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The Camassa–Holm equation can be viewed as the geodesic
equation on some diffeomorphism group with respect to the
invariant H1 metric. We derive the geodesic equations on that
group with respect to the invariant Hk metric, which we call
the modified Camassa–Holm equation, and then study the well-
posedness and dynamics of a modified Camassa–Holm equation on
the unit circle S , which has some significant difference from that of
Camassa–Holm equation, e.g., it does not admit finite time blowup
solutions.
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1. Introduction

In this paper, we study the Cauchy problem for modified Camassa–Holm equations derived as the
Euler–Poincaré differential equation on the Bott–Virasoro group with respect to the Hk metric, i.e.,
the Cauchy problem for

mt + umx + 2uxm = 0, with m = Λ2ku ≡ (
I − ∂2

x

)k
u, (1.1)

where k � 2 is a positive integer. This equation with k = 0,1 corresponds to the KdV equation and
the Camassa–Holm equation respectively.

In the study of shallow water waves, R. Camassa and D.D. Holm [4] derived in 1993 the following
partial differential equation (PDE),

(
I − ∂2

x

)
ut + 2∂xu · (I − ∂2

x

)
u + u · (∂x − ∂3

x

)
u = 0, (1.2)
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and intensively studied its properties: its complete integrability, its bi-Hamiltonian structure, infinite
conservation laws and the existence of peaked soliton solutions. For these reasons, this PDE is called
Camassa–Holm equation and considered as one of the most fascinating PDEs in mathematical physics.
Since the birth of this equation, many people have contributed to the well-posedness study on the
whole real line R or on the unit circle S: to mention a few, Arnold and Khesin [2], Constantin and
McKean [9], McKean [21], and the references therein. Local well-posedness for (1.2) was discussed by
Constantin [6], Constantin and Escher [7] for the initial data in Hs(S), S = [0,2π ] with s � 4 and
s � 3 respectively, and by Misiołek [22] with s > 3/2. Local well-posedness in the non-periodic case
was proved for the initial data in Hs(R) with s > 3/2 by Li and Olver [19] and Rodríguez-Blanco [23].
Classical solutions can become singular in finite time if the initial momentum (I − ∂2

x )u changes
sign. The other related shallow water equations, such as the Benjamin–Ono equation, can be found
in [13,14], etc. It is worthwhile to mention that Xin and Zhang [24] proved the global existence of
the weak solution in the energy space H1(R) without any sign conditions on the initial value, and the
uniqueness of this weak solution is obtained under some restrictions on the solution [25].

The ideas introduced by Arnold [1] which view the Euler fluid equation as the geodesic equa-
tion on some diffeomorphism group lead to a completely new stage of development of the Euler
equation. Now the geodesic equations on Lie groups are called generalised Euler equations. Khesin and
Misiołek [18] proved that the Camassa–Holm equation is the equation of the geodesic flow associ-
ated to H1(S) metric on the diffeomorphism group Diff(S) of the unit circle S = [0,2π ], which is the
Euler–Poincaré equation by using the Lagrangian associated with the H1 metric for the fluid velocity,
i.e., the Lagrangian as a function of the fluid velocity which is given by the quadratic form,

l(u) = 1

2

∫ (
u2 + u2

x

)
dx.

The motivations of our study on (1.1) are as follows:

• Mathematically, KdV and Camassa–Holm have some significant differences in dynamics. For ex-
ample, the Camassa–Holm equation leads to blowup in finite time for some initial values and
admits smooth solutions for some other initials while for KdV [27] we have the global well-
posedness for all smooth enough initial values. So it is natural to ask how the dynamics of the
generalised Euler equations depends on the metric on the Lie algebra?

• D.D. Holm et al. [15] discussed the applications of the generalised Euler equations in the com-
putational anatomy and mentioned that a smoother kernel than the inverse of I − � is used
there. Mathematically, this means that we need to consider the dynamics of the generalised Euler
equations of Hk metric other than H1 as in the Camassa–Holm equation.

In this paper, we will first derive the modified Camassa–Holm equation with respect to the Hk

metric using the abstract theory on the generalised Euler equation, then study the local and global
well-posedness and weak solutions of the derived equations, some of which are quite different from
those of Camassa–Holm equation. More specifically, we derive Eq. (1.1) on the unit circle S in Sec-
tion 2. We study in Section 3 the well-posedness of the equation using Kato theory and then we
prove that the derived equation for k � 2 admits no finite time blowup solution.

The local well-posedness can be stated as (all theorems are stated for k = 2):

Theorem 1.1. Let k = 2, u0 ∈ Hs(S), s > 7/2. Then, there exist a T > 0 depending on ‖u0‖s , and a unique
solution

u ∈ C
([0, T ], Hs(S)

) ∩ C1([0, T ], Hs−1(S)
)

satisfying (1.1). Moreover, the map u0 ∈ Hs �→ u ∈ C([0, T ], Hs(S)) is continuous.

The global well-posedness can be stated in terms of the momentum m(= Λ2ku):
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Theorem 1.2. Suppose k � 2 in (1.1). If the initial value m(0, x) ∈ L2(S), then there is a unique solution
m(t, x) ∈ L2(S) for any finite time t > 0, and there exists a constant C0 depending only on the norm of initial
values u such that

‖m‖L2 � eC0t‖m0‖L2 . (1.3)

This is quite different from that of Camassa–Holm equation, because we know that for Camassa–
Holm equation, even some very smooth initial values may lead to the finite time blowup solution, i.e.,
the momentum may blow up to ∞ in finite time.

Theorem 1.3. Suppose k = 2, u0 ∈ Hs(S), s > 7/2, then Eq. (1.1) admits a unique solution in C([0,+∞),

Hs(S)) ∩ C1([0,+∞), Hs−1(S)) if the initial momentum m0 � 0.

