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Abstract

Rigid body molecular models possess symplectic structure and time-reversal
symmetry. Standard numerical integration methods destroy both properties,
introducing nonphysical dynamical behavior such as numerically-induced dis-
sipative states and drift in the energy during long term simulations. This
article describes the construction, implementation and practical application
of fast explicit symplectic-reversible integrators for multiple rigid body molec-
ular simulations. These methods use a reduction to Euler equations for the
free rigid body, together with a symplectic Hamiltonian splitting technique. In
every timestep, the orientational dynamics of each rigid body are integrated
by a sequence of planar rotations. Besides preserving the symplectic and
reversible structures of the flow, this scheme accurately conserves the total
angular momentum of a system of interacting rigid bodies. Excellent energy
conservation can be obtained relative to traditional methods, especially in
long time simulations. The method is implemented in a research code, ORI-
ENT, and compared with a quaternion/extrapolation scheme for the TIP4P
model of water. Our experiments show that the symplectic-reversible is far
superior to the more traditional quaternion method.
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I. INTRODUCTION

Rigid body molecular dynamics simulations are an increasingly important tool in chemi-
cal and physical research.? With steady increases in the size of systems under study and the
time intervals over which simulations are carried out, and to keep pace with improvements
in the realism of molecular models, better numerical integration schemes are also needed.
Symplectic and time-reversible integration methods are schemes which automatically pre-
serve a corresponding mechanical structure of the phase flow. While the primary motivation
for mathematical study of geometric integrators—as opposed to more traditional numeri-
cal schemes—may be largely @sthetic, there is growing evidence that, particularly in large
or lengthy computations, these geometrical integrators can provide clear-cut efficiency and
stability improvements over standard integration schemes.>”

For rigid bodies, the traditional use of parameters to represent the motion (e.g. quater-
nions) leads to a straightforward integration technique using standard numerical integration
methods such as explicit Runge-Kutta methods, predictor-corrector schemes, and Gragg-
Bulirsch-Stoer extrapolation.®® However, the parameterized description introduces addi-
tional coupling in the Hamiltonian between positions and momenta, and effectively prevents
the use of efficient (explicit) integration methods that are symplectic and/or time-reversible.
The loss of structure manifests itself in an energy drift during long-time simulations. Cor-
recting this drift by such measures as rescaling of the velocities® does not improve stability.
In practice, very small steps in time often must be used in order to limit the energy drift.
Moreover, the loss of physicality associated to the destruction of structure can manifest
itself in peculiar nonphysical behavior: in the next section we show that a discretization
of a single rigid body using a nonsymplectic explicit Runge-Kutta discretization may have
asymptotically stable (dissipative) fized points, something which is impossible in the true
symplectic flow (or under symplectic discretization).

One of the authors recently reported outstanding stability and efficiency improvements
using a partially implicit symplectic and reversible method for rigid body molecular dy-
namics simulations.”!? This method employed a canonical rotation matrix formulation for
each body and used constrained SHAKE!! integration to preserve orthogonality. In the cur-
rent article, we further improve on this idea by using instead an integration method based
on the classical mechanics concepts of contstrained dynamics, splitting, and “reduction.”!?
Specifically, the Hamiltonian is broken up so that the rotational free-body dynamics are
decoupled from the interaction terms. FEach free rigid body is then integrated in Euler
(momentum) representation using a further splitting into integrable parts. The result is
an explicit scheme which constructs the numerical solution by concatenation of integrable
flows, and thus automatically conserves the symplectic structure. A symmetric decomposi-
tion insures time-reversibility, and the method can also be shown to conserve total angular
momentum. Qur approach is based on a splitting technique for treating a free rigid body in-
dependently proposed by Reich'® and McLachlan'* which was later extended by Reich!® into
a scheme for simulating a rigid body in a potential field. The current article shows that for
realistic molecular applications involving multiple rigid bodies, the explicit symplectic ap-
proach is not only competitive but generally far superior to the traditional quaternion-based
integration approach.

Compared to standard methods, the symplectic approach is more stable, enabling the



use of larger timesteps. Compared to the semi-explicit SHAKE-based scheme,”!° the split-
ting method is more efficient (since it is explicit). For multiple rigid bodies not coupled
by constraints, the splitting method thus appears to offer a substantial improvement over
existing schemes.

II. SYMPLECTIC METHODS

In this section, we introduce the concept of a symplectic method by deriving the popular
Verlet (leapfrog) integrator used in N-body simulations by splitting the Hamiltonian. We
then show that a similar type of integrator can be used to develop an integrator for a single
rigid body, and we show that the latter approach behaves more reliably than a Runge-Kutta
method.

