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Summary. We study a discrete analog of the Lagrange-d’Alembert principle of non-
honolomic mechanics and give conditions for it to define a map and to be reversible.
In specific cases it can generate linearly implicit, semi-implicit, or implicit numeri-
cal integrators for nonholonomic systems which, in several examples, exhibit superior
preservation of the dynamics. We also study discrete nonholonomic systems on Lie
groups and their reduction theory, and explore the properties of the exact discrete flow
of a nonholonomic system.

1. Introduction

1.1. Nonholonomic Dynamical Systems

Hamiltonian systems have an enormous wealth of distinguishing features. They pre-
serve energy, symplecticity, and phase space volume. They can preserve momentum in
the presence of symmetries. They have a well-developed theory of integrability, near-
integrability, and symmetry reduction. Moreover, all of these properties have discrete-
time analogs which can give numerical integrators extraordinarily good long-time sta-
bility and robustness.

When the system is subject to a constraint, the whole picture can change drastically.
The best-understood situation is that of holonomic, or position-only constraints. The
position constraint g(q) = 0 (q ∈ Q, the configuration manifold of the system), along
with its implied velocity constraint T g(q)q̇ = 0, leads to a Hamiltonian system on
the submanifold defines by these constraints. Numerical integrators that preserve these
constraints and the associated structures (symplecticity, symmetry, etc.) are well known
and widely used in applications such as molecular dynamics, where the constraints may
be molecular bond lengths or angles [18].

By contrast, the situation for nonholonomic constraints is less well understood. These
are velocity constraints that do not arise as the derivative of any position constraint. The
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resulting mechanical systems will not preserve the symplectic form. They may or may
not preserve energy, phase space volume, or momentum, and their integrability and
reduction theories are completely different from the Hamiltonian case [13], [16], [20].
They arise most commonly in systems with rolling contact (such as wheeled vehicles
or the famous rattleback or Celtic stone, which spins stably in one direction only) or
sliding contact (such as ice skates, whose velocity must be in the direction of the skate).
Other nonholonomic dynamical systems that have been studied as models include the
car with trailers, the rolling penny, and the rolling ball on a turntable. The behavior of
these systems is often quite unexpected.

Surveys of nonholonomic systems can be found in Bloch et al. [4], Bloch [2], and
Vershik and Gershkovich [29]. A major thrust of present research is to give a complete
description of the Hamiltonian [1], [8], [20], [21], [22] and Lagrangian [3], [9] geom-
etry of nonholonomic systems. Specific topics include a fiber bundle and connection
formulation; the evolution of the momentum in systems with symmetry; the possible
conservation of volume on the constraint manifold; the appearance of dissipative behav-
ior; extreme cases of symmetries in which the constraints are transverse (Chaplygin case)
or tangent (Lie group case) to the symmetries; and reduction and control. For example,
in one recent approach, following Cartan’s study of nonintegrable distributions Koiller
et al. [16], [15] study nonholonomic systems as geodesics of a nonholonomic connection,
involving the Levi-Civita connection and orthogonal projection onto the nonintegrable
distribution. Local invariants for general distributions are obtained following Cartan’s
method of equivalence. Eventually, one wants to understand better the relationship be-
tween the algebraic properties of the distribution and the consequences for the dynamics
such as integrability and behavior under reduction.

Like Hamiltonian dynamics, nonholonomic dynamics can be subtle, and many sys-
tems can be studied only via long numerical simulations. The development of special-
purpose numerical integrators for nonholonomic mechanical systems is hindered by the
lack of a clear theory describing the structural features of their dynamics. However, nu-
merical integrators derived from discrete variational principles have proved very reliable
both in situations where the class of dynamics is well understood (e.g. in Hamiltonian
ODEs [26] and PDEs [7]) and where it is not as well understood (e.g. in systems with
collisions or with multiple timescales [28]). They therefore seem suitable to apply here,
because the nonholonomic equations of motion come from the Lagrange-d’Alembert
principle, which (in the way it includes the forces due to the constraints) is not a stan-
dard variational principle. In this paper we further investigate, along lines introduced
by Cortés [14], integrators satisfying a discrete analog of the Lagrange-d’Alembert
principle.

We only consider the case in which the velocity constraints are linear, i.e., take the
form A(q)q̇ = 0, and the Lagrangian is regular. Such nonholonomic systems do at
least preserve energy. If, in addition, the Lagrangian is of simple mechanical (kinetic
minus potential) type, then the system is also reversible, a feature which is known
to control dynamics in a way very reminiscent to symplecticity. One of our discrete
Lagrange-d’Alembert (DLA) integrators, eq. (4.18) below, is second-order accurate,
time-symmetric, reversible, and requires only one force evaluation per time step. It is
the nonholonomic analog of the widely used integrators SHAKE and RATTLE [18] for
holonomic constraints. It performs markedly well in our numerical tests.
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More precisely, such linear velocity constraints define a distribution C on the config-
uration manifold Q. If C is integrable, then the constraint is said to be holonomic, and
Q foliates into leaves on each of which one has standard Hamiltonian dynamics; if C
is nonintegrable, then the constraint is said to be nonholonomic. The term holonomic
(= integrable) was introduced by Hertz in 1894, who also distinguished between the ge-
ometry of straightest paths (what we are calling nonholonomic dynamics, governed by
the Lagrange-d’Alembert principle), and the geometry of shortest paths, or geodesics in
(Q,C), which are governed by a true variational principle (sometimes called vakanomic
mechanics). The study of nonholonomic manifolds (Q,C) has many links to foliation
theory, control theory, thermodynamics, and quantum theory, and partial differential
equations [29].

The equations of motion for nonholonomic systems can be determined from the
Lagrange-d’Alembert principle. A discrete analog, the discrete Lagrange-d’Alembert
(DLA) principle, was introduced by Cortés [14]. (See also [11], [12], [19].) In this
paper we further develop the theory of this principle, apply it to develop some practical
integrators, and test these on nonholonomic systems showing a range of behavior. We
also apply the principle to nonholonomic systems on Lie groups, showing that it can
produce an exact analog of the continuous theory.

1.2. Survey of the Paper

The theory of (continuous time) nonholonomic systems is reviewed in Section 2 and the
discrete Lagrange-d’Alembert (DLA) principle introduced and studied in Section 3. The
DLA principle requires on Q×Q a discrete Lagrangian, a discrete constraint distribution
which is a submanifold of Q × Q of dimension n + k that contains the diagonal, and,
in addition, a continuous distribution on Q. The principle seeks a discrete curve that is
a critical point of the discrete action sum subject to variations that lie in a continuous
distribution. One then applies the discrete analog of the tangent to the curve lying in
the continuous distribution, namely, that the discrete tangent lift must lie in the discrete
constraint distribution in Q × Q. This determines the discrete Lagrange-d’Alembert
(DLA) equations of motion. In Proposition 3 we give conditions for the DLA principle
to define an (in general, implicit) integrator; however, since the flow is not symplectic, we
do not expect the integrator to preserve a corresponding symplectic form on Q × Q as in
the discrete Euler-Lagrange [24] equations. Instead we study its reversibility properties.

We consider nonholonomic systems that admit reversing symmetries and demand
that the integrators for such systems also preserve an analogous reversing symmetry. A
reversing symmetry on T Q is just an involution of the tangent bundle taking tangent
vectors to their negatives so that a nonholonomic system admits a reversing symmetry
when the Lagrangian function is invariant under thisZ2-action. (Note that the distribution
is automatically invariant.) The flow then inherits the property that q(t) is a solution if
and only if R ◦ q(−t) is a solution where R is the reversing map. The discrete analog of
the Z2-action is just transposition in Q × Q. We show in Proposition 4 that the discrete
flow is reversible when the discrete Lagrangian and discrete constraint distribution are
invariant under this transposition.

We consider several examples of DLA integrators in Section 4. We study the basic
geometric properties of a typical class of integrators determined by a (“finite difference”)
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map ϕ: N0(�) → T Q where N0(�) is a neighborhood of the diagonal � ⊂ Q × Q.
Symmetry properties of the DLA equations are then inherited from symmetry properties
of the continuous equations provided ϕ is equivariant with respect to the corresponding
actions. For example, when ϕ is transposition equivariant, we retain reversibility of the
discrete integrator from reversibility of the continuous flow. The finite difference map
ϕ can be constructed naturally from the geodesic flow corresponding to a Riemannian
structure on Q. OnRn this leads to the two most basic integrators, one first-order, linearly
implicit, and nonreversible, and one second-order, reversible, and implicit. The most
practical method, which is second-order, reversible, and implicit only in the Lagrange
multipliers, is constructed in a slightly different way using two different finite difference
maps.

In Section 5 we apply these integrators to three nonholonomic systems. The first
system has Q = R

3, being the lowest dimensional Euclidean space with a nonintegrable
distribution, and harmonic oscillator Lagrangian. The dynamics are integrable and a
reversible DLA integrator captures their qualitative properties precisely. By contrast,
neither a nonreversible DLA integrator nor a reversible non-DLA integrator preserve the
same qualitative properties. The second system also has Q = R

3, but is nonintegrable.
A reversible DLA integrator preserves quasiperiodic and chaotic orbits over long times,
with performance reminiscent of a symplectic integrator. The third system has Q = R

7

and is fully chaotic. A reversible DLA integrator is still markedly better than standard
methods but does show some energy drift.