In Section 4, we enlarge the space of solutions to include the Dirac δ momentum and prove the
existence and uniqueness of weak solution u ∈ H2(S) for an initial positive Radon measure momen-
tum m0:

Theorem 1.4. Let u0 ∈ H2(S), where m0 = (I − ∂2
x )2u0 is a positive Radon measure on S. Then there exists

a unique global weak solution u ∈ C([0,∞); H2(S)) of (1.1) and such that m = Λ4u is a positive Radon
measure on S whose total variation on S is uniformly bounded for t � 0. Moreover we have

∫
S

u dx =
∫
S

u0 dx,

∫
S

(
u2 + 2u2

x + u2
xx

)
dx =

∫
S

(
u2

0 + 2u2
0x + u2

0xx

)
dx. (1.4)

Most of the notations in this paper are standard in the PDE field and can be found, e.g., in [12]
and [28]. B(X, Y ) denotes the space of all bounded linear operators from a Banach space X to a
Banach space Y (B(X) if X = Y ); D = ∂ = ∂x = ∂

∂x ; Λs = (I − ∂2
x )s/2, s ∈ R; the standard Sobolev space

Hs = Hs(S) on the unit circle S with norm ‖ · ‖Hs = ‖ · ‖s and 〈,〉s for its inner product; H−s(S) =
(Hs(S))∗ the dual space of Hs(S), H∞ = ⋂

s�0 Hs; [A, B] = AB − B A denotes the commutator of two
linear operators A and B . [Λ, f ]g = Λ( f g) − f Λg for functions f , g .

2. Derivation of the equations

We will use the following fundamental result about the geodesic flows on Lie groups to derive the
PDE (1.1).

Proposition 2.1. Let G be a (possibly infinite-dimensional) Lie group equipped with a metric 〈·,·〉 which is
invariant under the right translations R g : G �→ G, R g(h) = h · g. A curve t �→ γ (t) in G is a geodesic of this
metric if and only if u(t) ≡ dγt Rγ −1

t
γ̇ (t) satisfies

d

dt
u(t) = −ad∗

u(t)u(t), (2.1)

where ad∗
u is the adjoint of adu with respect to the metric 〈·,·〉, that is for any u, v and w ∈ Te G,

〈
ad∗

u v, w
〉
e = 〈

v, [u, w]〉e. (2.2)

The proof of this proposition can be found in [2] or [20].
We need to introduce some notions on the Bott–Virasoro group before we derive the equations.
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2.1. Bott–Virasoro group

Let Ds(S) be the group of orientation preserving Sobolev Hs diffeomorphisms of the unit circle S ,
and let Vects(S) = Te Ds(S) be the corresponding Lie algebra. We assume s to be large enough so that
all our formal calculations can be rigorously justified.

The Bott–Virasoro group D̂s(S) is the non-trivial central extension of Ds(S) which is defined as
follows: the set

D̂s(S) ≡ Ds(S) × R

and the group operation is defined by Bott [3]

η̂ ◦ ξ̂ =
(
η ◦ ξ,α + β +

∫
S

log ∂x(η ◦ ξ)d log ∂xξ

)
, (2.3)

where η̂ = (η,α), ξ̂ = (ξ,β) with η, ξ ∈ Ds(S) and α,β ∈ R.
The corresponding Virasoro algebra V̂ect(S) is the tangent space of D̂s(S) at the identity which

is the non-trivial extension of Vect(S), the tangent space of Ds(S) at the identity of Ds(S). The
commutator in the Lie algebra is given by [2]

[V̂ , Ŵ ] ≡ −
(

(v∂x w − w∂x v)
∂

∂x
, c(v, w)

)
, (2.4)

where c(v, w) ≡ ∫
S v∂3

x w dx, V̂ = (v ∂
∂x ,a), Ŵ = (w ∂

∂x ,b) with a,b ∈ R and v ∂
∂x , w ∂

∂x ∈ Te Ds(S).

2.2. Derivation of the equations

In order to derive Eq. (1.1), according to Proposition 2.1, the key point we need to find is the
expression of ad∗ .

Take Û = (u ∂
∂x ,a), V̂ = (v ∂

∂x ,b), Ŵ = (w ∂
∂x , c) ∈ V̂ect s(S), and define the Hk inner product on

V̂ect s(S) by

〈Û , V̂ 〉Hk =
∫
S

Λku · Λk v dx + ab, (2.5)

where Λ = (I − ∂2
x )

1
2 , then we find ad∗̂

U
by direct calculations

〈
ad∗̂

U
V̂ , Ŵ

〉
Hk = 〈V̂ ,adÛ Ŵ 〉Hk = 〈

V̂ , [Û , Ŵ ]〉Hk

= 〈v, ux w − uwx〉Hk − b · c(u, w)

= (
Λ2k v, ux w − uwx

)
L2 − b · c(u, w)

= (
g + b∂3

x u, w
)

L2 = 〈
Λ−2k(g + b∂3

x u
)
, w

〉
Hk , (2.6)

where g = 2uxΛ
2k v + uΛ2k vx . So

ad∗̂
U

V̂ =
(

Λ−2k(2uxΛ
2k v + uΛ2k vx + b∂3

x u
) ∂

∂x
,0

)
. (2.7)
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The group D̂s(S) is a right-invariant group, so by Proposition 2.1, the generalised Euler equation
d
dt Û = −ad∗̂

U
Û on the Virasoro group gives us

dΛ2ku

dt
= −(

2uxΛ
2ku + uΛ2kux + a∂3

x u
)
,

da

dt
= 0, (2.8)

which is (1.1) for m = Λ2ku if we take a = 0.

Remark. We can put Eq. (2.8) in the Hamiltonian form:

mt = −(
m∂x + ∂xm + a∂3

x

) δH

δm
, with H = 1

2

∫
um dx. (2.9)

The KdV equation and the CH equation can be also put into this form (2.9) but with m = u and
m = (1 − ∂2

x )u respectively. On the other hand, we know that the KdV equation can be expressed as

mt = −∂x
δH1

δm
, with m = u, H1 = 1

2

∫ (
1

3
u3 − au2

x

)
dx, (2.10)

and the Camassa–Holm equation

mt = −∂x
(
1 − ∂2

x

) δH1

δm
, with H1 = 1

2

∫ (
u
(
u2 + u2

x

) − au2
x

)
dx. (2.11)

These equations give the second Hamiltonian structure for the KdV and CH equations respectively,
where the term “bi-Hamiltonian structure” in some literature comes from, and the bi-Hamiltonian
structure leads to the integrability of the equations and gives infinite conserved quantities for KdV
and CH. Another interesting point is that they yield a constant Poisson structure K = ∂x , ∂x(1 − ∂2

x )

for KdV and CH, which is very much likely no longer true for the general k > 1 case.

