWu∩Σ0 can be parameterised by Awe can
regard h as being a scalar function of A; to find homoclinic orbits to
the origin we just need to find zeros of h(A). Note that anyN-bump
solution can be found bymodifying themapping P to terminate on
the Nth intersection ofΣ1, crossing in the appropriate direction.

3.2. Numerical results

For all of the analyses in this sectionwe set θ = 1.5.We initially
set r = 0.095. By varying b, we use the mapping derived above to
search different regions of parameter space and find all existing
homoclinic orbits. For b = 0.25, we find that the mapping is
continuous, as seen in Fig. 2 where a plot ofW s∩Σ1,W u∩Σ0 and
themapping of initial conditions onW u∩Σ0 are shown. The circles
onW u ∩Σ0 indicate the two initial conditions which map toW s ∩
Σ1 (also indicated by circles), therefore these two initial conditions
lie on two homoclinic orbits. The orbits are symmetric as the pv
coordinate of each initial condition onW u∩Σ0 is unchanged under
the mapping toW s ∩Σ1.
To find the solution curves, we convert the solutions found

with the mapping to full solutions over the finite domain x ∈
[−15π, 15π ], as with this size domain the boundary conditions
in (4) are satisfied. The software package AUTO [27] is used for
continuation and solving bifurcation problems in ordinary differ-
ential equations with one or more free parameters and includes
the package HomCont for the bifurcation analysis of homoclinic
orbits. Therefore we write the ODE in (9) as a system of first or-
der equations, take a full solution as a starting solution, and use
AUTO to compute the solution curves by varying the parameter b.
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Fig. 3. Solution curves of homoclinic orbits for (1)–(3) with b the continuation
parameter. Top: For r = 0.095, the main solution curve is continuous. Middle:
For r = 0.090, a small separate solution curve exists and lies near, but does not
quite touch, the solution curve of stable homoclinic orbits. Bottom: For r = 0.085,
the small solution curve has met the main curve, causing a large ‘‘break’’ where no
stable homoclinic orbits exist. Solid line: stable, dashed: unstable. See the text for
an explanation of labels.

We find the solution curves shown in the top plot of Fig. 3 where
the global maximum of u is plotted as a function of b. The symbols
Γ1,Γ3 and Γ5 indicate families of 1-, 3- and 5-bump solutions re-
spectively. The results agree with the solution curves found in [7]
where there are two single-bump symmetric homoclinic orbits at
b = 0.25.Wevary bbut nonew solution curves are foundusing our
two-dimensional mapping (for r = 0.095) and the solution curves
are continuous. Solid (dotted) lines showbranches of stable (unsta-
ble) solutions. Solution stability is determined numerically using
an eigenvalue analysis of the spatially perturbed full system [21].
We see that the system ismulti-stable asN-bump solutions, in gen-
eral, come in pairs of one stable solution and one unstable solution.
We now decrease r to 0.090. By varying b and using our

mapping, we find unexpected solutions which lie on a separate
curve inside themain solution curve, centred approximately about
b = 1 (middle plot of Fig. 3). The small separate curve lies very
near, but does not quite touch, the main solution curve, which is
still continuous. This separate solution curve has not been reported
previously in the literature and could not be found using standard
continuationmethods, as we previously had no known solution on
the small curve.
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Fig. 4. Top: initial condition (dashed) and steady states of a simulation of (1)–(3)
for b = 0.8 (dash-dotted) and b = 1.2 (solid). Bottom: snapshots at the specified
times when b = 1. Other parameters: r = 0.085, θ = 1.5.

As r decreases (making f steeper), the separate solution curve
meets themain solution curve at (b, r) = (1.0167, 0.0899) (4 d.p.).
As we decrease r further, a ‘‘break’’ develops in the main solution
curve and the gap widens with a spiral terminating each side of
the break. In the bottom plot of Fig. 3 (r = 0.085), there is a very
clear gap where no stable homoclinic orbits exist. The terminating
ends of the break in the solution curve appear to end in spirals. It
has not been possible to numerically determine the stability of the
solutions on spirals, however, we expect that stability changes in
saddle-node bifurcations.
Fig. 4 shows results from simulations of the full system (1)–(3)