In Section 6, we study integrators for symmetric nonholonomic systems on Lie groups
G. Under reduction, the continuous equations of motion project to a vector field on the Lie
algebra g obtained by projecting the unconstrained (Euler-Poincaré) vector field on g to
the velocity constraint distribution with respect to the kinetic energy metric [16]. On the
other hand, the discrete reduction of Euler-Lagrange equations for Lie groups leads to the
discrete Euler-Poincaré (DEP) equations [5], [23]. Here, we obtain for nonholonomic
systems a reduced discrete flow on G depending on a choice of symmetric discrete
constraint distribution and discrete Lagrangian. The reduced equations then depend
explicitly on the subspace of g corresponding to the original nonintegrable distribution
on G. We also obtain an explicit reconstruction principle to obtain the unreduced discrete
flow on G × G from the reduced flow on G. These equations naturally generalize the
DEP equations in that if we take the distribution to be T G (and corresponding discrete
constraint distribution to be all of G × G), we recover the DEP equations.

(The systems considered here are complementary to the so-called generalized Chap-
lygin systems in which the symmetry directions and constraint distribution have zero
intersection and together span the tangent bundle, the reduction and discrete reduction of
which were considered in [8] and [14]. In our case, the constraint distribution is contained
in the symmetry distribution.)

Section 7 is somewhat independent of the rest of the paper. It concerns the exact flow
of the Lagrange-d’Alembert equations. By fixing the time step, this can be regarded as a
kind of integrator, and one is interested in its properties not only as part of the fundamental
study of nonholonomic mechanics but so that they can be mimicked by actual, practical
integrators. In Theorem 5 we obtain a set of equations, the exact discrete Lagrange-
d’Alembert (EDLA) equations, satisfied by the flow. This involves the construction of
an exact discrete constraint submanifold of Q × Q and its fibers over the two natural
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projections and their intersections, which, provided the Lagrangian is reversible, we
prove are submanifolds with natural dynamical interpretations. Let τ : T Q → Q be
the tangent projection and let ψ t : C → C be the flow of the Lagrange-d’Alembert
equations. Given a time h solution (q0, q1) to the Lagrange-d’Alembert equations, that
is q1 = τ ◦ ψh(vq0) for some vq0 ∈ C , we obtain an implicit equation satisfied by
q2 = τ ◦ ψ2h(vq0)

There are some crucial differences between the EDLA and DLA equations. The
EDLA equations do not determine q2 from (q0, q1); however, given a pair (q0, q2) we
prove that the EDLA equations determine a q1 with the property that the discrete time
h flow contains the orbit sequence (q0, q1, q2). Finally, we define a discrete Legendre
transformation so that the momentum for the pair (q0, q1) matches the momentum for
(q1, q2) where q1 is the locally unique solution of the EDLA equations.

2. Review of Smooth Theory

2.1. The Lagrange-d’Alembert Principle

In this section we review the fundamental principle of nonholonomic mechanics, the
Lagrange-d’Alembert principle, and the associated Lagrange-d’Alembert equations. The
data for a constrained mechanical system is (Q, L ,C), where Q is the configuration
space, C is a k-dimensional distribution on Q, which can be thought of as a subbundle of
T Q, and L: T Q → R is the Lagrangian. Fixing initial and final points q(0), q(T ) ∈ Q,
and fixing a time interval I = [0, T ], we then consider the space of all smooth maps from
I to Q joining q(0) to q(T ). Denote this space by 	(q(0); q(T )) and denote a point in
this space by q(t). As for unconstrained mechanics, we consider the action functional
on this space given by

S(q(t)) =
∫ T

0
L(q(t), q̇(t)) dt. (2.1)

We then look for critical points q(t) of the action functional with respect to variations
that lie in the constraint distribution. This determines a family of curves. We then choose
the unique curve that also satisfies the condition

q̇(t) ∈ Cq(t), (2.2)

for all t ∈ I . The constraint distribution is described by the intersection of the kernels
of n − k one-forms in general position. That is,

Cq =
n−k⋂
j=1

kerAj (q), (2.3)

where Aj ∈ �1(Q) for j ∈ {1, . . . , n − k}.
In local coordinates qi , i ∈ {1, . . . , n}, we represent the one-forms as

∑n
i=1 Aji dqi ,

l ∈ {1, . . . , n − k}. If we introduce Lagrange multipliers, λ1, . . . , λn−k , the condition
that q(t) is critical with respect to variations lying in the distribution is equivalent to the
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equations

d

dt

∂L

∂q̇ i
− ∂L

∂qi
=

n−k∑
j=1

λj Aji . (2.4)

These are 2n differential equations with 2n + n − k variables. The remaining n − k
equations are obtained by imposing the constraint condition on the curve q(t),∑

i

Aji (q(t))q̇
i (t) = 0, (2.5)

for j ∈ {1, . . . , n − k}. Equations (2.4) and (2.5) constitute the Lagrange-d’Alembert
equations.

2.2. Time Reversibility of Lagrange-d’Alembert Flow

An important property of nonholonomic mechanics for Lagrangians that are of the form
kinetic minus potential energy is that they have a time-reversing symmetry. This is the
result of a Z2 symmetry of the system. The Z2-action is generated by the involutive
diffeomorphism R: T Q → T Q given by

R(vq) = −vq . (2.6)

Notice that this diffeomorphism of T Q is not the tangent lift of any diffeomorphism on Q
since it covers the identity diffeomorphism, but is not itself the identity. A nonholonomic
system is symmetric with respect to this Z2-action provided the Lagrangian function is
R-invariant, since the velocity distribution, being a vector bundle over Q, is automatically
R-invariant. For example, any nonholonomic system whose Lagrangian is of the form
kinetic minus potential energy is symmetric with respect to this action. The dynamical
consequences of this Z2-action are contained in the following proposition, the proof of
which we omit.

Proposition 1. Let (Q, L ,C) be a constrained mechanical system. Suppose the La-
grangian L: T Q → R is R-invariant, L ◦ R = L, where R is the involutive diffeomor-
phism of T Q. Let t be such that the flow ψt : C → C exists. We then have

R ◦ ψt = ψ−t ◦ R. (2.7)

Time-reversing symmetry will have important consequences for the discretization
of nonholonomic systems, and will be a key property that determines the success of
the integrator to behave well with respect to energy conservation. From the viewpoint
of geometric integration it is expected that if the continuous system has time-reversing
symmetry, then, as this is a geometric property of the flow, we should require that the
integrator also admit such a symmetry. In a subsequent section we will obtain, from the
discrete variational principle, a discrete time-reversing symmetry for the nonholonomic
integrator.
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2.3. Formulation on T ∗ Q

We briefly formulate the constrained mechanical system on the cotangent bundle and
remark that this system fails to exhibit, in the case that the constraints are nonintegrable,
the geometric invariance properties of a Hamiltonian system, namely that the flow is
symplectic. Starting with the data (Q, L ,C) and making the assumption that the Leg-
endre transformation FL: T Q → T ∗ Q is invertible, we can form both the subbundle
D of T ∗ Q,

D := FL(C), (2.8)

and the Hamiltonian function H ∈ C∞(T ∗ Q),

H := (i(Z)dL − L) ◦ FL−1,

where Z is the Liouville vector field on T Q given in coordinates (x, v) by Z = ∑
vi

∂
∂vi

,
the unique linear radial vector field tangent to the fibers of T Q. We can now construct
the so-called projection bundle W [20], [21], which is a subbundle of T (T ∗ Q) comple-
mentary to T D. To construct W , one first considers the annihilator C0 of C which is a
subbundle of T ∗ Q, and then forms the pull back bundle with respect to the projection
π : T ∗ Q → Q. The pull back π∗C0 is a subbundle of T ∗(T ∗ Q). Finally, one takes

W := ω̃−1(π∗C0),

where ω̃−1: T ∗(T ∗ Q) → T (T ∗ Q) is induced from the canonical symplectic form ω on
T ∗ Q. W is then a subbundle of T (T ∗ Q).

Definition 1. L is normal provided the matrix of second partial derivatives of the La-
grangian restricted to the fibers of T Q is positive definite, that is, provided the matrix(

∂2Lq

∂vi∂v j
(v)

)
, 1 ≤ i, j ≤ n, (2.9)

where Lq = L|Tq Q , is positive definite.

In this case, we have the following theorem.

Theorem 1. Let (Q, L ,C) be a nonholonomic mechanical system with a Lagrangian
that is both regular and normal. We then have

T D ⊕ W = T (T ∗ Q), (2.10)

and consequently the restriction of the Hamiltonian vector field X H to the constraint
subbundle D ⊂ T ∗ Q splits as a direct sum of two vector fields tangent to D and W ,
respectively. That is,

X H |D = X D + XW . (2.11)

The vector field X D tangent to D encodes the dynamics of the nonholonomic system
and is related via the Legendre transformation to the Lagrange-d’Alembert flow on T Q.
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Namely, a curve c: I → Q is a solution of the Lagrange-d’Alembert equations for
(Q, L ,C) (equations (2.4) and (2.5)) if and only if the curve c̃: I → T ∗ Q defined by

c̃(t) = FL ◦ d

dt
c(t) (2.12)

is an integral curve of the vector field X D on D.