3. Well-posedness

The a-term in (2.8) does not make much difference in the well-posedness study, so in this paper
we focus on the limiting a = 0 case. The details in dealing with the general a �= 0 case can be found
in [26]. In this section, we will first use the Kato theory to establish the local well-posedness for (1.1),
then we will prove the global well-posedness.

Theorem 3.1. Let k = 2, u0 ∈ Hs(S), s > 2k − 1
2 = 7/2. Then, there exist a T > 0 depending on ‖u0‖s , and a

unique solution u satisfying (1.1) such that

u ∈ C
([0, T ], Hs(S)

) ∩ C1([0, T ], Hs−1(S)
)
.

Moreover, the map u0 ∈ Hs �→ u ∈ C([0, T ], Hs(S)) is continuous.

Remark. We state the theorem and give a proof for k = 2 only, but they are all valid for the general
k � 2 case. The proof of this theorem consists of verifications of the conditions in Kato’s Theorem [16]
one by one, which we decompose as a series of lemmas.

We can rewrite (1.1) for k = 2 in two ways:{
mt = −umx − 2mux, x ∈ S, t ∈ R,

m(x,0) = m (x) = Λ4u (x),
(3.1)
0 0
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where m = Λ4u = (I − ∂2
x )2u, Λs = (I − ∂2

x )
s
2 . Or{

ut = −uux − ∂xΛ
−4

(
u2 + 2u2

x − 5
2 u2

xx − 5ux∂
3
x u

)
, x ∈ S, t ∈ R,

u(x,0) = u0(x).
(3.2)

If we denote A(u) = u∂x , f ≡ −∂xΛ
−4(u2 + 2u2

x − 5
2 u2

xx − 5ux∂
3
x u), then (3.2) has the form:

(C)

{
∂u

∂t
+ A(u)u = f (u) ∈ X, t � 0,

u(0) = u0 ∈ Y .

(3.3)

We will verify that all conditions in Kato’s Theorem [16] are satisfied, i.e., we need the following
lemmas:

Lemma 3.2. The operator A(u) = u∂x, with u ∈ Hs, s > 3
2 belongs to G(Hs−1,1, β) for some β > 0.

Lemma 3.3. B(u) = [Λ, u∂x]Λ−1 ∈ B(Hs−1) for u ∈ Hs, s > 3/2.

Lemma 3.4. For u ∈ Hs(S) with s > 3/2,

(a) Hs ⊂ D(u∂x) = { f ∈ Hs−1: u∂x f ∈ Hs−1}, s > 3/2;
(b) u∂x ∈ B(Hs, Hs−1), s > 3/2;
(c) ‖u∂x − v∂x‖B(Hs,Hs−1) � C‖u − v‖s−1 .

The proof of these three lemmas can be found, e.g., in [23].
In order to verify the condition ( f1) in [16] on the f -term, we need the following lemma on the

estimate of product of two functions:

Lemma 3.5. For any two functions f , g defined on S, we have

(a) ‖ f g‖Ht � C‖ f ‖Ht ‖g‖Ht for t > 1
2 ;

(b) ‖ f g‖Ht � C‖ f ‖L∞‖g‖Ht for t � 0;
(c) ‖ f g‖Ht � C‖ f ‖Ht+1/2‖g‖Ht+1/2 for 0 < t � 1

2 ;
(d) ‖ f g‖Ht � C(‖ f ‖L∞‖g‖Ht + ‖g‖L∞‖ f ‖Ht ) for t � 0;
(e) ‖ f g‖Ht � C(‖ f ‖W t,∞‖g‖L2 + ‖g‖Ht ‖ f ‖L∞) for t � 0.

Proof. (a) is the consequence of the fact that Ht is a Banach algebra for t > 1
2 .

(b) For t � 0, and any h ∈ H−t(S), we have∣∣∣∣∫
S

f gh dx

∣∣∣∣ � ‖ f ‖L∞
∫

|gh|dx

� ‖ f ‖L∞‖g‖Ht ‖h‖H−t , (3.4)

from which (b) follows.
(c) It is obvious.
(d) This estimate is from [17].
(e) Similar arguments as in [17] yield (e). �

Lemma 3.6. Let f (u) = −∂xΛ
−4(u2 + 2u2

x − 5
2 u2

xx − 5ux∂
3
x u), s > 7/2, then

(a) ‖ f (u) − f (v)‖Hs−1 � C‖u − v‖Hs−1 ;
(b) ‖ f (u) − f (v)‖s � C‖u − v‖s .
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Proof. (a) We need only to verify that∥∥∥∥∂xΛ
−4

(
5

2
u2

xx + 5ux∂
3
x u − 5

2
v2

xx − 5vx∂
3
x u

)∥∥∥∥
s−1

� C‖u − v‖s−1,

for the corresponding inequality for the rest terms is easier to verify.