as b is varied across the break seen in the bottom panel of Fig. 3.
We use the same initial condition (shown in the top panel of Fig. 4)
and three different values of b. For b = 0.8 and 1.2 we find stable
1-bump solutions but for b = 1 (i.e. in the break seen in the lower
panel of Fig. 3), two fronts travelling in opposite directions are
observed, resulting in an expanding region of high activity.
In Fig. 5 we take a closer look at the small curve that exists for

r = 0.090 and see that a kink has appeared in the main solution
curve near b = 1 where the distance between the main curve and
the small curve is at a minimum. At r = 0.095, the small solution
curve did not exist and there was no kink in the main solution
curve. The ends of the small solution curve seem to terminate in
spirals. Fig. 6 shows the intersection of the small solution curve
with the main solution curve at (b, r) = (1.0167, 0.0899) (4
d.p.) where two tails ending in spirals are formed. These two tails
become the terminating ends on each side of the break in the
main solution curve as r decreases from 0.0899. The main solution
curve breaks around b = 1 and here, the coefficient of the second
derivative in the ODE in (9) vanishes. We plot solutions at b =
0.932 for r = 0.090 and r = 0.0899 in Fig. 7 to see if there are
qualitative differences in the solutions. In the left plot we show
solutions from the main curve (solid line) and the small curve

0.5 0.75 1

4

b

m
ax

 u
 

Fig. 5. Closer view of the small separate solution curve in the middle plot of Fig. 3
for r = 0.090. There is a kink in the main solution curve where the distance to the
small curve is smallest.
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Fig. 6. As r decreases from 0.090 to 0.0899, the small separate solution curve
shown in Fig. 5 meets the main solution curve at b = 1.0167. A closer view of the
intersection between the two solution curves shows that two tails ending in spirals
have formed.

(dotted line) from Fig. 5 for r = 0.090. At this particular value of b,
the solution on the small curve is near the terminating spiral and
is a ‘‘dimple’’ bump solution, that is, the solutions have a positive
second spatial derivative at the centre of the bump. The solution
is also broader than the single-bump solution on the main curve.
In the right plot of Fig. 7 we do the same for the main curve (solid
line) and the left tail formedby the small curve (dotted line) in Fig. 6
for r = 0.0899. Again, near the terminating spiral on the tail, the
solution is a ‘‘dimple’’ bump and is a broader solution than that on
the main curve.
We are interested in how the small branch of solutions from

Fig. 5 changes as r is varied. In Fig. 8 we plot the curve for five
different values of r . The topmost curve is the small solution curve
at r = 0.090. Continuationmethods reveal a shrinking of this curve
as r increases beyond 0.090. At r = 0.091875, the two endpoints of
the curve meet, creating an isola [28]. The isola exists only briefly
and disappears quickly as r increases further. Therefore the small
solution curve only exists for a small range of r . To see how the
solutions change on the curves in Fig. 8, we plot the solution at
b = 1 from four of the curves in Fig. 9. As the small curve shrinks,
the solution becomes progressively broader and eventually, on the
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Fig. 7. Left: Solutions at b = 0.932 for r = 0.090 on the main solution curve of
single-bump solutions (solid line) and the small solution curve (dotted line) in Fig. 5.
Right: Solutions at b = 0.932 for r = 0.0899 on the upper curve of single-bump
solutions (solid line) and the small tail caused by the small curve meeting the main
curve (dotted line) in Fig. 6. In both cases, the solutions on the small curve near the
terminating spiral are ‘‘dimple’’ bumps that become broader the closer they are to
the spiral.
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Fig. 8. The topmost curve is the small curve found for r = 0.090 in Fig. 5. As r
increases to 0.0905, 0.0910, 0.0918 and 0.091875, the curve shrinks and eventually
forms an isola at r = 0.091875.

isola that exists at r = 0.091875, becomes a ‘‘dimple’’ bump. All
solutions on the isola are ‘‘dimple’’ bump solutions.
Wenowknowhow this particular branch of solutions is created,

that it eventually meets the main curve, causing it to break as r
decreases and creating a gap in the main solution curve where no
stable homoclinic orbits exist.
Although the mapping reduces the problem of finding homo-

clinic orbits to finding the zeros of a real scalar function, the func-
tion obtained is not necessarily continuous, so it can be difficult
to make conclusions about the global existence of solutions and
global bifurcations. The existence of a small separate branch of so-
lutions partially explains the gap in the curve, but we want to un-
derstand why the curves end and what causes the gap to widen
as f becomes steeper. In the next section, we use level set analysis
to find a global bifurcation at the terminating ends of the solution
curves.