Proof. The proof is given in [20].

3. The Discrete Lagrange-d’Alembert Principle

3.1. Review of Discrete Euler-Lagrange Theory

Before embarking on discretizing the Lagrange-d’Alembert principle in order to obtain
a discrete analog of the continuous equations of motion (2.4) and (2.5), we recall the
schemes of Moser and Veselov [27] and Marsden et al. [24], [23]. These discretize
unconstrained mechanical systems by approximating curves on Q with sequences of
points and use a corresponding discrete variational principle to pick out an action-
minimizing sequence.

Fix q0, qN ∈ Q for some integer N and fix a time step h. Consider the space
of sequences 	(q0; qN ) � QN−1, where each element is a discrete path joining q0

to qN . Denote an element in 	(q0; qN ) by [q] which we will alternatively write as
q0, q1, . . . , qN−1, qN , adjoining the end points. We think of each pair (qi , qi+1), i ∈
{0, . . . , N } as an evaluation of the curve at times ih and (i + 1)h, respectively. The
discretization depends on the choice of a discrete Lagrangian, Ld : Q × Q → R, from
which we form the discrete action sum,

Sd([q]) =
N−1∑
i=0

Ld(qi , qi+1). (3.1)

We compute the critical point of this action sum with respect to arbitrary variations of
the discrete curve. That is, we attempt to solve the equation

T[q]Sd · δ[q] = 0, (3.2)

where δ[q] ∈ T(q1,...,qN−1)Q
N−1 is an arbitrary variation of the discrete curve [q]. This is

equivalent to the N − 1 discrete Euler-Lagrange (DEL) equations,

D2Ld(qi−1, qi ) + D1Ld(qi , qi+1) = 0, (3.3)

where i ranges from 1 to N −1. Moreover, under mild conditions on Ld , equations (3.3)
can be solved sequentially. The first equation (i = 1) determines q2 from q0 and q1,
which is fed into the second equation (i = 2) to determine q3 from q1 and q2, and so on.

Equation (3.3) is a discrete version of the Euler-Lagrange equations on T Q and
it determines, provided Ld is sufficiently regular, a diffeomorphism, or discrete flow,
FLd : Q×Q → Q×Q retaining the second-order nature of the Euler-Lagrange equations
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in that π1 ◦ FLd = π2 where πi : Q × Q → Q are projections on the i th factors.
Consequently, projecting the solution curve in Q × Q to a curve in Q, one can then take
the lift of this curve to Q × Q and recover the original curve. This is the discrete analog
of the flow being second order.

One can obtain a momentum-matching interpretation of the DEL equations by intro-
ducing the discrete Legendre transformations F+Ld : Q × Q → T ∗ Q and F−Ld : Q ×
Q → T ∗ Q given by

F
+Ld(q0, q1) = (q1, D2Ld(q0, q1)) ∈ T ∗

q1
Q, (3.4)

which is a bundle map with respect to π2: Q × Q → Q, and

F
−Ld(q0, q1) = (q0,−D1Ld(q0, q1)) ∈ T ∗

q0
Q, (3.5)

which is a bundle map with respect to π1: Q × Q → Q. There are now two important
observations about the DEL equations (3.3). First, denote by p+(q0, q1) and p−(q0, q1)

the momenta of a point in Q × Q defined through the discrete Legendre transformations.
We can interpret (3.3) as the equation demanding that the momentum on the initial point
matches the momentum on the updated point by the discrete flow map, FLd . That is,

p+(qi−1, qi ) = p−(qi , qi+1) (3.6)

for each i . There is, thus, a well-defined momentum value for each discrete time i .
Notice that we can write p+(qi , qi+1) = F

+Ld(FLd (qi−1, qi )). Second, let us recall that
using the discrete Legendre transformations we can recast the discrete flow on Q × Q
as a discrete flow on T ∗ Q by (qi , pi ) �→ (qi+1, pi+1), where pi = F

−Ld(qi , qi+1) and
pi+1 = F

+Ld(qi , qi+1). This gives the interpretation of Ld as a generating function for
the symplectic transformation on T ∗ Q.

The link to the Euler-Lagrange equations is made more explicit by way of the exact
discrete Lagrangian Le

d [24], the action integral of the solution to the Euler-Lagrange
equations joining the points q0 and q1 in time h. Its discrete flow is the time-h evaluation
of the Euler-Lagrange flow on T Q. More precisely, we have

Theorem 2 (Exact discrete Lagrangian correspondence theorem). Let Le
d : Q × Q →

R be the exact discrete Lagrangian. The DEL equations (3.3) then produce a discrete
flow on Q × Q which is equal to the discrete time evaluation of the actual solution to
the Euler-Lagrange equations.

As a consequence of this theorem, one sees that a choice of discrete Lagrangian is
really an approximation of the action integral

∫ h
0 L(q(t), q̇(t)) dt where (q(t), q̇(t)) is

a solution of the Euler-Lagrange equations with q(0) = q0 and q(h) = q1.

3.2. The Discrete Lagrange-d’Alembert Principle

We start by defining a discrete nonholonomic system which will, given sufficient regu-
larity, determine a discrete second-order flow on a submanifold of Q × Q and generalize
the discrete Euler-Lagrange equations (3.3). We will later develop methods to define a
discrete nonholonomic system from a given continuous one.



OF10 R. McLachlan and M. Perlmutter

Definition 2. A discrete nonholonomic system is given by the quadruple (Q, Ld ,Cd , Ad)

where

1. Cd is a submanifold of Q × Q of dimension n + k with the additional property that

� = {(q, q) | q ∈ Q} ⊂ Cd .

We call Cd the discrete constraint distribution.
2. Ad denotes a set of n − k independent one-forms, A1, . . . , An−k , on Q.
3. Ld : Q × Q → R is the discrete Lagrangian.

If we are modeling a smooth nonholonomic system (Q, L ,C), we often find the
following condition linking the tangent space of the discrete manifold along the diagonal
with the continuous constraint distribution: for all q0 ∈ Q,

0 × vq0 ∈ T(q0,q0)Cd ⇐⇒ vq0 ∈ Cq0 . (3.7)

If we are given a smooth nonholonomic system, the requirement (3.7) links the discrete
constraint submanifold to the continuous distribution, although it does not uniquely
specify it. It is satisfied by all the examples we shall consider.

Example 1. If the continuous constraint is integrable, then the natural discrete con-
straint distribution is the submanifold of Q × Q given by⋃

l

Fl × Fl , (3.8)

the disjoint union of the direct product of the leaves Fl of the distribution on Q. A
dimension count of this submanifold gives k + k + dim(leafspace) = k + k + (n − k) =
n + k, as required. This discrete constraint distribution is reversible (see Section 3.3).

With this discrete data, a discrete Lagrange-d’Alembert principle was proposed in
[14] which leads to a set of discrete equations on Q × Q, which, assuming enough
regularity, leads to a second-order diffeomorphism FLd : Q × Q → Q × Q.

Definition 3 (Discrete Lagrange-d’Alembert (DLA) Principle). A discrete curve [q]
satisfies the discrete Lagrange-d’Alembert principle provided that it is a critical point
of the discrete action sum Sd([q]) = ∑N−1

i=0 Ld(qi , qi+1) with respect to variations δ[q],
vanishing at the end points q0 and qN , that lie in ∩n−k

j=i ker Aj (q), i.e., for each Aj ∈ Ad ,
Aj (δ[q]) = 0, and which also satisfies (qi , qi+1) ∈ Cd for i ∈ {0, . . . , N − 1}.

It is shown in [14] that this principle leads to the following.

Proposition 2. The DLA principle leads to the following set of equations. For each
i ∈ {0, . . . , N − 1},

D2Ld(qi , qi+1) + D1Ld(qi+1, qi+2) =
n−k∑
j=1

λj Aj (qi+1), (3.9)

(qi , qi+1) ∈ Cd . (3.10)
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We refer to (3.9), (3.10) as the DLA equations. We next look more closely at equations
(3.9) and (3.10) to formulate a regularity condition guaranteeing the existence of a unique
discrete flow map from the discrete Lagrange-d’Alembert principle which is second order
and therefore satisfies

FLd (qi−1, qi ) = (qi , qi+1), (3.11)

where qi+1 satisfies (3.9) and (3.10) provided that (qi−1, qi ) ∈ Cd . This regularity
condition is equivalent to the one formulated in [14], but is often easier to check. It is
useful to first make the following definition, which follows naturally from equation (3.9).

Definition 4. For each (q0, q1) ∈ Q × Q, we define the map ψ(q0,q1): Q → C∗
q1

by

ψ(q0,q1)(q2) = ι∗q1
(D2Ld(q0, q1) + D1Ld(q1, q2)), (3.12)

where C∗
q1

is the dual space of Cq1 ⊂ Tq1 Q and where ι∗q1
: T ∗

q1
Q → C∗

q1
is the projection

map dual to the linear inclusion ιq1 : Cq1 ↪→ Tq1 Q.