∥∥∂xΛ
−4(u2

xx − v2
xx

)∥∥
s−1 � C

∥∥∂2
x (u + v)∂2

x (u − v)
∥∥

s−4

� max
{∥∥∂2

x (u + v)
∥∥

s−4,
∥∥∂2

x (u + v)
∥∥

L∞ ,
∥∥∂2

x (u + v)
∥∥

s−7/2

}
· max

{∥∥∂2
x (u − v)

∥∥
s−4,

∥∥∂2
x (u − v)

∥∥
s−7/2

}
(by Lemma 3.5)

� C‖u − v‖s−3/2 � C‖u − v‖s−1,

∥∥∂xΛ
−4(ux∂

3
x u − vx∂

3
x v

)∥∥
s−1 � C

∥∥ux∂
3
x u − vx∂

3
x v

∥∥
s−4

= C
∥∥ux∂

3
x u − ux∂

3
x v + ux∂

3
x v − vx∂

3
x v

∥∥
s−4

� C
∥∥ux

(
∂3

x u − ∂3
x v

)∥∥
s−4 + ∥∥(ux − vx)∂

3
x v

∥∥
s−4. (3.5)

We estimate these two terms separately. If s − 4 > 1
2 or − 1

2 < s − 4 � 0, we can easily get from
Lemma 3.5 that ∥∥ux

(
∂3

x u − ∂3
x v

)∥∥
s−4 � C

∥∥∂3
x (u − v)

∥∥
Hs−4 � C‖u − v‖s−1. (3.6)

If 0 < s − 4 � 1
2 , we have to use Lemma 3.5 to get

∥∥ux∂
3
x (u − v)

∥∥
Hs−4 � C

(‖ux‖L∞
∥∥∂3

x (u − v)
∥∥

Hs−4 + ‖ux‖W s−4,∞
∥∥∂3

x (u − v)
∥∥

L2

)
� C

(‖u‖W 1,∞‖u − v‖Hs−1 + ‖u‖W s−3,∞‖u − v‖H3

)
� C‖u‖Hs ‖u − v‖Hs−1 because s − 4 > 0. (3.7)

Similarly, we can estimate the other term in (3.5). Here we just write out the formula for the case
0 < s − 4 � 1

2 ,

∥∥(ux − vx)∂
3
x v

∥∥
Hs−4 � C

(‖ux − vx‖s−4
∥∥∂3

x v
∥∥

L∞ + ∥∥∂3
x v

∥∥
s−4‖ux − vx‖L∞

)
� C‖v‖Hs ‖u − v‖Hs−1 . (3.8)

Adding up all the above estimates yields∥∥ f (u) − f (v)
∥∥

Hs−1 � C‖u − v‖Hs−1 . (3.9)

(b) Similar argument as in (a).

∥∥∂xΛ
−4(u2

xx − v2
xx

)∥∥
s � C

∥∥∂2
x (u + v)∂2

x (u − v)
∥∥

s−3

� C
∥∥∂2

x (u + v)
∥∥

s−3

∥∥∂2
x (u − v)

∥∥
s−3 � C‖u + v‖s−1‖u − v‖s−1

� C‖u − v‖s,
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∥∥∂xΛ
−4(ux∂

3
x u − vx∂

3
x v

)∥∥
s � C

∥∥ux∂
3
x u − vx∂

3
x v

∥∥
s−3

= C
∥∥ux∂

3
x u − ux∂

3
x v + ux∂

3
x v − vx∂

3
x v

∥∥
s−3

� C‖u‖s−2‖u − v‖s + C‖v‖s‖ux − vx‖s−2

� C‖u − v‖s,

here we have used the fact that Hs is a Banach algebra for s > 1/2. �
Proof of Theorem 3.1. Now Theorem 3.1 is just a direct consequence of Kato’s Theorem with Y =
Hs(S), X = Hs−1(S) and the above lemmas. �
Theorem 3.7. If Theorem 3.1 yields the maximal time interval of existence is [0, T ), then we have T = +∞ or

lim
t→T −

∥∥u(t)
∥∥

Hs = +∞ if T < ∞. (3.10)

Proof. From Theorem 3.1, we have T = +∞ or

lim
t→T −

(∥∥u(t)
∥∥

Hs + ∥∥ut(t)
∥∥

Hs−1

) = +∞ if T < ∞. (3.11)

On the other hand, we have from the proof of Theorem 3.1 and Eq. (3.2) that∥∥ut(t)
∥∥

Hs−1 � C
∥∥u(t)

∥∥
Hs , (3.12)

which yields what we want. �
Based on the local well-posedness, some conservation laws can be established. In the following

theorem, we assume that the solutions are smooth enough that all the calculations can be done
rigorously.

Theorem 3.8. Let u(x, t) be the solution to (1.1) with u0 ∈ H∞ , and m0 = (1 − ∂2
x )2u0 , then in the time

interval of existence of u, we have the following conserved quantities:

I1 =
∫

m =
∫

u, (3.13)

I2 =
∫

um =
∫ (

u2 + 2u2
x + u2

xx

)
. (3.14)

Proof. Integrating directly Eq. (1.1), we have the first conserved quantity. We can exploit Eqs. (3.1)
and (3.2) to verify that

dI2

dt
=

∫
utm dx +

∫
umt dx = 0.

Geometrically, the fact that I2 is conserved just means that velocity vector of the geodesic curve has
a constant length along the geodesics. �

The Camassa–Holm equation (1.2) can reach a singularity in a finite time if m0 = (I −∂2
x )u0 changes

sign. However, this cannot happen for the modified equation (1.1) by our following theorem.
There are two unknowns u and m in (1.1) related by m = Λ2ku, and here we choose to state the

result in terms of m just for simplifying the statement.
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Theorem 3.9. Suppose k � 2 in (1.1). If the initial value m(0, x) ∈ L2(S), then m(t, x) ∈ L2(S) for any finite
time t > 0, and there exists a constant C0 depending only on the norm of initial value u0 such that

‖m‖L2 � eC0t‖m0‖L2 . (3.15)

Proof. We prove Theorem 3.9 for sufficiently smooth function m and the general case m0 ∈ L2 follows
by a standard density argument. Multiplying (1.1) by m and integrating over S , we have

1

2

d

dt
‖m‖2

L2 + 2
∫

uxm2 +
∫

ummx = a

∫
m∂3

x u. (3.16)

Clearly,
∫

m∂3
x u = ∫

∂3
x uΛ2ku = 0. So

d

dt
‖m‖2

L2 = −3
∫

m2ux, (3.17)

from which

d

dt
‖m‖2

L2 � 3‖ux‖L∞‖m‖2
L2 . (3.18)