4. Heteroclinic connections

Homoclinic orbits lie on energy surfaces, and therefore the
topology of the level sets {u:H(u) = e, e ∈ R} can change only
where the level set contains a critical point. These critical points
are the fixed points of the system. Up until now, we have only
considered homoclinic orbits to the fixed point at the origin; we
now study other fixed points of the system to understand what
causes the curve of solutions to break and destroy homoclinic
orbits to the origin.
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Fig. 9. Solutions at b = 1 from the curves for r = 0.0905, 0.0910, 0.0918 and
0.091875 in Fig. 6. As the small curve shrinks (r increases), the solutions become
progressively broader and on the isola at r = 0.091875, the solutions have become
‘‘dimple’’ bumps.

4.1. Theory

Depending on parameter values, (9) can have up to three fixed
points. One is the origin, Z0, which exists when 0 < θ . The other
two are referred to as Z1 for which (u, u′, u′′, u′′′) = (u1, 0, 0, 0)
and Z2, for which (u, u′, u′′, u′′′) = (u2, 0, 0, 0), where u1 < u2
and u1 and u2 are both solutions of

u =
8b exp[−r/(u− θ)2]

b2 + 1
.

Homoclinic orbits to the origin lie on the zero energy surface, the
level set H = 0, and can only be destroyed if this level set contains
a fixed point. Using (15), we find H at Z1 and Z2 as a function of
b for the three different values of r: r = 0.095, 0.090, 0.085, as in
Section 3.2. By doing this we can determine if either of the nonzero
fixed points canmeet the zero energy surface,H = 0. Note that the
value of H at Z1 and Z2 must be found numerically.

4.2. Results

Fig. 10 shows the value of the Hamiltonian (H) at the two non-
trivial fixed points as a function of b (bottom row) and solution
curves (top row) as a function of b for three different values of r .
For r = 0.095 (left column), both H(Z1) and H(Z2) are negative
for all b and the solution curves are continuous. For r = 0.090
(middle column), there are two values of b for which H(Z2) = 0
and these values of b correspond to the endpoints of the small
separate solution curve in the top panel. So there are two values of
b for which the fixed point Z2meets the zero energy surfaceH = 0.
For r = 0.085 (right column), there is a large break in the main
solution curve and the terminating ends of the break correspond
to the values of b for which H(Z2) = 0.
For parameter values such that H(Z2) = 0, a codimension-one

bifurcation occurs in which the stable and unstable manifolds of
Z0 and Z2 intersect, destroying all homoclinic orbits to the origin.
This bifurcation is similar to the codimension-two heteroclinic
bifurcation called a T -point or terminal point, studied in two-
dimensional parameter space in the Lorenz equations [29]. In our
system, aswemove closer to the break points in the solution curves
shown in Fig. 10, the solutions spend longer near the fixed point Z2
and thus develop a broad ‘‘plateau’’ in their centre. At each break
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Fig. 10. Top row: solution curves of homoclinic orbits to the origin of (1)–(3). Bottom row: the value of the Hamiltonian (H) at the two non-trivial fixed points Z1 (dashed
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Fig. 11. Points in (b, r) parameter space where H(Z2) = H(Z0) = 0 for θ = 1.5
in (1)–(3). At r = 0.0899 (horizontal line), the separate solution curve meets the
main solution curve. Below this line, the curve gives the endpoints of the solution
curve. Above this line, the curve gives the terminating ends of the separate solution
curve.

point, Z2 intersects the homoclinic orbit, forming a heteroclinic
orbit between Z2 and the origin.
We conjecture that the end points of the solution curves occur

where H(Z2) = H(Z0) = 0 as this is the behaviour we have seen
for r = 0.085 and r = 0.090. Fig. 11 shows the curve in (b, r) pa-
rameter space where H(Z2) = H(Z0) = 0. At r = 0.0899 (4 d.p.),
the separate solution curve meets the main curve. In Fig. 11 the
horizontal line at r = 0.0899 intersects the plotted curve at the
two values of b where the endpoints of the small curve occur.
Above the horizontal line, the small separate solution curve ex-
ists for a small range of r > 0.0899 and the plotted curve gives
the endpoints of this separate solution curve. Below the horizontal
line, the separate solution curve no longer exists and the plotted
curve gives the the terminating ends of the main solution curve.