Proposition 3. Let (q0, q1) ∈ Cd. Let π1: Q × Q → Q be projection on the first factor.
Suppose π1|Cd : Cd → Q is a submersion. The forward discrete flow map FLd is then
guaranteed to exist locally uniquely provided for each q2 ∈ ψ−1

(q0,q1)
(0) ∩ (π1|Cd )

−1(q1),
for each nonzero vq2 ∈ Tq2 Cd(q1),〈

D2 D1Ld(q1, q2) · vq2 , vq1

〉 �= 0, (3.13)

for all vq1 ∈ Cq1 . When this condition holds for all q1 ∈ Q, the discrete Lagrange-
d’Alembert equations produce a uniquely defined diffeomorphism FLd : Cd → Cd.

Proof. Consider the first discrete Lagrange-d’Alembert equation,

D2Ld(q0, q1) + D1Ld(q1, q2) =
n−k∑
j=1

λj Aj (q1). (3.14)

Since the λj (q1) are arbitrary, and the Aj (q1) are a basis for ker ι∗q1
= C0

q1
⊂ T ∗

q1
Q, the

solutions of this equation can be written equivalently as the set ψ−1
(q0.q1)

(0). By the regular
value theorem, this set is a submanifold if 0 is a regular value of ψ(q0,q1). Since the image
of ψ(q0,q1) is a linear space, we have Tq2ψ(q0,q1): Tq2 Q → C∗

q1
. This map is given by

Tq2ψ(q0,q1) = Tq2(ι
∗
q1
(D1Ld(q1, q2))) = ι∗q1

◦ D2 D1Ld(q1, q2). (3.15)

Notice that D2 D1Ld(q1, q2) · vq2 is an element of T ∗
q1

Q so that the map vq2 �→ ι∗q1
◦

D2 D1Ld(q1, q2) · vq2 is well defined. 0 is a regular value when for all q2 ∈ ψ−1
(q0,q1)

(0)

this map is surjective on C∗
q1

. In this case we see that ψ−1
(q0,q1)

(0) is a submanifold of
dimension n − dim(C∗

q1
) = n − k. On the other hand, consider the set

Cd(q1) = {q | (q1, q) ∈ Cd} = π2 ◦ (π1|Cd )
−1(q1) � (π1|Cd )

−1(q1), (3.16)

where π1 and π2 are the projections from Q × Q to Q. Since π1|Cd is assumed to be a
submersion, this set is a submanifold of dimension n + k − n = k. The discrete flow is
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guaranteed to exist and be well defined when these two submanifolds of complementary
dimension intersect transversely. We then have

ψ−1
(q0,q1)

(0) ∩ (π1|Cd )
−1(q1) transversely at q2

⇐⇒ kerTψ(q0,q1)(q2) ∩ kerTq2π1|Cd = 0

⇐⇒ for all vq2 ∈ kerTq2ψ(q0,q1), T(q1,q2)π1 · vq2 �= 0

⇐⇒ for all vq2 ∈ Tq2π
−1
1 (q1), 〈D2 D1Ld(q1, q2) · vq2 , vq1〉 �= 0

for all vq1 ∈ Cq1 .

Therefore, provided this holds, the discrete flow will map (q0, q1) to the point (q1, q2)

where q2 is the locally unique point of intersection of the two transverse sub-
manifolds.

3.3. Discrete Reversibility

Since reversibility is a key geometric property of the continuous Lagrange-d’Alembert
equations, we desire that our integrator maintains a corresponding discrete analog of
reversibility. In the following we formulate discrete reversibility and verify a natural
condition on Ld and Cd guaranteeing that the discrete Lagrange-d’Alembert equations
that they generate are discrete reversible.

Definition 5. Let Rd : Q × Q → Q × Q denote the diffeomorphism

Rd(q0, q1) = (q1, q0),

which is the natural discrete counterpart to R: T Q → T Q in Proposition 1. Cd is
reversible when Rd(Cd) = Cd . Ld is reversible when Ld ◦ Rd = Ld .

Proposition 4. Suppose that Ld and Cd are reversible and satisfy the regularity condi-
tion of Proposition 3 so that the discrete flow FLd is a well-defined diffeomorphism of Cd.
Then the discrete flow FLd determined by the discrete Lagrange-d’Alembert equations
(3.9) and (3.10) is discrete reversible, that is,

FLd ◦ Rd ◦ FLd = Rd . (3.17)

Proof. Starting with (qi−1, qi ) ∈ Cd , let (qi , qi+1) = FLd (qi−1, qi ). We need to show
that

FLd (qi+1, qi ) = (qi , qi−1),

so that

FLd (Rd(FLd (qi−1, qi ))) = FLd (qi+1, qi ) = (qi , qi−1) = Rd(qi−1, qi ),

from which equation (3.17) follows. Now, from the reversibility of Cd , we know that since
(qi , qi+1) = FLd (qi−1, qi ) ∈ Cd , it follows that (qi+1, qi ) ∈ Cd . Because of the regularity
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assumption on Ld and Cd , we know from Proposition 3 that given (qi+1, qi ) ∈ Cd there
exists a unique q̄i−1 that satisfies FLd (qi+1, qi ) = (qi , q̄i−1). We will show that in fact
q̄i−1 = qi−1. Since Ld is Rd -invariant, we have

D(Ld ◦ Rd) = DLd = D1Ld + D2Ld . (3.18)

On the other hand,

D(Ld ◦ Rd)(q0, q1) · (vq0 , vq1) = DLd(q1, q0) ◦ T(q0,q1)Rd · (vq0 , vq1)

= DLd(q1, q0) · (vq1 , vq0)

= D1Ld(q1, q0) · vq1 + D2Ld(q1, q0) · vq0 .

Comparing with equation (3.18), we conclude

D1Ld(q1, q0) = D2Ld(q0, q1) and D1Ld(q0, q1) = D2Ld(q1, q0). (3.19)

We know that qi+1 satisfies the equations

D1Ld(qi , qi+1) + D2Ld(qi−1, qi ) =
n−k∑
j=1

λj Aj (qi ),

(qi , qi+1) ∈ Cd .

However, using equations (3.19), we can rewrite this first equation as

D2Ld(qi+1, qi ) + D1Ld(qi , qi−1) =
n−k∑
j=1

λj Aj (qi ). (3.20)

On the other hand, q̄i−1 satisfies

D1Ld(qi , q̄i−1) + D2Ld(qi+1, qi ) =
n−k∑
j=1

λ̄j Aj (qi ),

together with (qi , q̄i−1) ∈ Cd . Comparing with equation (3.20), we see that qi−1 sat-
isfies this equation with λ̄j = λj . Furthermore, (qi , qi−1) ∈ Cd since (qi−1, qi ) ∈ Cd .
Therefore, by uniqueness q̄i−1 = qi−1, from which the proposition follows.

4. Construction of Integrators via Finite Difference Maps

As we have defined it, a discrete nonholonomic system on Q requires Ld , Cd , and Ad

to be specified. However, when discretizing a given continuous system (Q, L ,C), it is
always possible to choose Ad to be the collection of one-forms that determines C . In
many cases Ld and Cd can be specified through a finite difference map ϕ.

Definition 6. A finite difference map ϕ is a diffeomorphism ϕ: N0(�) → T0 Q, where
N0(�) is a neighborhood of the diagonal � in Q × Q and T0 Q denotes a neighborhood
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of the zero section of T Q, which satisfies the following:

1. ϕ(�) is the zero section of T Q;
2. τ ◦ ϕ(N0(�)) = Q; and
3. On the diagonal,

τ ◦ ϕ|� = π1|� = π2|�,
where πi are the projections from Q × Q to Q.

Eq. (4.8) gives a simple example of a finite difference map.
A finite difference map ϕ is not in general a bundle map with respect to either πi .

Nevertheless, ϕ determines a natural foliation of N0(�) corresponding to the foliation of
T0 Q by the fibers of the tangent projection τ : T Q → Q restricted to the neighborhood
of the zero section T0 Q. We write τ0 := τ |T0 Q . We then have the following definition.

Definition 7 (Vertical foliation of N0(�)). For (q0, q1) ∈ N0(�),

L(q0,q1) := ϕ−1
τ◦ϕ(q0,q1)

(Tϕ(q0,q1)Q ∩ T0 Q), (4.1)

where we use the notation ϕ−1
q := ϕ−1|Tq Q∩T0 Q .

Notice that since ϕ and hence ϕ−1 are diffeomorphisms, the leaves L(q0,q1) are n-
dimensional submanifolds of N0(�). By construction, the leaves get mapped by ϕ to
a fixed fiber in T0 Q and therefore all the points in a given leaf correspond to tangent
vectors with the same base point in T0 Q. This is why we call L the vertical foliation
of N0(�). Curves in N0(�) that lie on a fixed leaf of L correspond under the map ϕ to
curves in the fiber of τ0: T0 Q → Q and their derivatives correspond to vertical tangent
vectors lying in the kernel of the tangent map T τ0: T (T0 Q) → T Q.

We collect some of the properties of the foliation in the following:

Proposition 5. The leaves L determine a smooth foliation of N0(�) and

(i) For (q0, q1) ∈ N0(�), L(q0,q1) intersects � in the unique point (q̄, q̄) where q̄ :=
τ0 ◦ ϕ(q0, q1).

(ii) This intersection is transverse.
(iii) The tangent spaces to the leaves are given by

T(q0,q1)L(q0,q1) = Tϕ(q0,q1)ϕ
−1
q̄

(
Vϕ(q0,q1)(T T Q)

)
,

where V (T T Q) is the vertical subbundle of T T Q given by ker T τ .