A. Verlet as a Symplectic Splitting Method

For systems with a Hamiltonian of the form H = T'(p)+V(q), the Verlet method provides
a simple approach to symplectic integration.!® Here

1 _
T(p) = §pTM 'p

is the kinetic energy (M is a mass matrix), and V' is the potential energy. The Verlet
method can be viewed as constructing an approximate solution by pasting together the
exact solutions of the kinetic and potential parts of H.516

That is, given positions g and momenta p”, which approximate the solution at time
t = to+nAt, we first compute the exact solution to just the potential part of the Hamiltonian
for a step of size %At in time. Since the equations of motion for V' = V(q) are

d__
@l
4 p = f(g) = —VgV

0,

we notice that we can solve them exactly: g is constant during the step (g = q*) and p
undergoes a linear motion from p” to p**+'/2:

pn+1/2 — pn + f(qn)

We next solve just the kinetic term for one full step in time, during which the momenta are
constant (since 7' is independent of q) and the positions evolve in straight line motion:

qn—l—l — qn 4 AtM_lpn+1/2.
Finally, we update p again by integrating the potential term for one half timestep:

pn—}—l — pn+1/2 4 f(qn—l—l)



The fact that the numerical solution is constructed by stringing together a sequence of
exact solutions of partial Hamiltonians ensures that the result will be a symplectic method.
Although symplectic methods can be constructed by other techniques,® it is the splitting
methods which typically prove to be most useful in applications.*®® The leapfrog method
also respects the time-reversal symmetry of the equations, and it preserves to within a
small multiple of computer rounding error the angular momentum of a system of particles
(in the absence of periodic boundaries). An extension of the leapfrog method, SHAKE,
is available for holonomically constrained N-body simulations and is also symplectic and
time-reversible.!”

Symplectic methods can be shown to exactly conserve a nearby energy function H=~ H.
This in turn can be shown to ensure long term approximate conservation of energy in certain
cases'®. That reference also shows that in “scattering” events, such as the close approach
of one rigid body to another, integrators like Verlet conserve the local energy and angular
momentum essentially exactly. This is a particularly nice feature since it is these events
that cause trouble when using standard methods. It is also easy to build extra properties
such as conservation of momentum and reversibility into symplectic integrators. They show
excellent long term stability and fidelity to the properties of solutions of the continuous
model; in some sense they report qualitatively correct dynamics in complex situations which
cannot be followed to high accuracy.® Finally, since they are simple, fast, and explicit, we
consider them excellent for large molecular dynamics simulations.

B. A Single Rigid Body

As an example, we now consider the example of single axially symmetric rigid body
spinning in a linear potential field and pinned at one point along its axis of symmetry. The
simplest physical interpretation is a heavy “Lagrange top,” but we could also suppose it to
model a molecular fragment acted on by a charge distant enough to permit linearization of
the potential. This simple model illustrates in a striking fashion the advantages of symplectic
methods over nonsymplectic schemes, even when the former are of lower classical order of
accuracy.

We will assume that the components of the diagonalized inertial tensor in body coordi-
nates are Iy = I, = 1, with I3 treated as a free parameter. We will also assume that the mass,
the gravitational constant, and the distance from the center of mass to the fixed point are
all one. The equations of motion can be developed in terms of a unit vector w = (uy, uq, us)
representing the orientation of the body relative to a fixed reference configuration, and the
angular momenta m;, i = 1,2, 3, using a generalized Hamiltonian formalism.'? The u; can be
viewed as playing a similar role to quaternions. The energy of the system is given by:

1 1
H=H(m u)= 5(7Tf+”§+[_37r§)+‘u37

and the equations are Hamiltonian with respect to the Poisson bracket
{F,G} = =7 - (VaF X VzG) —u- (VaF x V,G = VoG x V,F).

This means that each of the components of the vector field is constructed by computing the
Poisson bracket of the associated variable with the Hamiltonian function:



d U™
%ul = {ul,H} = 2[33

— U3msy,

and so on.

We will compare the numerical solution using a popular fourth order Runge-Kutta
method® with the results obtained from the symplectic splitting method.!?14

This approach is derived in a similar way to the leapfrog method. We first split H into
four pieces:

H = H, + Hy + Hs + H,4,

1 1 1
H1 = 571'%, H2 = 577'3, H3 = E’:’T;, H4 = Us
Each of these terms is completely integrable. For example, the solution evolves under the
first term according to

d.. d _

Eul = 0, Eﬂ-l = 0,
#U2 = MUz, T2 = MiTs,
U3 = —mMiug, 43 = T

Both terms are thus integrated in terms of identical simultaneous planar rotations. Similar
equations are obtained for Hy and Hj, while under Hy, only 7 evolves, and according to

d
-, 1 = U2

dt
d

572 = Tur
which is just straight line motion.