5. Heaviside firing rate function

So far, many of our results have had to be calculated numeri-
cally, due to the presence of the nonlinear function (2). More ana-

lytical progress can be made if the firing rate function f is replaced
by a piecewise linear function [6] or a Heaviside step function
[8,24]. Here we consider the case when f (u) = 2Θ(u− θ), which
is the result of taking r → 0 in (2).
In most neural field models, some form of lateral inhibition

is required for stable stationary bumps to exist [8,10]. It has
been shown previously that spike-frequency adaptation changes
travelling waves from fronts to bumps in a one-dimensional single
populationmodel [30]. More recently, Kilpatrick and Bressloff [31]
found that stable stationary bumps can coexist with fronts in an
excitatory neuronal network with synaptic depression, however,
bumps cannot exist in the presence of adaptation. In this section
we show that ourmodel,with decaying oscillatory connectivity but
no negative feedback, can support travelling waves in the form of
fronts as well as stable stationary bumps.

5.1. Using a map

The derivation of a map can be carried out in a similar way
to that in Section 3.1, the only difference being that we can now
analytically find u(x) when θ < u(x), rather than having to
numerically integrate (9). The solutions found are shown in Fig. 12,
and there is a wide range of b for which no stable homoclinic
orbits can be found. The values of b for which the solution curves
terminate agree with the values of b corresponding to r = 0 in
Fig. 11. Thus it seems that the terminating ends of the solution
curves for r = 0 must occur when a nonzero fixed point of the
system meets the zero energy surface. We now investigate this
further by finding heteroclinic orbits of the system.

5.2. Heteroclinic connections

As before, we find fixed points of (9). The origin is a fixed point
for θ > 0 and there exists one other, Ẑ, for which (u, u′, u′′, u′′′) =
(8b/(b2 + 1), 0, 0, 0), when 0 < θ < 8b/(b2 + 1). Using (15) we
see that at Ẑ, H = 32b2 − 8b(b2 + 1)θ , thus Ẑ will lie on the level
set H = 0 when

θ =
4b
b2 + 1

. (23)

Setting θ = 1.5 in (23) we find that this equation is satisfied when
b = 0.4514 or 2.2153 (4 d.p.) which are exactly the endpoints of
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Fig. 12. Single-bump solution curves of (1) and (3) with f (u) = 2Θ(u− 1.5).

the curves in Fig. 12 and also the values of b at which the curve in
Fig. 11 touches the b axis. Furthermore, Eq. (23) cannot be satisfied
by any real b if θ > 2, which implies that the curve in Fig. 12 will
not break if θ > 2. It appears that the breaks in the solution curve
are related to the firing threshold, θ .

5.3. Stationary fronts

The analysis so far has been concerned with time-independent
solutions of (1)–(3), which satisfy the ODE (9). However, it is also
possible that (1)–(3) supports travelling fronts or pulses. A wave
travelling with constant speed is stationary in a coordinate frame
movingwith an appropriate constant speed, sowenowstudy time-
dependent solutions of (1), utilizing a moving coordinate frame.

5.3.1. Front construction
Following [32], by using a Green’s function in time the solution

of (1) can be written in integral form

u(x, t) =
∫
∞

−∞

∫
∞

0
η(s)w(y)f [u(x− y, t − s)] ds dy (24)

where η(t) = Θ(t)e−t , and this form can be used to construct
travelling wave solutions. We now set f (u) = 2Θ(u − θ) and
explicitly construct travelling front solutions that join the states
u = 0 and u = 8b/(b2 + 1). For certain parameter values these
fronts are stationary, and these parameter values are found to be
those for which heteroclinic connections between the origin and Ẑ
were found in Section 5.2.
Define the travelling coordinate ξ = x− ct , where c is a speed,

and let U(ξ , t) = u(x− ct, t). Then (24) can be written

U(ξ , t) =
∫
∞

−∞

∫
∞

0
η(s)w(y)f [U(ξ − y+ cs, t − s)] ds dy. (25)