On the other hand, I2 = ∫
S um dx is a conserved quantity for (1.1), i.e.

k∑
l=0

cl
∥∥∂ l

xu(t, x)
∥∥2

L2 =
k∑

l=0

cl
∥∥∂ l

xu(0, x)
∥∥2

L2 , (3.19)

with some positive constants depending on k and l. So from the Sobolev embedding theorem and
k � 2 we have

‖ux‖L∞ � C‖uxx‖L2 � C0, (3.20)

where C0 is a constant depending only on the initial condition. The Gronwall inequality and (3.18)
yield

‖m‖L2 � eC0t‖m0‖L2 . � (3.21)

Lemma 3.10. Let u(x, t) be the solution to (1.1) with u0 ∈ H∞ , and suppose that m0 = (1 − ∂2
x )2u0 � 0

(or � 0), then m = (1 − ∂2
x )2u � 0 (respectively � 0), moreover, if m � 0, then∫

S

m1/2 dx =
∫
S

m1/2
0 dx.

Proof. The proof of Lemma 3.3 in [7] applies here with little change, and we omit it. �
Remark. From the proof of Lemma 3.3 in [7], we can find that the essential part in the proof is the
equation mt = −2umx − uxm and the conservation of

∫
(u2 + 2u2

x + u2
xx) (which is

∫
um). The exact

relation between m and u does not really matter as long as
∫ |ux| can be controlled by

∫
um.

Lemma 3.11. Let u0 ∈ Hs(S), s > 7/2 and m0 = (1 − ∂2
x )2u0 � 0 (or � 0), then ∃K > 0 such that

‖uxxx‖L∞ � K .
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Proof. At first, we assume that u0 ∈ H∞ , u solves (1.1), then it is easy to show that ‖u‖2
L2 +2‖ux‖2

L2 +
‖uxx‖2

L2 is conserved as long as u exists as a solution to (1.1). From Lemma 3.10, we have m = Λ4u � 0
(or � 0). Let x0 ∈ S satisfy uxxx(x0) = 0, then ∀y ∈ S , we have

uxxx(y) =
y∫

x0

∂4
x u dx =

y∫
x0

(
u − 2∂2

x u + ∂4
x u

)
dx −

y∫
x0

(
u − 2∂2

x u
)

dx

�
∫
S

m dx + ‖u‖L1 + 2‖uxx‖L1 =
∫
S

m0 dx + ‖u‖L1 + 2‖uxx‖L1

�
∫
S

m0 dx + ‖u‖L2 + 2C‖uxx‖L2 � K , (3.22)

where K depends on m0 and ‖u0‖H2 . Similarly, if we identify x0 and x0 + 2π in S with x0 � y �
x0 + 2π , then we have

−uxxx(y) =
x0+2π∫

y

∂4
x u dx � K .

So far we have proved the lemma for u0 ∈ H∞ . A standard approximation can give the proof for
u0 ∈ Hs(S), s > 7/2. �
Theorem 3.12. Suppose k = 2, u0 ∈ Hs(S), s > 7/2, then Eq. (1.1) with a = 0 admits a unique solution in
C([0,+∞), Hs(S)) ∩ C1([0,+∞), Hs−1(S)) if the initial momentum m0 � 0.

This theorem holds also valid for k � 2 as long as u0 ∈ Hs(S) with s > 2k − 1
2 . In order to prove

Theorem 3.12, we need the following lemma:

Lemma 3.13. Assume the conditions in Theorem 3.12 hold true, then ‖u(t)‖Hs is finite for any 0 < t < ∞.

Proof. Applying Λs to ut = −uux − f (u), where f (u) = ∂xΛ
−4(u2 + 2u2

x − 5
2 u2

xx − 5ux∂
3
x u −a∂2

x u), and
multiplying by Λsu and then integrating over S , we get

d

dt
‖u‖2

s = −2〈u, uux〉s + 〈
u, f (u)

〉
s. (3.23)

By the Kato–Ponce inequality [17], we have∣∣〈u, uux〉s
∣∣ � Cs‖ux‖L∞‖u‖2

s . (3.24)

The Cauchy inequality gives ∣∣〈u, f (u)
〉
s

∣∣ � ‖u‖s
∥∥ f (u)

∥∥
s, (3.25)

and

∥∥ f (u)
∥∥

s � C

∥∥∥∥u2 + 2u2
x − 5

2
u2

xx − 5ux∂
3
x u − a∂2

x u

∥∥∥∥
Hs−3

� C
(∥∥u2

∥∥ + ∥∥u2
x

∥∥ + ∥∥u2
xx

∥∥ + ∥∥ux∂
3
x u

∥∥ + ‖u‖Hs
)

s−3 s−3 s−3 s−3
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� C
(‖u‖L∞‖u‖s−3 + ‖ux‖L∞‖ux‖s−3 + ‖uxx‖L∞‖uxx‖s−3

+ ‖ux‖L∞
∥∥∂3

x u
∥∥

s−3 + ∥∥∂3
x u

∥∥
L∞‖ux‖s−3 + ‖u‖Hs

)
� C‖u‖s, (3.26)

where we used again the Kato–Ponce inequality [17] and Lemma 3.11. So we have

d

dt
‖u‖2

s � C‖u‖2
s , (3.27)

and so the Gronwall’s inequality completes the proof of the lemma. �
Proof of Theorem 3.12. Theorem 3.12 is a direct consequence of Theorem 3.7 and Lemma 3.13
above. �
4. Weak solutions

The previous well-posedness results assume s > 2k − 1
2 , which excludes the case m = δ, the Dirac

δ function. But we know that the δ function plays a very important role in the study of (generalised)
Euler equations: both the point vortex in the Euler fluid equation and the peakon solution in the
Camassa–Holm equation correspond to the δ momentum (or vortex). So in this section, we will study
the weak solutions of the modified Camassa–Holm equation (1.1), among which is the δ momentum
solution.