Proof. First, since ϕ−1 is a diffeomorphism, ϕ−1
q : Tq Q ∩ T0 Q → N0(�) is smooth and

invertible on its range and Tϕ−1
q has constant rank. It follows that ϕ−1

q is a diffeomor-
phism so that each leaf L(q0,q1) is a smooth n-dimensional submanifold. The leaves are
disjoint since for different q’s, the spaces Tq Q ∩ T0 Q are disjoint and ϕ−1 is a diffeo-
morphism. Furthermore, each point (q0, q1) ∈ N0(�) lies on the unique (again, since ϕ

is a diffeomorphism) leaf L(q0,q1) given in the definition. Since ϕ−1
q is a diffeomorphism,
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it sends only 0q to the diagonal, proving (i). To prove that the intersection is transverse,
i.e., that T(q̄,q̄)L(q0,q1) ∩ T(q̄,q̄)� = 0, suppose there exists (q̄(t), q̄(t)) a curve in L(q0,q1)

with q̄(0) = q̄ . Then, for all t , we have ϕ(q̄(t), q̄(t)) = 0 ∈ Tq̄ Q. However, since ϕ is a
diffeomorphism, we must have q̄(t) = q̄ for all t , which implies

d

dt

∣∣∣∣
t=0

(q̄(t), q̄(t)) = 0,

from which (ii) follows. By definition of the leaves, it is clear that every tangent vector
to (q0, q1) ∈ L(q0,q1) is given by{

d

dt

∣∣∣∣
t=0

ϕ−1
q̄ (ϕ(q0, q1) + tvq̄): vq̄ ∈ Tq̄ Q

}
� T(q0,q1)L(q0,q1).

Finally, since ϕ−1
q̄ is a diffeomorphism, its derivative is injective, from which (iii)

follows.

Using a finite difference map ϕ, we can construct a continuous constraint distribution
Cd from the continuous distribution C as demonstrated in the following proposition.

Proposition 6. Given a diffeomorphismϕ: N0(�)→T0 Q, define the map F : N0(�)→
R

n−k by

F = A1 ◦ ϕ × · · · × An−k ◦ ϕ =: A ◦ ϕ. (4.2)

Then, F is a submersion, so in particular, 0 is a regular value of F, and consequently
Cd := F−1(0) is a well-defined discrete constraint submanifold.

Proof. Since the Aj are one-forms on Q, as maps from T Q into R, they have the
property that they are linear maps on each fiber and, furthermore, for each q ∈ Q they
are linearly independent elements of the vector space T ∗

q Q. Denote by FDvq Aj the fiber
derivative of Aj at the point vq . Linearity on the fiber then gives, for each q ∈ Q,

FDvq Aj
(
L(vq , wq)

)
:= d

dt

∣∣∣∣
t=0

Aj (vq + twq) = Aj (q)(wq), (4.3)

where L: T Q ⊗Q T Q → T T Q is the vertical lift operator which is a bundle map
covering the identity and taking values in the vertical subbundle V (T Q) of T T Q given
by V := kerT τ with τ the tangent projection. In fact it is easy to check that L is a bundle
isomorphism L: T Q ⊗Q T Q � V (T Q).

Furthermore, since

T(q0,q1)F = Tϕ(q0,q1) A1 ◦ T(q0,q1)ϕ × · · · × Tϕ(q0,q1) An−k ◦ T(q0,q1)ϕ, (4.4)

we can use the fact that ϕ is a diffeomorphism from N0(�) onto a neighborhood of the
zero section of T Q to produce a subspace of T(q0,q1)(Q × Q) that gets mapped by Tϕ

isomorphically to the vertical subbundle, V (T Q). Of course, by the previous proposition,
this subspace of T(q0,q1)(Q × Q) is simply T(q0,q1)L(q0,q1). Finally, using the fact that the
Aj are linear on the fibers of T Q (equation (4.3)), we see that T (Aj |Tq̄ Q) = Aj (q̄) so
that, by equation (4.4), and the linear independence of the Aj , the image of V(q0,q1) under
T F is all of Rn−k , as required.
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The next proposition describes the tangent space of the discrete constraint subman-
ifold along the diagonal �. Before proceeding, it is useful to remark that the discrete
submanifold Cd admits a regular foliation induced by the L leaves as follows. Define for
each q ∈ Q, Cq := ϕ−1

q (Cq). Since ϕq is a diffeomorphism, the Cq are smooth subman-
ifolds of N0(�) of dimension k. Furthermore, they are contained in Cd since clearly for
any X ∈ Cq ,A◦ϕ(X) = 0 by construction. It is also clear that

⋃
q∈Q Cq = L∩Cd since

L(q0,q1) ∩ Cd = ϕ−1
q̄ (Cq̄). These leaves form the vertical foliation of Cd . We now have

the following:

Proposition 7. Let Cd = F−1(0), where F is given by the previous proposition. We
then have the following properties of Cd .

(i) T(q0,q0)Cd contains a vertical subspace given by Tϕ−1
q0

(
L(0q0 ,Cq0)

)
.

(ii) The tangent vector 0 × vq0 ∈ T(q0,q0)N0(�) lies in T(q0,q0)Cd if and only if the
following condition is satisfied. For the map defined by ϕq0(q) := ϕ(q0, q), in any
local trivialization ϕloc

q0
: Uq0 → Ūq0 × Rn,

Tπ2 ◦ Dϕloc
q0

· vq0 ∈ kerAj , (4.5)

for each j ∈ {1, . . . , n − k}, where π2: Ūq0 ×Rn → R
n is projection on the second

factor.

Proof. Part (i) is clear since for each vq0 ∈ Cq0 we can construct the curve ϕ−1
q0

(tvq0)

which lies inL(q0,q0 ∩Cd . Taking the derivative of this curve, we obtain d
dt

∣∣
t=0

ϕ−1
q0

(tvq0) =
Tϕ−1

q0

(
L(0q0 , vq0)

)
. Since Tϕ−1

q0
and L are isomorphisms, it follows that

Tϕ−1
q0

(
L(0q0 ,Cq0)

)
is a k-dimensional subspace of T(q0,q0)Cd .

To obtain the second condition, we compute in local coordinates as follows. Since
the image of a point (q0, q0) ∈ � under the map ϕ is the zero vector in Tq0 Q, we
take a chart domain around 0q0 with local coordinates (q1, . . . , qn, ∂

∂q1 , . . . ,
∂

∂qn ). In

these coordinates we express the one-forms as Aj = �n
l=1 Ajldql . Since ϕq0 maps a

neighborhood Uq0 of q0 smoothly into a neighborhood of 0q0 ∈ T0 Q, we have the
following local coordinate expression,

ϕq0(q) = (g1(q), . . . gn(q), f1(q) . . . fn(q)),

for smooth functions gi : Uq0 → R and fi : Uq0 → R.
Now, given a curve (q0, q0(t)) ∈ Cd through (q0, q0) tangent to 0 × vq0 , we have

A ◦ ϕ(q0, q0(t)) = 0 so that 0 × vq0 ∈ T(q0,q0)Cd if and only if 0 × vq0 ∈ kerT(q0,q0)(A ◦
ϕ). Using the local coordinate expressions for ϕq0 and A we have, denoting x̄(t) :=
(g1(q(t)), . . . , gn(q(t))) (the local coordinate expression for τ ◦ ϕq0(q(t))),

A ◦ ϕ(q0, q0(t)) = 〈A(x̄(t)), ϕq0(q(t))〉
= (〈A1(x̄(t)), ϕq0(q(t))〉, . . . , 〈An−k(x̄(t)), ϕq0(q(t))〉)

=
(

n∑
l=1

A1l(x̄(t)) fl(q(t)), . . . ,
n∑

l=1

A(n−k)l(x̄(t)) fl(q(t))

)
,
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so that 0 × vq0 ∈ T(q0,q0)Cd if and only if d
dt

∣∣
t=0

∑n
l=1 Ajl(x̄(t)) fl(q(t)) = 0 for each

j ∈ {1, . . . n − k}. However,

d

dt

∣∣∣∣
t=0

n∑
l=1

Ajl(x̄(t)) fl(q(t)) =
n∑

l=1

(dAjl(q0) · ˙̄x(0) fl(q(0)) + Ajl(q0)d fl(q0) · vq0)

=
n∑

l=1

Ajl(q0)d fl(q0)vq0 ,

because fl(q0)=0. Therefore, 0×vq0 ∈T(q0,q0)Cd if and only if
∑n

l=1 Ajl(q0)d fl(q0)vq0 =
0 for each j ∈ {1, . . . n − k}, which is equivalent to (4.5), proving (ii).

A class of DLA integrators is now given by taking Ad = A, Ld = L ◦ ϕ, and
Cd = (A ◦ ϕ)−1(0) as in Proposition 6. Furthermore, if ϕ is reversible (i.e., equivariant
with respect to the Z2-actions on Q × Q and T Q, i.e., ϕ(Rd(q1, q2)) = R(ϕ(q1, q2))

or ϕ(q2, q1) = −ϕ(q1, q2)), then by Proposition 4 the discrete nonholonomic system
(Q, Ld ,Cd , Ad) is also reversible.