A travelling wave solution of (24) is a time-independent solution
of (25), say q(ξ), which satisfies

q(ξ) =
∫
∞

−∞

∫
∞

0
η(s)w(y)f [q(ξ − y+ cs)] ds dy. (26)

If we define

φ(ξ) ≡

∫
∞

−∞

w(y)f [q(ξ − y)] dy (27)

then (26) can be written

q(ξ) =
∫
∞

0
η(s)φ(ξ + cs) ds. (28)
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Fig. 13. Speed of travelling fronts, c , in (28) as a function of b for θ = 1.5. Stationary
fronts occur at b = 0.451 and b = 2.215. (Note that the curve does not exist
for b < 0.195 because for a front of the type constructed to occur we must have
θ < 8b/(b2 + 1)).

Suppose that θ < q(ξ) for ξ < 0, q(0) = θ and q(ξ) < θ for 0 < ξ ,
i.e. q is a front. Then

φ(ξ) = 2
∫
∞

ξ

w(y) dy. (29)

Since q(0) = θ , we see from (28) that

θ =

∫
∞

0
η(s)φ(cs) ds (30)

which can be solved for the speed c in terms of other parame-
ters [21]. Stationary fronts satisfy

θ =

∫
∞

0
η(s)φ(0) ds = 2

∫
∞

0
w(y) dy =

4b
b2 + 1

(31)

since
∫
∞

0 η(s) ds = 1, which is the same expression as found
in (23). Using the expression for travelling fronts in (28), we find
the front speed, c , as a function of b. The results are shown in Fig. 13.
Stationary fronts exist at b = 0.451 and b = 2.215 which are the
same values of b at which the endpoints of the solution curves in
Fig. 12 occur.

5.3.2. Front stability
The stability of the travelling fronts just constructed can be de-

termined by linearising the dynamics about them and construct-
ing an Evans function, as has been done previously for neural
field models with a Heaviside firing rate function [24,30,32–34].
We first let U(ξ , t) = q(ξ)+ u(ξ , t)where q(ξ) satisfies (26), and
expand (25) to first order in u, obtaining

u(ξ , t) =
∫
∞

−∞

∫
∞

0
η(s)w(y)f ′[q(ξ − y+ cs)]

× u(ξ − y+ cs, t − s) ds dy. (32)

To find bounded continuous solutions on R for each t we look for
solutions of the form u(ξ , t) = u(ξ)eλt . Substituting this into (32)
we obtain

u(ξ) =
1
c

∫
∞

−∞

∫
∞

ξ−y
η(s/c − ξ/c + y/c)w(y)f ′[q(s)]

× u(s)e−λ(s−ξ+y)/c ds dy. (33)
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Defining z = q(s) and recalling that f ′(z) = 2δ(z− θ), (33) can be
written

u(ξ) =
∫
∞

−∞

∫ q(∞)

q(ξ−y)
η(q−1(z)/c − ξ/c + y/c)w(y)e−λ(q

−1(z)−ξ+y)/c

×
2δ(z − θ)
c|q′(q−1(z))|

u(q−1(z)) dz dy, (34)

and using the fact that q−1(θ) = 0, this simplifies to

u(ξ) =
2u(0)
c|q′(0)|

∫
∞

−∞

η(y/c − ξ/c)w(y)e−λ(y−ξ)/c dy. (35)

Evaluating (35) at ξ = 0, using the fact that η(y) = 0 for y < 0,
and rescaling ywe obtain

u(0) =
2u(0)
|q′(0)|

∫
∞

0
η(y)w(cy)e−λy dy, (36)

which has nontrivial solutions only if E(λ) = 0, where

E(λ) = 1−
2
|q′(0)|

∫
∞

0
η(y)w(cy)e−λy dy. (37)

We identify E(λ) as the Evans function, and its roots are the
isolated eigenvalues associatedwith the linearisation of (25) about
the travelling wave solution q. It is straightforward to show that
E(0) = 0, as expected, reflecting the translational invariance of
the problem. Defining

H(λ) =

∫
∞

0
η(y)w(cy)e−λy dy (38)

and using the fact that E(0) = 0, one can write

E(λ) = 1−
H(λ)

H(0)
(39)

thus avoiding the explicit construction of q′(0). When c = 0,
E(λ) = λ/(1+ λ), independent of the coupling functionw. In this
case the only root of E(λ) is λ = 0.
It can be shown that the essential spectrum associated with the

stability of q lies strictly in the left half of the complex plane [32]
and, combining thiswith the result immediately above,we see that
stationary front solutions of (24) are linearly stable.