Eq. (3.2) can be rewritten as {
ut + F (u)x = 0, x ∈ S, t ∈ R,

u(x,0) = u0(x),
(4.1)

where

F (u) = 1

2
u2 + Λ−4

(
u2 + 2u2

x − 5

2
u2

xx − 5ux∂
3
x u

)
= 1

2
u2 + Λ−4

(
u2 + 2u2

x + 5

2
u2

xx

)
− 5∂xΛ

−4(uxuxx). (4.2)

Definition 4.1. Let u0 ∈ H2(S). A function u : [0,+∞) × S → R is called a global weak solution to (4.1)
if u ∈ C([0,∞); H2) and ∀T > 0, we have

T∫
0

∫
S

(
uϕt + F (u)ϕx

)
dx dt +

∫
S

u0(x)ϕ(0, x)dx = 0, ∀ϕ ∈ C1,c([0, T ) × S
)
, (4.3)

where C1,c([0, T )× S) is the set of all first order smooth functions with compact support in [0, T )× S .

Theorem 4.2. Let u0 ∈ H2(S), where m0 = (I − ∂2
x )2u0 is a positive Radon measure on S. Then there exists a

unique global weak solution u ∈ C([0,∞); H2(S)) of (1.1) with k = 2, a = 0 such that m = Λ4u is a positive
Radon measure on S whose total variation on S is uniformly bounded for t � 0. Moreover we have∫

S

u dx =
∫
S

u0 dx,

∫
S

(
u2 + 2u2

x + u2
xx

)
dx =

∫
S

(
u2

0 + 2u2
0x + u2

0xx

)
dx. (4.4)
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Proof. Let θ ≡ ‖m0‖M = ‖u0 − 2∂2
x u0 + ∂4

x u0‖M be the total variation of the Radon measure m0,
then by Lemma 5.2 in [8], there exist positive functions mn

0 ∈ C∞(S) such that ‖mn
0‖L1 � C for a

constant C depending on θ but independent of n, and mn
0 → m0 in D′(S). If we denote un

0 = Λ−4
4 mn

0,
then mn

0 = un
0 − 2∂2

x un
0 + ∂4

x un
0 and

∥∥un
0

∥∥2
H2 =

∫
S

∣∣un
0

∣∣2 + 2
∣∣un

0x

∣∣2 + ∣∣un
0xx

∣∣2
dx �

∣∣∣∣∫
S

mn
0 · un

0 dx

∣∣∣∣
�

∥∥mn
0

∥∥
L1

∥∥un
0

∥∥
L∞ � C

∥∥mn
0

∥∥
L1

∥∥un
0

∥∥
H1 , (4.5)

which implies that

∥∥un
0

∥∥2
H2 =

∫
S

∣∣un
0

∣∣2 + 2
∣∣un

0x

∣∣2 + ∣∣un
0xx

∣∣2
dx � C

∥∥mn
0

∥∥2
L1 � C (4.6)

for some constant dependent on θ . Then by Theorems 3.9 and 3.12 for the smooth initial value un
0(x)

there exists a unique solution un ∈ C([0,∞); Hs) ∩ C1([0,∞); Hs−1) to (4.1). We are going to use
Arzelà–Ascoli Theorem to prove {un} has a subsequence which is convergent in some sense. If we
denote mn = un − 2∂2

x un + ∂4
x un , then∥∥un(t)
∥∥

H2 = ∥∥un
0

∥∥
H2 � C and

∥∥mn(t)
∥∥

L1 = ∥∥mn
0(t)

∥∥
L1 � C

because mn � 0, where C is a constant independent of n. So∥∥∂4
x un

∥∥
L1 �

∥∥un
∥∥

L1 + 2
∥∥∂2

x un
∥∥

L1 + ∥∥mn(t)
∥∥

L1 � C

and ∥∥∂3
x un

∥∥
L∞ � C, with C independent of n.

So {un(t)} is a compact set in H2(S) for any t � 0. On the other hand, ‖ dun

dt ‖H2 = ‖F (un)x‖H2 can be
estimated as follows:

∥∥[(
un)2]

x

∥∥
H2 = 2

∥∥unun
x

∥∥
H2 � C

(∥∥unun
x

∥∥
L2 + ∥∥un

xxun
x

∥∥
L2 + ∥∥unun

xxx

∥∥
L2

)
� C

∥∥∂3
x un

∥∥
L2 � C

∥∥∂3
x un

∥∥
L∞ � C, (4.7)

∥∥∥∥∂xΛ
−4
4

(
v2 + 2v2

x − 5

2
v2

xx − 5vx∂
3
x v

)∥∥∥∥
H2

� C

∥∥∥∥v2 + 2v2
x − 5

2
v2

xx − 5vx∂
3
x v

∥∥∥∥
H−1

� C if v = un. (4.8)

So ‖ dun

dt ‖H2 = ‖F (un)x‖H2 � C with C independent of t and n. Therefore Arzelà–Ascoli Theorem tells
us that {un(t)}n�1 ⊂ C([0,∞); H2) is a compact subset. So we have u ∈ C([0,∞); H2) and nk → ∞
such that

unk → u in C
([0,∞); H2),

with
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∥∥u(t) − u(s)
∥∥

H2 � C |t − s|, ∀t, s � 0,

u(0) = u0.

Taking nk → ∞ in

T∫
0

∫
S

(
unkϕt + F

(
unk

)
ϕx

)
dx dt +

∫
S

unk
0 (x)ϕ(0, x)dx = 0, ∀ϕ ∈ C1,c([0, T ) × S

)
, (4.9)

yields that u ∈ C([0,∞); H2) is the weak solution to (4.1).
From the proof above, we can easily get the conserved quantities and that the total variation

‖m(t, ·)‖M of the limit measure m satisfies

∥∥m(t, ·)∥∥M �
∥∥mn(t)

∥∥
L1 = ∥∥mn

0(t)
∥∥

L1 � C .