The flow map of H is approximated within a timestep by the concatenation of the flows
on each of the four terms. This method is only first order, but it is symplectic.

As a numerical experiment, we solved the top using the popular explicit 4th order Runge-
Kutta method. The motion of the center of mass from typical initial conditions is periodic
or quasiperiodic. We first chose I3 = 1 (spherical top) and integrated the motion from
various initial values. In Fig. 1 we show two trajectories along with the associated variation
in energy, for At = 0.1. Note that there is a clear secular (linear) drift in the energy
with time. This qualitative behavior is observed regardless of timestep, as long as it is
sufficiently small, although the actual magnitude of the energy variation does of course
depend on stepsize. Moreover, this type of drift would be expected essentially regardless of
the integration strategy used, as long as it is not a symplectic or reversible method.

The results of integrating instead with the symplectic scheme are shown in Fig. 2. The
energy fluctuation is greater, but there is no evident drift. The large difference in magnitude
of the energy error is the result of the higher order of accuracy of the Runge-Kutta method
(we are using the same stepsize of At = 0.1; it could be eliminated by using a higher order
symplectic method instead of the simple splitting scheme.
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FIG. 1. Integrations performed with the fourth order Runge-Kutta method (At = 0.1):
(a) u is plotted at each timestep for a quasiperiodic orbit of the spherical top, started from
(0) = (0,1,0),w(0) = (0,0,-1), (b) a periodic solution from =(0) = (0,0,1),w(0) = (0, 1,0),
(c) energy error for (a), (d) energy error for (b).
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FIG. 2. The top solved using the first order symplectic method (At = 0.1), and initial condi-
tions as in Fig. 1: (a) quasiperiodic solution, (b) periodic solution, (c) energy error for (a), and
(d) energy error for (b).
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FIG. 3. The Runge-Kutta method (At = 0.1) on the skinny top, initial conditions as in Fig.
1: (a) quasiperiodic orbit, the successive points rapidly decay toward the upright position! (b)
periodic solution, (c) energy error for (a), (d) energy error for (b).
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FIG. 4. The symplectic method applied to the skinny top (At = 0.1), initial conditions as in
Fig. 1: (a) quasiperiodic solution, (b) periodic solution, (c) energy error for (a), (d) energy error

for (b).
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FIG. 5. The length, R = (u? + u? 4+ u2)'/2, of the unit vector associated to the top along the
solution of 3a.
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FIG. 6. (a) With normalization (R = 1), the skinny top now converges to the “hanging down”
configuration. (b) energy for the normalized Runge-Kutta method. Parameters and initial data
are as in 3.

We now make the numerical problem slightly more difficult by considering a “skinny
top” (I3 = 0.1) with the same initial data and stepsize. Again, we first attempted to use the
Runge-Kutta method. The periodic orbit was again correctly computed, with similar energy
error as for the spherical top; however, the quasiperiodic trajectory is now completely wrong
(Fig. 3a): the top spirals in toward the upright equilibrium position which has apparently
become an asymptotically stable (i.e. dissipative) fixed point of the discrete map! Note that
there is no such artificial behavior present in the symplectic solution (Fig. 4).

Since the variables u; in the description of the top play a similar role to quaternions, it
might be argued that the problem with the Runge-Kutta top simulation is that the length
R = y/u} 4+ u} 4 u} of u is decaying with time (Fig 5). Would normalizing this vector
at each timestep improve the results? This normalization does lead to a marked change
in the simulation results, but not for the better! The top now gradually evolves towards
the “hanging down” position (Fig. 6). In Fig. 6b, we also that the energy error is now
substantially worse.

Similarly poor results were obtained when we rescaled the angular momenta 7r in order
to preserve the energy at each step.