5.4. Results

We now put together the results from Sections 5.2 and 5.3 by
plotting the solution curves, the speed of travelling fronts and the
Hamiltonian at the nonzero fixed point Ẑ as functions of b in Fig. 14.
The breaks in the solution curves occur for the same two values of
b for which stationary fronts (heteroclinic connections) exist and
for the parameter values at which the Hamiltonian of the nonzero
fixed point is equal to zero. So — for this value of θ — at two
values of b a global bifurcation creates a heteroclinic connection at
the breakpoints of the solution curves, destroying the homoclinic
orbits in the region of the break.

6. Discussion

We have examined the unexpected disappearance of stable
homoclinic orbits in certain regions of parameter space in a
neural field model with one spatial dimension, using the decaying
oscillatory coupling function and smooth firing rate function
studied previously in [7,21]. For a particular firing threshold,
we have shown that the solution curve of stable homoclinic
orbits to the fixed point at the origin breaks when the firing
rate function is sufficiently steep, destroying stable homoclinic
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Fig. 14. Top: Single bump solution curves of (1) and (3) with f (u) = 2Θ(u− 1.5).
Middle: Speed of travelling fronts, c , in (26) as a function of b. Bottom: Hamiltonian
at the nonzero fixed point Ẑ. The breaks in the solution curves occur for the same
values of b for which both stationary fronts exist and the Hamiltonian of Ẑ is zero.

orbits in a region of parameter space. The sudden break in the
solution curve is unexpected and unexplained. Through the use
of Fourier transforms, the equation satisfied by the steady state
was written as a fourth-order reversible Hamiltonian system [7]
and the properties of such systems were exploited to explain the
phenomenon.
Using a two-dimensional mapping, we have reduced the

problem of finding homoclinic orbits to finding the zeroes of a real
scalar function and discovered that a small separate solution curve
exists when the firing rate function is sufficiently steep. Standard
continuation techniqueswere insufficient to discover this curve, as
we had no starting solution on that particular branch of solutions.
Wehave found that, as the firing function steepens, this small curve
merges with the main solution curve, causing it to break and the
gap to widen. Within the region of the break, no stable homoclinic
orbits to the fixed point at the origin exist, and a codimension-one
bifurcation occurs at the breakpoints in the solution curve, where
the stable and unstable manifolds of the fixed point at the origin
and a nonzero fixed point collide. There appear to be spirals at the
terminating ends of the solution curve.
By restricting the firing rate function to be a multiple of

the Heaviside step function, we have used analytical techniques
to show that the firing threshold has to be at an appropriate
level for the solution curves to break and that stationary fronts
(heteroclinic connections) exist at the breakpoints. Although the
global bifurcation studied in this paper has not been previously
seen in a neural field model, the bifurcation is very similar to the
codimension-two bifurcation seen in two-dimensional parameter
space in the Lorenz equations (a T -point) [29].
The model (1)–(3), and other similar models [6,10,24,33], have

been used to investigate working memory, as stable single-bump
solutions are thought to be the analogue of short-term memory.
We have demonstrated here how a specific model can lose stable
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single-bump solutions as parameters are varied. This gives insight
into some of the features that such a model must have in order for
it to be able to support such solutions. It is interesting to note that
one of the solutions seen in the break in Fig. 3 is a travelling front,
similar to those observed in slice experiments [35,36].
In general, we want a qualitative model to be robust to small

changes in parameters. However, the phenomena we have seen
occurs in a certain region of parameter space that has not been
previously studied, and the rich behaviour displayed is of interest
in its own right. Further areas of study arise out of the work
presented here. We do not yet know what causes the isola to
spring into life as the firing rate function steepens nor do we fully
understand the apparent spirals occurring at the terminating ends
of the solution curves. As stationary fronts occur at the breakpoints
in the solution curves, we also note an exploration of travelling
fronts in the region of discontinuity of the solution curves, as
shown in Fig. 4, as a topic for further study.
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