Uniqueness. Now we are proving the uniqueness of the solution. Here we just sketch the proof, and
a rigorous argument can be realised by a standard mollification method. Let G(x) be the Green’s
function for the operator Λ4 = (I − ∂2

x )2 acting on H∞(S), then from

(
I − 2∂2

x + ∂4
x

)
G(x) = δ(x) =

∞∑
n=−∞

enix, (4.10)

we have

G(x) =
∞∑

n=−∞

1

1 + 2n2 + n4
einx

= 1 + 2
∞∑

n=1

1

1 + 2n2 + n4
cos(nx), x ∈ S. (4.11)

Obviously, for any 0 � ε < 1, G(x) ∈ C2+ε(S). Moreover, we have

Lemma 4.3.

∂3
x G ∈ L∞(S).

Proof. We know from Abel’s criterion that

∞∑
n=1

n3

1 + 2n2 + n4
sin(nx)

converges for any x ∈ S , and uniformly converges in any [α,β] ⊂ (0,2π) if 0 < α < β < 2π . That
means the Fourier series

2
∞∑ n3

1 + 2n2 + n4
sin(nx)
n=1
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converges to ∂3
x G:

∂3
x G(x) = 2

∞∑
n=1

n3

1 + 2n2 + n4
sin(nx). (4.12)

On the other hand, we know

∞∑
n=1

sin(nx)

n
= π

2

(
1 − x

π

)
for 0 < x < 2π, (4.13)

and if we denote g(x) for this function, then

∣∣g(x) − ∂3
x G(x)

∣∣ =
∣∣∣∣∣

∞∑
n=1

(
1

n
− n3

1 + 2n2 + n4

)
sin(nx)

∣∣∣∣∣ (4.14)

which converges uniformly to a bounded function on S . So we have

∂3
x G ∈ L∞(S). �

Suppose now u, v ∈ C([0,∞); H2) are two solutions of (3.2), i.e., they both solve the equation⎧⎨⎩ ut = −uux − ∂xΛ
−4

(
u2 + 2u2

x − 5

2
u2

xx − 5ux∂
3
x u

)
, x ∈ S, t ∈ R,

u(x,0) = u0(x).

(4.15)

Or equivalently, ⎧⎨⎩ ut = −uux − Gx ∗
(

u2 + 2u2
x − 5

2
u2

xx − 5ux∂
3
x u

)
, x ∈ S, t ∈ R,

u(x,0) = u0(x),

(4.16)

here ∗ stands for the convolution. Denote

M ≡ sup
t�0

{∥∥Λ4u
∥∥

M + ∥∥Λ4 v
∥∥

M
}

< ∞, (4.17)

then for all (x, t) ∈ S × R+ , we have

∥∥u(x, t)
∥∥

L∞ = ‖G ∗ m‖L∞ � ‖G‖L∞‖m‖M � C M,∥∥ux(x, t)
∥∥

L∞ = ‖Gx ∗ m‖L∞ � C M,∥∥uxx(x, t)
∥∥

L∞ = ‖Gxx ∗ m‖L∞ � C M,∥∥uxxx(x, t)
∥∥

L∞ = ‖Gxxx ∗ m‖L∞ � C M, (4.18)

and same estimates hold true for v as well.
Let w = u − v and A(u) = u2 + 2u2

x − 5
2 u2

xx − 5ux∂
3
x u, then{

wt = −uwx − w vx − Gx ∗ (
A(u) − A(v)

)
, x ∈ S, t > 0, (4.19)
w|t=0 = 0, x ∈ S,
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so

d

dt

∫
S

|w|dx =
∫
S

wt sgn w

=
∫

−uwx sgn w − w vx sgn w − Gx ∗ (
A(u) − A(v)

)
sgn w, (4.20)

d

dt

∫
S

|wx|dx =
∫
S

wxt sgn wx

=
∫

−[
wx(ux + vx) + uwxx + w vxx

]
sgn wx − Gxx ∗ (

A(u) − A(v)
)

sgn wx, (4.21)

d

dt

∫
S

|wxx|dx =
∫
S

wxxt sgn wxx

= −
∫ [

wxx(2ux + vx) + wx(2vxx + uxx) + u∂3
x w + w∂3

x v
]

sgn wxx

−
∫

Gxxx ∗ (
A(u) − A(v)

)
sgn wxx. (4.22)

Using the estimates (4.18) for u, v , we have

∣∣∣∣∫ −uwx sgn w − w vx sgn w

∣∣∣∣ � C M

(∫
|w| + |wx|

)
,∣∣∣∣∫ [

wx(ux + vx) + uwxx + w vxx
]

sgn wx

∣∣∣∣ � C M

(∫
|w| + |wx| + |wxx|

)
,∣∣∣∣∫ [

wxx(2ux + vx) + wx(2vxx + uxx)
]

sgn wxx

∣∣∣∣ � C M

(∫
|wx| + |wxx|

)
. (4.23)

On the other hand, A(u) − A(v) = w(u + v) + 2wx(ux + vx) − 5
2 wxx(uxx + vxx) − 5ux∂

3
x w − 5wx∂

3
x v −

a∂2
x w , and integration by parts gives us

Gx ∗ (
ux∂

3
x w

) = Gxx ∗ (ux wxx) − Gx ∗ (uxx wxx),

Gxx ∗ (
ux∂

3
x w

) = Gxxx ∗ (ux wxx) − Gxx ∗ (uxx wxx), (4.24)

which enables us to estimate∣∣∣∣∫ Gx ∗ (
A(u) − A(v)

)
sgn w

∣∣∣∣ � C M

(∫
|w| + |wx| + |wxx|

)
,∣∣∣∣∫ Gxx ∗ (

A(u) − A(v)
)

sgn wx

∣∣∣∣ � C M

(∫
|w| + |wx| + |wxx|

)
. (4.25)

The other terms in (4.22) can be estimated as follows:∫
u∂3

x w sgn wxx =
∫

u
d |wxx|dx = −

∫
|wxx|ux dx, (4.26)
dx
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so ∣∣∣∣∫ u∂3
x w sgn wxx

∣∣∣∣ � M

∫
|wxx|. (4.27)

It is easy to see ∣∣∣∣∫ w∂3
x v sgn wxx

∣∣∣∣ �
∥∥∂3

x v
∥∥

L∞

∫
|w| � M

∫
|w|. (4.28)

In order to estimate
∫

Gxxx ∗ (A(u) − A(v)) sgn wxx , we need only estimate
∫

Gxxx ∗ (ux∂
3
x w) because

the other terms can be estimated in the same way as the above terms. Again, the integration by parts
yields

Gxxx ∗ (
ux∂

3
x w

) = Gxxxx ∗ (ux wxx) − Gxxx ∗ (uxx wxx)

= Gxx ∗ (ux wxx) − G ∗ (ux wxx) + ux wxx − Gxxx ∗ (uxx wxx), (4.29)

here, we have used the definition of G , which gives us

Gxxxx ∗ f − 2Gxx ∗ f + G ∗ f = f .