If we hold the time interval fixed and decrease the stepsize, we will of course eventually
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FIG. 7. The Runge-Kutta trajectory of the skinny top from w = (0,1,0), = = (0,0, -5),
At = .02.
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FIG. 8. The symplectic trajectory of the skinny top from w = (0,1,0), = = (0,0, —5), At = 0.02.

obtain correct results from the Runge-Kutta method, but the appearance of such an arti-
ficial structure in an otherwise apparently stable numerical computation is very disturbing.
Moreover, we note that the energy (Fig. 3c) is reasonably well preserved (to within 10%),
so it would not be immediately obvious from examination of the energy that the results
were entirely incorrect. To highlight this observation, we performed the same calculation,
increasing w(0) by a factor of five and decreasing the stepsize by a corresponding factor.
The resulting trajectory and energy error are shown in Fig. 7. Despite the totally incorrect
dynamics, the energy is conserved to within 0.0004! The corresponding solution using the
symplectic method is still well behaved and is, in fact, a good approximation to the correct
dynamics (Fig. 8).

This example demonstrates some of the reasons why we are interested in symplectic
methods. We have seen that a popular standard method can introduce artificial dynamical
behavior in the simulation of simple rigid body problems, at timesteps for which a lower-
order symplectic splitting method is well-behaved. In the next section, we will describe the
extension of the splitting method which is needed for treating systems of rigid bodies.



I1I. THE SPLITTING METHOD FOR RIGID BODY SYSTEMS

We consider systems of (presumably a large number of) rigid bodies moving and rotating
in three dimensions, with conservative forces acting on and between them. As in standard
(e.g. quarternion) models, the orientation of each body is specified by the rotation which
it has undergone from a fixed reference configuration. But now there are two new features:
(i) we represent this rotation by a 3 x 3 matrix @Q; (ii) we add a constraint that this matrix
actually be a rotation, namely Q7@ = 1. Then the system may be conveniently described,
and treated, using the methods of constrained Hamiltonian dynamics. These methods make
it easy to derive not only the equations of motion for complex systems'? but also good
geometric integrators for them,1%1719:20

We denote the total mass of the ith rigid body by m;, the position of its center of mass by
q;, linear momentum by p;, orientation by Q;, and angular momentum in the body frame,
stored in a vector, by ;. Here q,, p;, and 7; are vectors in R and @, is a 3 x 3 orthogonal
matrix,?%1?

The Hamiltonian for the total system is the total energy, given by the sum of the trans-
lational kinetic energy of each body, T"5(p,), the rotational kinetic energy of each body,

Tro'(7;), and the potential energy V(q, @), which we take to depend on the positions and
orientations of the bodies only and not on their momenta. That is,

T(p,w) = >_ (T (m:) + T (py)) -
H(p,m,q,Q)=T(p,w)+V(q,Q),

whete T3(p,) = 2, |py[? /2.

We would now like to employ a leapfrog-like splitting approach as in Sec. 2.1, but
there are several subtleties. Firstly, the flow of the free rigid body, due to T (w;), is
expensive to compute. However, it can be approximated efficiently using a splitting method
due to McLachlan'* and Reich!®. To retain the nice properties of Verlet the approximation
must be time-reversible and symplectic. This gives a splitting method which is symplectic
overall, time reversible, preserves total linear and angular momentum, and uses only one
force evaluation and one rotation of each rigid body per time step.

Another difficulty is that the constraints Q7 Q, = 1 must be applied to the potential

term. The equations of motion for this term are'®:

d

%qi =0

d _ v

att = Jq,

d . (2)
EQZ' =

v
—T; = —Zrot ( ZT—)
dt F 0Q;

where the (I,m) entry of the matrix dV/0Q); is just the derivative with respect to the
corresponding element of @Q.:
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(OV/9Q:)1m = OV/IQ™,

and the notation rot refers to a mapping of 3 x 3 matrices to vectors constructed by first
computing the skew symmetric part (A — A7), then associating this to a vector in R®:

1
rot(A) = §skew_1(A — AT,

where
skew(v) = [ —v® 0 o' ]. (3)

Since g@; and @), are constant, these equations are easily solved.
The constrained differential equations due to the (translational and rotational) kinetic
energies are

Lo o
dtqi_pi m;
d

—p; =0

0@, = Quskew(I; ')
a
dt

™, =T X (I:lﬂ'z)

where the 3 x 3 matrix I; is the moment of inertia tensor of the ¢th rigid body.
The motion of the centers of mass is

q;(t) = q;(0) + At p;/m; (5)

and need not be considered further. (As the bodies are now uncoupled, we temporarily drop
the subscript 1.)

In practice, at this point we change variables to the principle axis of each body, so we
can assume that I is diagonal. Now we note that the rotational part of (4) is a sum of three
rigid bodies, with inertia tensors IU) 5 =1, 2 3, each with a single nonzero entry /; on
the diagonal. The motion of a rigid body with such a simple inertia tensor can be found in
terms of elementary functions. For example, in x it is

_ Q1) = Q,R.(0)"
Gu(t) { (1) = Ru(0)mo (6)

where R.(0) is a rotation about the z-axis by an angle § = tmy/I;. In practice, we use
rational orthogonal approximations to the rotations (see the Appendix 1).