Finite difference maps from geodesic flow. So far we have not specified how to construct
finite difference maps ϕ. Here are two possibilities in the case that Q has a Riemannian
metric. The first is nonreversible and the second is reversible. In the following section
when Q = R

n with the Euclidean metric, these will provide our most basic DLA
integrators.

Let ψ t denote the geodesic flow on T Q. Let N0(�) be a neighborhood of the diagonal
such that each pair (q0, q1) ∈ N0(�) is nonconjugate (such a neighborhood is always
constructible when Q is compact, for example).

The nonreversible ϕ: N0(�) → T0 Q is defined by

ϕ(q0, q1) := vq0 , (4.6)

where vq0 is the unique (since (q0, q1) ∈ N0(�)) velocity so that τ ◦ψh(vq0) = q1, while
the reversible ϕ: N0(�) → T0 Q is defined by

ϕ(q0, q1) := ψh/2(vq0). (4.7)

Since the geodesic flow is reversible, setting vq1 := ψh(vq0), we have vq0 = ψ−h(vq1) =
R
(
ψh(−vq1)

)
, so that τ ◦ ψh(−vq1) = q0 and therefore

ϕ(q1, q0) = ψh/2(−vq1) = ψh/2(R ◦ ψh(vq0)) = ψh/2 ◦ ψ−h(−vq0)

= ψ−h/2(−vq0) = ψ−h/2(R(vq0)) = R(ψh/2(vq0)) = −ϕ(q0, q1),

as required.
The ϕ in (4.6), however, is not in general reversible since ϕ(q1, q0) is a tangent

vector over the point q1 and is not related to ϕ(q0, q1), and we cannot conclude that
Aj (ϕ(q1, q0)) = 0 when Aj (ϕ(q0, q1)) = 0.

An argument in favor of constructing integrators using finite difference maps is that
when C is integrable, the “exact” choice of Cd given in Example 1 arises in this way for
a particular choice of ϕ.
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Proposition 8. Let C = TF whereF is a foliation of Q, that is, C is integrable. Suppose
thatF is geodesible, i.e., there exists a metric on Q such that each leafFl ofF is a totally
geodesic submanifold of Q. Then there exists a finite difference map ϕ: N0(�) → T0 Q
such that the constraint submanifold Cd determined by ϕ is Cd = ⋃

l Fl × Fl .

Proof. Let ϕ(q0, q1) = vq0 as in equation (4.6). Then we have that (q0, q1) ∈ Cd =
(A ◦ ϕ)−1(0) iff Aϕ(q0, q1) = 0 iff Avq = 0 iff vq ∈ TqF iff q0 and q1 lie in the same
leaf of F .

(Such a metric can always be defined locally by choosing coordinates such that the
foliation takes the form xi = const., i = 1, . . . , dimF , together with the Euclidean
metric in these coordinates. In these coordinates, ϕ(q0, q1) = (q0, (q1 − q0)/h).)

The proposition can be extended to cover constraint distributions that are merely
partially integrable, i.e. C ⊂ TF , with ϕ defining a Cd contained in

⋃
l Fl ×Fl , so that

at least those constraints that are holonomic are preserved.
When C is integrable (i.e., when the constraints are holonomic), the DLA equations

together with Ad = A and the “exact” Cd of Proposition 8 are identical to the constrained
discrete Euler-Lagrange equations, the constraint being that the orbit stays on its initial
leaf. The discrete Euler-Lagrange equations generate symplectic integrators such as
SHAKE and RATTLE [18], [24].

This result is mainly of theoretical interest, for it is equivalent to (partially) integrating
the constraints. However, in two simple cases this can be achieved automatically by
standard finite difference maps.

Proposition 9. Either of the finite difference maps (4.6), (4.7) with a Euclidean metric
preserves holonomic linear constraints exactly. The midpoint finite difference map (4.7)
with a Euclidean metric (equation (4.13) below) preserves quadratic constraints exactly.

Proof. The linear case is an instance of Proposition 8, for the leaves of a linear constraint
are totally geodesic with respect to the Euclidean metric. For the quadratic case, first
note that (4.7) is equivariant under all affine changes of coordinates. Apply such a
change of coordinates to bring the constraint into the form

∑
λi (qi )2 = const, where

λi ∈ {0, 1,−1}. In these coordinates the constraint one-form is
∑

λi qi dqi and the
equation (q0, q1) ∈ Cd reads

∑
λi

(
qi

0 + qi
1

2

)(
qi

1 − qi
0

h

)
= 0,

or ∑
λi (q

i
1)

2 =
∑

λi (q
i
0)

2,

that is, the constraint is preserved. If other constraints are present, Cd is merely contained
in (not equal to)

⋃
l Fl × Fl , but the quadratic constraint is still preserved.

We now give three specific integrators constructed (in one way or another) using finite
difference maps.
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First-order nonreversible integrator, linearly implicit. Let Q = R
n together with the

Euclidean metric. The map ϕ defined in (4.6) is then

ϕ(q0, q1) = (q0, (q1 − q0)/h) ∈ Tq0 Q. (4.8)

Define Cd = F−1(0) with F defined as in equation (4.2). By Proposition 6 we know
that Cd is a well-defined submanifold. Let us next consider the regularity condition of
Proposition 3. First note that

(π1|Cd )
−1(q1) = {

(q1, q2) | (q1, (q2 − q1)/h) ∈ Cq1

}
= {(q1, q1 + hvq1): vq1 ∈ Cq1},

so that Tq2((π1|Cd )
−1(q1)) = 0 × Cq1 . Therefore, by Proposition 3, the requirement that

FLd is well defined is that

Hess Ld(q1, q2)|Cq1 ×Cq2
(4.9)

is nondegenerate.
Suppose our Lagrangian is of the form L = T − V where T is the kinetic energy

associated with the Euclidean metric on Rn and V is the potential energy. We identify
T Q and T ∗ Q with Q × Q using the Euclidean metric, and the constraint one-forms Ad

with the matrix A ∈ Rn−k,n .
With

Ld(q0, q1) = L ◦ ϕ = 1

2

∥∥∥∥q1 − q0

h

∥∥∥∥
2

2

− V (q0), (4.10)

the integrator (3.9), (3.10) is given by

qi+1 − 2qi + qi−1

h2
+ ∇V (qi ) = A(qi )

Tλi ,

A(qi )(qi+1 − qi ) = 0, (4.11)

where we now label the discrete time i . Since, in this case, Q × Q ∼= T Q ∼= R
2n ,

a convenient formulation in velocity variables is given by defining the velocity vi :=
(qi+1 − qi )/h, in terms of which the method (4.11) is

qi+1 = qi + hvi ,

vi+1 = vi + h(−∇V (qi+1) + A(qi+1)
Tλi+1),

A(qi+1)vi+1 = 0, (4.12)

where the initial condition should satisfy the constraint A(q0)v0 = 0. Note that the
Lagrange multipliers λi+1 can be determined by solving the linear system

A(qi+1)A(qi+1)
Tλi+1 = A(qi+1)

(
∇V (qi+1) − vi

h

)
,

that is, the method is linearly implicit.
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Second-order reversible integrator, implicit. A second-order method can be constructed
using the reversible finite difference map (4.7), i.e.,

ϕ(q0, q1) = ((q0 + q1)/2, (q1 − q0)/h). (4.13)

The DLA equations are

qi+1 − 2qi + qi−1

h2
+ 1

2

(
∇V

(
qi−1 + qi

2

)
+ ∇V

(
qi + qi+1

2

))
= A(qi )

Tλi ,

A

(
qi + qi+1

2

)
(qi+1 − qi ) = 0. (4.14)

To get a velocity formulation, it is convenient to define

q̄i := (qi + qi−1)/2,

vi = (qi − qi−1)/h, (4.15)

so that the constraint has the simple form A(q̄i )vi = 0. The method is (q̄i , vi ) �→
(q̄i+1, vi+1) where

q̄i+1/2 = q̄i + 1

2
hvi :

vi+1 = vi + h

(
1

2
(∇V (q̄i ) + ∇V (q̄i+1)) + A(q̄i+1/2)

Tλi

)
,

q̄i+1 = q̄i+1/2 + 1

2
hvi+1,

A(q̄i+1)vi+1 = 0, (4.16)

where the initial condition should satisfy the constraint A(q̄0)v0 = 0. The method is
fully implicit and reduces in the absence of constraints to the trapezoidal rule. As is
well known, the trapezoidal rule is equivalent under the discrete Legendre transform
pi = vi + h

2 ∇V (qi ) to the (symplectic) midpoint rule in the variables (q, p). One can
make the same transformation here if desired.

Second-order reversible, semi-implicit. Another way to construct a second-order re-
versible method is to compose the first-order method (4.12), FLd (h), with its adjoint
F−1

Ld
(−h). The adjoint is

vi+1 = vi + h(−∇V (qi+1) + A(qi )
Tλi ),

qi+1 = qi + hvi+1,

A(qi+1)vi+1 = 0. (4.17)

In the composition F−1
Ld

(−h/2) ◦ FLd (h/2) of the two methods, the two velocity updates
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can be merged to obtain the method

qi+1/2 = qi + 1

2
hvi :

vi+1 = vi + h(−∇V (qi+1/2) + A(qi+1/2)
Tλi+1),

qi+1 = qi+1/2 + 1

2
hvi+1,

A(qi+1)vi+1 = 0. (4.18)

There are n − k constraints, so one needs to solve a set of n − k equations for λi+1,
which are in general nonlinear. However, the force ∇V (qi+1/2) is only evaluated once
per time step, so the method is semi-implicit. We shall see in Section 5 that this method,
the nonholonomic analog of the popular SHAKE and RATTLE methods for holonomic
constraints [18], performs extremely well in numerical tests.