Now it is clear that ∣∣∣∣∫ Gxxx ∗ (
ux∂

3
x w

)∣∣∣∣ � C M

∫
|wxx|. (4.30)

Taking all the above estimates in account, we have

d

dt

∫
S

(|w| + |wx| + |wxx|
)

dx � C M

∫
S

(|w| + |wx| + |wxx|
)

dx, (4.31)

and so the Gronwall’s inequality yields w ≡ 0. This completes the proof of Theorem 4.2. �
5. Some remarks

5.1. The whole real line case

We have discussed the well-posedness of Eq. (1.1) on the periodic case. Actually, some of the above
results hold true with Λ2k = (1 − ∂2

x )k on the whole real line case:

mt + 2uxm + umx = 0 on R, with m = (
1 − ∂2

x

)k
u. (5.1)

More specifically, the local well-posedness Theorem 3.1 holds true if u0 ∈ L1(R) ∩ Hs(R), combining
our arguments here and those estimates established for (1−∂2

x ) in [23]. Theorem 3.9 with m0 ∈ L2(R)

and u0 ∈ L1(R) ∩ Hs(R) holds true. Using Lemma 5.1 we will prove on the next page, we can prove
that Theorem 3.12 holds true for (5.1) if we suppose m0 � 0 and u0 ∈ L1(R) ∩ Hs(R) with some
s > 2k − 1

2 . Theorem 4.2 holds true for (5.1) if u0 ∈ Hs(R) ∩ L1(R) with m0 = (1 − ∂2
x )2u0 a positive

Radon measure.
In the case of R, we can prove

(a) G(x) � 0 (x ∈ R) for the fundamental solution G(x) of the operator (1 − ∂2
x )k on R;
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(b) |∂2k−1
x G|L∞ < ∞;

(c) An analogous lemma to Lemma 3.11.

In fact, the Green’s function of Λ2k on R, k � 1, is given by

G(x) = 1

2k

(
1 + |x| + |x|2 + · · · + |x|k−1)e−|x|, (5.2)

so the items (a) and (b) are obvious. We just prove a lemma analogous to Lemma 3.11 (take k = 2 as
an example).

Lemma 5.1. Let u0 ∈ Hs(R), s > 7/2, m0 = (1 − ∂2
x )2u0 � 0 (or � 0) smooth enough and u0 ∈ L1(R), then

∃K > 0 such that ‖uxxx‖L∞ � K .

Proof. From the assumption m0 = (1 − ∂2
x )2u0 � 0, we can prove that m(x, t) � 0 for any t � 0 using

a similar argument to that of Lemma 3.10, so we have u = G ∗m � 0 because G(x) > 0. From (5.1), we
have ∥∥u(t, ·)∥∥L1(R)

= ∥∥m(t, ·)∥∥L1(R)
= ∥∥m0(t, ·)

∥∥
L1(R)

, (5.3)

and the conservation law∫
um =

∫
R

(
u2 + 2u2

x + u2
xx

)
dx =

∫
R

(
u2

0 + 2u2
0x + u2

0xx

)
dx, (5.4)

which implies

‖ux‖L∞ � C (5.5)

by the Sobolev embedding theorem.
On the other hand, because m � 0, u � 0, we have

0 �
x∫

−∞
m dx =

x∫
−∞

(
u − 2∂2

x u + ∂4
x u

)
dx � ‖u‖L1 − 2ux + ∂3

x u, (5.6)

‖u‖L1 = ‖m‖L1 �
x∫

−∞

(
u − 2∂2

x u + ∂4
x u

)
dx � −2ux + ∂3

x u, (5.7)

which implies ∥∥2ux − ∂3
x u

∥∥
L∞ � ‖u‖L1 . (5.8)

So combining Eqs. (5.5) and (5.8), we have ∥∥∂3
x u

∥∥
L∞ � C (5.9)

with a constant C depending only on the L1 norm and H2 norm of the initial u0. �
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Fig. 1. The evolution of Gaussian initial value.

5.2. Numerical simulations and solitons

Our results in this paper tell us that the modified Camassa–Holm equation with k � 2 does not
have finite time blowup solutions. Our numerical simulation, however, strongly suggests that some
initial values evolve into a δ momentum as t → ∞, which we call weak blowup to form a soliton.
See Fig. 1 for the evolution of the Gaussian initial value m0. One can see that maximum value of the
solution m increases almost linearly in t .

This is very interesting because (a) the soliton is formed at t = ∞ and (b) we do not know if the
PDE (1.1) is completely integrable, actually we tend to believe the PDE is not integrable with some
strong support from our numerical experiments: we have studied in [26] the Lyapunov exponents of
a four particle systems corresponding to (1.1), and the numerical result shows that there is at most
one positive Lyapunov exponent, which indicates that the PDE is not integrable and there is much
likely another conserved quantity in addition to

∫
u and

∫
um although we have not yet found any

proper candidate for that at the moment. The stability of peakons for Camassa–Holm equation was
demonstrated in [5] and studied in [10,11] with the help of the first three conserved quantities of
Camassa–Holm equation. It seems that the solitons for generalised Camassa–Holm equations are also
stable, although we have found only two conserved quantities. We will analyse the formation of the
soliton out from (1.1) in a forthcoming paper.
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