Notice that the constraint Q7 Q = 1, although used implicitly in the derivation, never
needs to be artificially enforced. The matrices Q; are always orthogonal because they are
only ever changed by multiplication by an elementary orthogonal matrix.

11



The updates G,, G,, G, constructed in this way are symplectic and preserve the total
angular momentum of each body. We now compose them so as to approximate the flow of
the whole body. That is, we apply them sequentially while retaining the important time-
reversible property:

1 1 1 1
G.(5 M0)G,(5AG- (MG, (5 ANG.(5 A1), (7)

The above equations (5,6,7) now define the approximate motion due to the kinetic energy
term T'(p,7) in (1). Egs. (2) define the exact motion due to the potential energy term
V(q,Q). In a long simulation we merely apply these two updates alternately, thus using
one force evaluation and one rigid body rotation per time step. There is some subtlety in
ensuring that the overall order of the method is still two—see Appendix 2. An alternative to
Eq. (7) that uses fewer rotations, and is much more accurate for nearly symmetric bodies,
is discussed in Appendix 3.

IV. APPLICATION: TIP4P WATER

Due to the importance of water and aqueous solutions we perform a molecular dynamics
simulation of water as a first benchmark for our integration scheme. In our model, rigid
water monomers interact with a TIP4P intermolecular potential function.?® The potential is
based on the early ideas of Bernal and Fowler?* and comprises three point charges together
with an oxygen-oxygen Lennard-Jones term. The charges are located at the two hydrogen
atoms and on the symmetry axes of the molecule. Details of our potential parameters can
be found elsewhere.?® TIP4P has been widely used in molecular dynamics and Monte Carlo
calculations on liquid water, ice and hydrated proteins. However, it cannot be expected
to reproduce the true potential accurately because its simple form ignores important non-
additive polarization effects in water.

We compare our symplectic method with a quaternion/extrapolation scheme based on a
Gragg-Bulirsch-Stoer (GBS) integrator with adaptive step size.®* GBS is not symplectic but
known for high-accuracy solutions to ordinary differential equations with low computational
effort. The adaptive step size is not crucial for our results. Both methods have been
implemented in the software package ORIENT?® which can treat interacting molecules in a
flexible and accurate way. Details of the implementation are given in Appendix 1.

We have seen in the top example (Sec. 3) that integrals of motion (total energy, overall
angular and linear momentum, etc.) do not tell the whole story regarding physical realism.
Nonetheless, to have any hope of dynamical fidelity these quantities must be approximately
conserved in a molecular dynamics simulation. We measure absolute total energy values and
the standard deviation o (F) of the total energy relative to its absolute mean value,

orel( ) = —— , (8)

with

12
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E; denotes the energy value at the j-th evalution, and all relevant variables are evaluated
every 100fs. This should be long enough to avoid correlation effects.

In order to measure the computational costs we calculate also the number of force evalua-
tions needed for a certain accuracy. This number is the crucial parameter for efficiency of an
integration scheme because the calculation of forces typically dominates the costs. It should
be easy to convert this number into real computational time for any given implementation
of the force calculation on a particular computer.

In our first example we solve Newton’s equations of motion for trajectories of 1 ns for a
water trimer (H20); at fixed total energy (50kJ/mol). At this energy the water cluster is
stable and we observe only a few isomerizations. All trajectories start from the cyclic global
minimum with no overall angular and linear momentum.

At the beginning we focus on the computational costs and plot the standard deviation
of the total energy o(F) versus the number of force calculations in Fig. 9. The figure
shows how the new method outperforms quaternion/extrapolation in efficiency. A quater-
nion/GBS simulation needs up to ten times more force calculations in order to achieve the
same accuracy. For example, the new symplectic method needs about 1 million force evalu-
ations for a o.(E) = 107" whereas quaternion/GBS requires 10 million evaluations for the
same accuracy in this simulation.

Another important difference becomes clear if we look at the evolution of the total energy
as a function of integration time (Fig. 10 and 11). Quaternion/extrapolation produces a

13
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FIG. 10. Evolution of total energy for the three lowest (top) and highest (bottom) accuracies
in Fig. 9 for a quaternion/extrapolation integration scheme. All curves are smooth but drift away
from the initial energy.

smooth but growing total energy. Higher accuracy can reduce the effect but cannot eliminate
the underlying drift. This can also be seen in the evolution of the standard deviation o £)
in Fig. 12. In contrast, if we look at the same plot for the symplectic method we see an
oscillating but stable evolution of the total energy even at low accuracy (Fig. 11). Stability
in our example is lost only for time steps which lead to accuracies below the lowest one
shown in Fig. 9 (At > 4fs).