We now show that the integrator (4.18) satisfies the DLA principle. However, it is not
constructed from a finite difference map as were the previous examples (4.11) and (4.14).
It is constructed from two finite difference maps, one for Ld and one for Cd . For Ld we
use the nonreversible finite difference map (4.8); although Ld (4.10) is nonreversible,
the discrete action associated with it is in fact second-order and reversible. For Cd we
use the reversible finite difference map (4.13), that is,

Cd =
{
(q0, q1): Aj

(
q0 + q1

2

)
(q1 − q0) = 0

}
. (4.19)

Note that by an immediate application of Proposition 7, 0 × vq0 ∈ T(q0,q0)Cd for vq0 ∈
kerAj (q0) for each j .

The method on Q × Q is then given by the first equation of (4.11) together with
the constraint (4.19). The velocity formulation in variables (q̄i , vi ) of equation (4.15) is
exactly given by (4.18) with qi = q̄i . That is, the composite method (4.18) also satisfies
the discrete Lagrange-d’Alembert principle.

Although methods constructed using the finite difference map (4.7) are quite general,
yielding reversible, second-order integrators for any Lagrangian on which the geodesics
on Q can be computed, for most simple mechanical systems the method (4.18) is far
more efficient, since it requires only one force evaluation per time step.

5. Numerical Results

5.1. The Contact Oscillator

We now explore the behavior of the semi-implicit, reversible, DLA method (4.18) in
some examples to see how well it preserves the qualitative features of their dynamics.
We will consider three systems of increasing complexity: in this section, an integrable
system on T ∗

R
3 (the “contact oscillator”), comparing a reversible DLA method with a

nonreversible DLA method and a reversible, non-DLA method; in Section 5.2, a non-
integrable system on T ∗

R
3 (a nonlinear perturbation of the contact oscillator) showing
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both regular and chaotic orbits, comparing a reversible DLA method with a standard,
nongeometric integrator (MATLAB’s ode15s); and in Section 5.3, a fully chaotic sys-
tem on T ∗

R
7, comparing a reversible DLA method with another standard method for

differential-algebraic equations (DASSL). In all cases, the reversible DLA method (4.18)
is the best, both for efficiency and for qualitative preservation of the dynamics.

The simplest nonholonomic systems are those with a single constraint. There are
no nonintegrable distributions on R2, so the simplest case is to take Q = R

3. Every
nonintegrable one-form can be put in the form dx + ydz in local coordinates (x, y, z);
we therefore consider this constraint on R3. That is, we take A(x, y, z) = (1, 0, y).
The free particle with this constraint was studied in [1], but its orbits are unbounded.
To get a simple system with manifestly bounded orbits, we take the harmonic oscillator
Lagrangian

L = 1

2
(ẋ2 + ẏ2 + ż2) − 1

2
(x2 + y2 + z2). (5.1)

We call the corresponding nonholonomic system

ẍ + x = λ,

ÿ + y = 0,

z̈ + z = λy,

ẋ + yż = 0,

the nonholonomic oscillator.
We now show that all orbits of the nonholonomic oscillator are quasiperiodic with

at most two frequencies. Most orbits form a three-parameter family of two-tori in the
five-dimensional constraint manifold C . First, the evolution of y is unconstrained and we
have y(t) = a sin t + b cos t . We choose the origin of time so that b = 0 and y = a sin t .
Differentiating the constraint gives ẍ + yz̈ + ẏ ż = 0, and substituting the equations of
motion gives λ − x + y(λy − z) + ẏ ż = 0, i.e.,

λ = x + yz − ẏ ż

1 + y2
= x + za sin t − ża cos t

1 + a2 sin2 t
.

Introducing the velocities vx = ẋ , vz = ż and substituting for λ gives a system of four
nonautonomous ODEs which are linear. The equation for v̇x can be eliminated in favour
of the constraint vx = −vza sin t , leaving the three equations


 ẋ

ż
v̇z


 =


 0 0 −a sin t

0 0 1
a sin t

1+a2 sin2 t
−1

1+a2 sin2 t
−a2 sin t cos t

1+a2 sin2 t





 x

z
vz


 .

In terms of the new variable ṽz := (1 + a2 sin2 t)1/2vz , these become
 ẋ

ż
˙̃vz


 =


 0 0 α(t)

0 0 β(t)
−α(t) −β(t) 0





 x

z
ṽz


 , (5.2)



Integrators for Nonholonomic Mechanical Systems OF23

where

α(t) = −a(1 + a2 sin2 t)−1/2 sin t, β(t) = (1 + a2 sin2 t)−1/2.

The matrix of coefficients in (5.2) is 2π -periodic and antisymmetric, so for each a there
is an orthogonal matrix 	(a) ∈ SO(3) such that the time-2π flow of (5.2) is given
by (x, z, ṽz)

T �→ 	(a)(x, z, ṽz)
T. This map is simply a rotation whose angle and axis

depend on a. The orbits of the nonholonomic oscillator can therefore be classified as
follows: (i) a two-parameter family of periodic orbits with period 2π and parameters
x and energy (these have a = 0); (ii) a two-parameter family of periodic orbits with
period 2π and parameters a �= 0 and energy, with (x, z, ṽz) lying on the axis of rotation
of 	(a); and (iii) a three-parameter family of quasiperiodic orbits with quasiperiods 2π
and 2π /γ , where γ is the angle of rotation of 	(a), the parameters being a, energy, and
the latitude of (x, z, ṽz) with respect to the axis of rotation of 	(a).

How well do the DLA integrators preserve this integrable structure? If the constraint
were not present, we would have three harmonic oscillators and any DLA integrator
would be integrable.

We first consider the reversible semi-implicit method (4.18). The (y, vy)i variables are
unconstrained and hence obey the standard leapfrog method for the harmonic oscillator,(

y
vy

)
�→

(
1 h/2
0 1

)(
1 0

−h 1

)(
1 h/2
0 1

)(
y
vy

)
=: M(h)

(
y
vy

)
,

where the eigenvalues of M (for 0 < h < 2) are e±iθ , with θ = 2 sin−1 h
2 . Thus

(y, vy)i is given by an explicit periodic function with period 2π /θ , evaluated at integer
times. For this system, equations (4.18) can be solved explicitly for λ, so the method is
explicit in this case. Eliminating λ and further eliminating vx using the constraint gives a
linear map (x, z, vz)

T
i+1 = R(i, a)(x, z, vz)

T
i where R(t, a) ∈ R3×3 is periodic in t with

period 2π /θ . At this point it is hard to make further analytic progress because R(t, a) is
fairly complicated. Instead, we have iterated this reduced map numerically, with the the
following results.

For each a > 0 there is a time step h∗ > 0 such that for all h < h∗, all orbits of
the integrator are quasiperiodic and the continuous and discrete flows are conjugate.
Specifically, choosing h = 2 sin(π /N ) for some integer N , the dynamics of (y, vy) are
periodic with period N and the matrix

∏N−1
i=0 R(i) of the time-N map has eigenvalues

1, exp(±iα) for some α depending on a and h. (The invariant spheres of the continuous
system are deformed to become invariant ellipses, just as the invariant circles of the
standard harmonic oscillator become invariant ellipses under leapfrog.) The critical time
step h∗ is equal to 2 for a = 0 and is approximately π /a as a → ∞.

That is, the dynamics of the integrator (4.18) is integrable and is conjugate to that of
the exact flow of the nonholonomic oscillator, just as one has for the leapfrog method
applied to the harmonic oscillator.

Now consider the first-order nonreversible DLA method (4.10). The dynamics of
(y, vy) are identical, and the map reduces to a three-dimensional linear nonauto-
nomous map, as before. However, this map is not conservative. We find numerically
that the eigenvalues of the time-N map

∏N−1
i=0 R(i) are all less than 1 in modulus and

limi→∞(x, z, vz)i = (0, 0, 0). The qualitative dynamics is not preserved. Preserving
reversibility is crucial to capturing the dynamics.
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However, the DLA equations themselves also play a role. We consider integrating the
nonholonomic oscillator with a non-DLA method which is nevertheless reversible and
also has the same dynamics in (y, vy), namely the method

qi+1 − 2qi + qi−1

h2
+ ∇V (qi ) = A(qi )

Tλi ,

A(qi )(qi+1 − qi−1) = 0. (5.3)

The constraint is enforced by a reversible, second-order approximation of the true con-
straints, but not one associated with a discrete constraint manifold in the sense used
above. Introducing the velocity variables vi = (qi+1 − qi )/h, the method can be written
in the form

qi+1 = qi + hvi ,

vi+1 = vi + h(−∇V (qi ) + A(qi )
Tλi ),

A(qi )(vi + vi+1) = 0,

so that

A(qi )A(qi )
Tλi = A(qi )

(
∇V (qi ) − 2

h
pi

)
.