We now turn to the modulus of the overall linear and angular momenta (Fig. 13 and 14),

N
Plin = Z D;
=1
N
Pang: Zrixpi—l—ﬂ"i 5 (9)
=1

where N is the number of molecules, #; denotes the vector between the centre of mass of
molecule 7 and the centre of mass of the whole system, p; is the linear momentum of molecule
¢ and 7’; the corresponding angular momentum in the same coordinate system.

The overall linear momentum is in principle conserved by both methods. Therefore, it
can serve to assess numerical rounding errors due to machine accuracy. These errors should
increase with higher numbers of force evaluations. Fig. 13 illustrates this effect.

However, in contrast to our symplectic method quaternion/extrapolation does not con-
serve the overall angular momentum in principle. The resulting difference becomes obvious
in Fig. 14. For quaternion/GBS the initially vanishing overall rotation is decreasing with
increasing accuracy. Nonetheless, it remains several orders of magnitude higher than for
the symplectic method. The latter only suffers from accumulation of rounding error which
grows with the number of force calculations. However, overall rotation remains negligible
for the symplectic method.

14
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FIG. 12. The plot of representative standard deviations shows again the drift in energy for
quaternion/extrapolation trajectories, whereas the symplectic methods leads to stable energy con-
servation.
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FIG. 13. The initially vanishing overall linear momentum is in principle conserved by both
methods. Therefore, the above plot gives an estimate of numerical rounding errors due to machine
accuracy.

quaternions’'GBS
---- symplectic method

P,/ bohr (am.u. kJmol)*?

200000 400000 600000 800000 1000000
time/fs

FIG. 14. Evolution of the overall angular momentum during the integration. The symplectic
methods conserves the initially vanishing angular momentum much more accurately. Notice that
smaller step sizes in this method lead to slightly more overall rotation of the system.
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0,4(E)
T \\\\\\‘

number of force calculations

FIG. 15. Computational efficiency of both methods for different model systems. For bigger
systems the symplectic method (opaque symbols) performs increasingly better than the quater-
nion/extrapolation scheme (filled symbols). Results for (H20)10, (H20)20 and (H30)s0 comprise
symplectic simulations with At = 1,2, 4fs (i.e. 1000000, 500000 and 250000 force calculations) and
one representative quaternion/Gragg-Bulirsch-Stoer run (compare Fig. 9).

We did not observe nonphysical effects in any of the simulations. Both methods pro-
duced consistent results compared with a systematically different method: Monte Carlo
sampling and normal mode analysis. We compared ensemble averages like caloric curves
from microcanonical molecular dynamics simulations with transformed Monte Carlo results
for the canonical ensemble. We also reproduced intermolecular normal mode frequencies
with dipole autocorrelation functions in low energy molecular dynamics runs.

Finally we demonstrate that this comparison holds also for bigger systems. We did some
simulations for (Hy0)10, (H20)20 and (H20)30 with the same intermolecular potential and
obtained very similar results. Fig. 15 shows the performance for three different time steps
(At = 1,2,41s) in the symplectic integration and one representative quaternion/GBS result
for each of the model clusters. It suggests that the gap between the new method and non-
symplectic quaternion/extrapolation increases with system size. Simulations at different
total energies did not show any significant differences and underlined the above conclusions.

V. SUMMARY

We have presented a powerful method for rigid body molecular simulations of the type
commonly used in chemical and physical studies. The symplectic splitting method is stable,
and more reliable than standard quaternion integration methods, since it mimics physical
properties of the true flow of the continuous time problem. Moreover, the integrator is
efficiently implemented in terms of a few planar rotations per rigid body at each timestep,
and is comparable in terms of work per timestep to the standard quaternionic integrator.
Numerical calculations demonstrate the superiority of the symplectic method to the standard
approach.
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While the new method is in some respects comparable to SHAKE-based symplectic
rigid body schemes,”!® those methods sacrifice something in terms of robustness (since
they require the solution of a nonlinear system using some iterative solver) and in terms
of computational complexity. However, the SHAKE-based methods readily generalize to
systems of rigid bodies connected by constraints'® (e.g. joints or rods), whereas the splitting
method discussed here does not.
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APPENDIX 1. IMPLEMENTATION

This appendix is intended to demonstrate how easily the symplectic method can be
implemented in a molecular dynamics program.

A molecule can be described by a centre of mass position vector g, a orientation matrix
Q and vectors for its linear and angular momentum (p and 7). The elements of @ are the
direction cosines between the global axes system and a local molecule-fixed frame. Positions
q and momenta p of the translational degrees of freedom will be propagated in a simple
leapfrog scheme. It will maintain the symplecticity of the integration.

In the first step we need to calculate linear force vectors f" and torques 7" at time
t, = to + nAt for all molecules in the system. Both are functions of all position vectors g
and rotation matrices Q.

Having calculated the forces we can start the integration itself and propagate the mo-
menta of all molecules from time ¢, to t,,1:

1
s =gt 4 §At " (10)
n—l—l n 1 n
p'T:=p" 4 §At .
Then we move the centre of mass position a full time step,
qn—l—l — qn —|—At pn—}—% )

We now apply consecutive rotations Ry to Rs to all angular momenta and update all
orientation matricies for a full time step from ¢, to t,.1,

1 i
R, = Rx(ft%); m=7mR; Q=Q R/
1
1 T2 T
R, = Ry(—At ); =7 Ry; Q:QRQ

271,
R; = R, At?—S); m=n Ry Q=QR!

3

18



1 T2

R, = Ry(iAt[—); m=nR;; Q=Q R]
2

R; = Rx(§Atl—); m=7 R;; Q=Q Ry,
1

where Iy, I, I3 are elements of the diagonal inertia tensor of a molecule and 7y, 7y, w3 are
the corresponding components of 7 in the principal axes system. R,(¢) denotes a rotation
around the x-axis by an angle ¢ and R, is the transpose of R;. A computationally efficient
representation of Ry(¢) is for example

1 0 0
. 1—¢?/4 ¢
R.(¢) = 0 T+¢2/4 ~ 1+¢2/4 )

) 1-¢%/4
1+¢2/4  14¢42/4

and all other rotations follow straightforwardly.
After obtaining ¢"*!' and Q"™ for all molecules we can now calculate the forces f"**
and torques 7! and propagate the momenta another half time step:

1
pn+1 — pn—|—% + EAt fn-l-l
= grts 4 %At T

This is the end of one integration step. Since the forces and torques are not dependent on
the momenta we do not need to calculate the forces again but can start directly with the
first half time step for the momenta (Eq. 10).

The method is implemented in our package ORIENT?® which also incorporates the quater-
nion/GBS algorithm with adaptive stepsize® as an alternative. ORIENT is a program for
carrying out calculations of various kinds for an assembly of interacting molecules. It uses
a site-site potential specified by the user, including electrostatic, induction, repulsion, dis-
persion and charge-transfer interactions if required.?” The electrostatic interactions may be
described by simple point charges or by more elaborate descriptions involving distributed
multipoles.?” Distributed polarizabilities may be used if required, and the site-site repulsion
and dispersion and charge-transfer terms may be anisotropic. In the above calculations we

did not use any potential cut-off or other changes to the intermolecular TIP4P potential.??

A. Computation of Interbody Forces
In the formulation of the equations motion, we need to compute the derivatives of the

potential with respect to center of mass and rotational components. In this section we show
that this procedure is straightforward for both site-to-site and dipolar interactions.

1. Site-Site Potentials

In our application (Sec. 5), we suppose each rigid body is composed of a number of
point masses that interact pairwise with the point masses in the other rigid bodies. They
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do not interact within one body, because their relative positions are held fixed. Suppose the
(symmetric) pair potential of two point masses located at @ and y is W (@, y), creating a
force f = —V,W (@, y) on the mass at &. To keep the equations clear we will write them out
for the case of a single particle mounted on each body, at @; in the reference configuration
for body i. After time ¢ it has reached the location §;(t) := Q,(t)&; + gq;(t). The total

potential energy is then

Vig,Q)=>_ W(Qi(t)x: + g;(t), Q;(t)z; +4q,(t)) (11)

i>i
giving derivatives

v

— = f(&.¢§))
q; i>i
oV (12)
a = - Ef(éiaéj)wzr
4 i>i
and the differential equations (2) due to the potential are
40 = 0
%qi =
d
Epi = ; f(fnfj)
d .
EQi =0 (13)
d
%ﬂ'i = ZfOt(Qin(émfj)miT)
J>i
= Z(Q?f(fnfj)) X &
J>i

We use these equations together with f(&;,&;) supplied by standard ORIENT routines for
the interparticle forces.

2. Dipolar Soft Spheres

Dipolar soft sphere models can also be handled. We suppose an interbody potential
between particles 7 and j of the form™2!22

V= V(qinﬂqjan) = ‘/s.r. + ‘/d;

where V; .. consists of short range interactions and Vj represents the dipole-dipole terms:
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Va= gty — (i) (B0 1),
where

Pij=q;—q,, rij = |lvill,

and p; denotes the orientation of the ith dipole vector, easily expressed in terms of the
rotation matrix @, and some initial fixed reference orientation f,:

Il'i(t) = Q;fi;.

Evaluation of the derivatives of the various terms with respect to the center of mass posi-
tions (q;) is straightforward. The derivatives of the dipolar potential with respect to the
components of the rotation matrix are also straightforward if we express Vj in terms of the
individual components of Q,, f;:

Q. = (QM),1 <k,1<3, o= (il il ).

For example,
=200 QI kT

with derivatives
0
Qlk

Similar expressions hold for the other terms and allow us to work out the full derivatives.
27
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This approach can be extended to treat other multipole approximations®’ as well.

APPENDIX 2. SECOND ORDER ACCURACY OF THE SPLITTING METHOD

If we denote the time-At solution of Hamiltonian H by expy(At), then the Verlet or
leapfrog method of Sec. 2.1 can be written

expy(= At) expy (At) expy(= At)
When we take a large number, n of time steps in a row, the total update can be written
n 1
eXPT( At)(eXPV(At)eXPT(At)) eXpT(_ﬁAt)a
because of the “flow property” expp(a)expp(b) = expyp(a 4 b). Essentially one need only
alternate the updates due to V and T
In the rigid body splitting method, we do not use the exact solution exp;, but an

approximation to it, say ¢p. This approximation will not have the flow property. However,
for the method
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expv(%At)(bT(At) eXpV(%At) (14)

n steps take the form

1 1
expv(ﬁAt)(qﬁT(At) expy (At))" eXpV(—ﬁAt)

so that we can still alternate the two updates, as before. (If both pieces of the Hamiltonian
had been approximated, this result would no longer hold.) The basic method (14) is second
order because it has the time-symmetry property f(At)f(—At)= 1.7

APPENDIX 3. SPECIAL RIGID BODY UPDATES

Although the solution of the rigid body system with Hamiltonian T'(w, Q) = >°3_, 72/21;
and constraint Q7 Q = 1 in general involves elliptic functions,?® there is one common special
case which does not. This is the symmetric rigid body with (say) /; = I3 (in principal
coordinates), e.g. NHs. Then it is well known that (i) the momentum evolves by a planar
rotation, and (ii) the orientation evolves by a combination of this rotation and a secondary
rotation about the axis defined by the angular momentum. The solution in this case is

7w(t) = R.m
Q(t) = QORZTR7TTO

where R, is rotation about the z-axis by angle ¢(1/I3 — 1/13), and Rg, is rotation about

angle 7o by angle t|mg|/I;. This rotation can be expressed in terms of the matrix exponential
tskew (7o)

(15)

as e or evaluated in terms of trigonometric functions.

If the body is truly symmetric then it may not be necessary to remember its rotation
about its axis of symmetry, and the factor R in the Q update (Eq. (15)) can be omitted.

This update not only replaces the five rotations needed in Eq. (7) by one (slightly more
complicated) rotation, it is also exact. Thus in situations where error committed by Eq. (7)
might be large, i.e., when a relatively large proportion of the total energy of the system is
in the rotational kinetic energy of the bodies, this update will lead to a much more accurate
update overall.

In one test with two rigid bodies and initially half the energy as rotational kinetic energy,
this method was found to be twice as fast in the rigid body updates and ten times as accurate
overall.

Furthermore we can apply this idea to general rigid bodies as well. We partition the

Hamiltonian as , , )
T T T 1 1
2= (T4 24 ) ynt (- 1),

(12+12+13 LA
The first term corresponds to a symmetric rigid body, and the second evolves by a planar
rotation as in Eq. (6). We can compose these into an overall rigid body update using three
rotations, instead of the five in Eq. (7). Because the symmetric update is more complicated,
we found no change in speed over Eq. (7), but for nearly symmetric bodies (I ~ I3), there
were substantial improvements in accuracy.
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Unfortunately, water is not symmetric enough! Its moments of inertia are proportional to
2.88, 1.88, and 1.00, and in practice we found only modest improvements using this modified
scheme in the present application.
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