However, it is no longer clear how to constrain the initial conditions. We find numerically
that the linear time-N map (x, z, vx , vz)0 �→ (x, z, vx , vz)N has eigenvalues 1, 1, and
exp(±iα) for some α depending on a and h. The dynamics are still a rotation, but a
rotation in R4 instead of R3. The extra eigenvalue 1 indicates that there is an invari-
ant three-dimensional subspace (corresponding to constraining the initial condition) on
which the map is a rotation; but this subspace depends on a (that is, on the initial condi-
tion) and on h. Therefore, just maintaining reversibility is insufficient to get qualitatively
correct dynamics.

5.2. A Nonintegrable System on T ∗
R

3

We now consider a nonlinear perturbation to the contact oscillator, modifying the La-
grangian from (5.1) to

L = 1

2
(ẋ2 + ẏ2 + ż2) − 1

2
(x2 + y2 + z2 + εx2z2). (5.4)

The constraint is still ẋ + yż = 0. The perturbation has been chosen so that the y equation
is still ÿ + y = 0. Orbits are confined to the three-manifold defined by the intersection
of the constraint surface, the energy surface, and y2 + v2

y =const. On this manifold we
define a Poincaré section by vy = 0, v̇y > 0, so that the Poincaré map is simply the
time-2π flow of the system. The section is topologically a two-sphere in (x, z, vz)-space;
we plot (z, vz) when x > 0, which shows one half of the sphere.

Figure 1 shows the phase portraits for four values of ε as calculated by the explicit,
reversible, DLA method (4.18) with 40 time steps (and hence 40 force evaluations) per
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Fig. 1. Phase portraits of a three-degree-of-freedom system with a singular
nonholonomic constraint (Lagrangian in (5.4) on energy level H = 1.5 and
y2 + v2

y = 1). 8000 iterates of the Poincaré map (with 40 time steps per iterate)
are shown for each of several initial conditions and for four values of ε; for ε = 0,
the system reduces to the (integrable) contact oscillator, (5.1).

period. We show 8000 iterates for each of several initial conditions. ε = 0 is the contact
oscillator; the rotation described in Section 5.1 is evident in the Poincaré section. As
ε increases, the invariant circles progressively break up and are replaced by chaotic
bands. The integrator evidently has a mixture of quasiperiodic and chaotic orbits; the
phase portraits of Figure 1 are all qualitatively correct, the main numerical error being
an O(h2) shift in the positions of the orbits. By contrast, a standard, non-geometric
integrator for differential-algebraic equations (MATLAB’s ode15s) does not preserve
the phase portraits. Consider the quasiperiodic orbit marked A in Figure 1. Setting the
absolute tolerance to 10−6 in ode15s, so that 160 time steps and more than 300 function
evaluations are needed per period, the orbit still drifts away from its correct location in
less than 400 iterations (see Figure 2). The same behavior is seen in long enough runs
for any tolerance.

On quasiperiodic orbits, the energy error under (4.18) is bounded. A longer simulation
(50000 iterations of the Poincaré map) of the chaotic orbit marked B in Figure 1 is shown
in Figures 3 (40 time steps per period) and 4 (80 time steps per period). Apart from the
orbit segment visiting different parts of the entire orbit, which is to be expected in any
realization of a chaotic orbit, only a few small changes in the fine structure of the orbit
are visible, despite the large time steps. The energy errors scale asO(h2); they appear to
oscillate, but a small amount of drift is possibly also present. We will examine this drift
more in the next sample.
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Fig. 2. The orbit marked A in Figure 1, but integrated with MATLAB’s
ode15s. The tolerance is set to 10−6; the orbit rapidly drifts away from
its correct location. 400 iterates of the Poincaré map are shown, compared
to 8000 in Figure 1.
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Fig. 3. Left: 50,000 iterations of the chaotic orbit marked B in Figure 1, with 40 times
steps per period of the reversible DLA method (4.18). Right: Energy for this simulation
(the initial energy is 1.5).
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Fig. 4. As for Figure 3, but 80 time steps per period.

5.3. A Fully Chaotic System

For general, nonintegrable systems, it is harder to assess the merits of a variational vs. a
standard integrator, because even the key geometric features of nonholonomic dynamics
itself are not known. That is, what feature should one check in a comparison? We have
chosen to monitor the energy in a nonholonomic system that conserves energy.

We consider the configuration space R2n+1 with coordinates q = (x, y1, . . . , yn ,
z1, . . . , zn), and Lagrangian

L = T − V, T = 1

2
‖q̇‖2

2, V = 1

2

(
‖q‖2

2 + z2
1z2

2 +
∑

i

y2
i z2

i

)
, (5.5)

and a single nonholonomic constraint

ẋ +
n∑

i=1

yi żi = 0. (5.6)

As before, Ḣ = 0 (where H = T + V ) and the system is reversible.
The energy behavior for the reversible DLA method (4.18) and another standard

package for differential-algebraic systems, DASSL, are compared in Figure 5. We find
that the energy error for the DLA method is not bounded (as in symplectic integrators),
but nor does it display the secular, O(t) drift of standard integrators such as DASSL.
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Fig. 5. Energy behavior for two methods compared for the chaotic system (5.5). Two runs are
shown for the standard method DASSL (with error tolerancetol set to 10−4 and 10−6, respectively)
and three for the reversible DLA method (4.18) (with h = 0.2, 0.1, and 0.05). At tolerance 10−6,
DASSL used an average time step of h = 0.026 and an average of 2.6 function evaluations per
time step.

Instead it follows a random walk, so that the energy error after time t isO(
√

t)—in this
example, it is

|H(t) − H(0)| ∼ 0.01h2
√

t .

The energy errors for 100 sample trajectories are shown in Figure 6. The diffusion
rate depends strongly on the energy, because of the quartic nonlinearities in H . In fact,
as H → 0, the system becomes integrable and no energy drift is seen; the diffusion rate
is found to vary approximately as ‖q‖4. When the dynamics are ergodic on a symmetric
set, this behavior can be explained using some ideas from ergodic theory [25]. The key
point for getting this nice behavior is that the integrator is reversible.

To sum up,

1. Nonreversible integrators (both standard packages and DLA integrators) are dissipa-
tive and do not show the correct long-time dynamics of the example systems.

2. A reversible but non-DLA integrator, although not dissipative, does not capture the
dynamics of the contact oscillator as well as the reversible DLA integrator.

3. The reversible DLA integrator, being explicit with a single force evaluation in these
examples, performs extremely well. On the six-dimensional, integrable contact os-
cillator (5.1), its behavior is essentially perfect, its dynamics being integrable and
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Fig. 6. Energy drift on H(0) = 3.06 for the reversible integrator (4.18) applied to
the fully chaotic system (5.5). (a) The observed energy error for 100 different initial
conditions with time step h = 0.05 integrated up to time T = 50000. One typical
simulation is singled out in bold. (b) The variance σ 2(T ) of the energy errors for
10,000 different initial conditions integrated up to time T = 50000 for two different
time steps, scaled by their expected h4 dependence on the time step. The growth is
roughly linear in time and the two results are almost indistinguishable. (c) The residual
variance from (b) with the expected linear trend subtracted. Only a relatively small
nonlinear behavior remains.

conjugate to the exact flow, a situation reminiscent of the leapfrog method applied to
the unconstrained harmonic oscillator, even though the harmonic oscillator is linear
and the contact oscillator is nonlinear. On the six-dimensional, nonintegrable system
(5.4), it preserves quasiperiodic and chaotic orbits over long times, with performance
reminiscent of a symplectic integrator. On the fourteen-dimensional, chaotic system
(5.5), its performance is not quite as good as a symplectic integrator, because the
energy error now drifts in a random walk instead of being bounded.

6. Nonholonomic Integrators on Lie Groups

6.1. Discrete reduction

A nonholonomic system (Q, L ,C) admits a symmetry provided there is a Lie group
action G on Q (and corresponding lift to T Q) leaving both L and C invariant. The
nonholonomic flow is then G-equivariant, and provided the action is sufficiently regular
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(e.g. free and proper), the flow will reduce to the quotient subbundle C /G. The reduced
equations arise from a reduced Lagrange d’Alembert principle [9]. Analogously, the
discrete nonholonomic data (Q, Ld ,Cd , Ad) is symmetric with respect to the action of
G on Q (and its corresponding diagonal lifted action to Q × Q) provided Ld , Cd , and
Ad are G-invariant. In this case, the discrete flow map FLd : Cd → Cd determined by
the DLA principle is G-equivariant [14].

We now specialize to the situation where Q = G. In this section we consider a
discretization of the following nonholonomic system with symmetry on T G. Let k ⊂ g

be a k-dimensional subspace of the Lie algebra g of G, which we assume to be not closed
under the Lie bracket. Define the left-invariant distribution, C ⊂ T G by Cg = g · k.
Clearly C is nonintegrable precisely because k is not a Lie subalgebra of g. Finally
we are also given a G-invariant Lagrangian, L: T G → R, of the type L = T − V .
The Lagrange-d’Alembert equations for this system, being G-equivariant, will induce
a flow on the quotient space C /G � k. In fact these reduced equations can be realized
as a reduced Lagrange-d’Alembert principle as defined in [16]. We wish to consider the
corresponding discrete system. The equations we will determine are the nonholonomic
version of the discrete Euler–Poincaré equations as found in [6], [23]. The reduced
equations will agree with these discrete Euler–Poincaré equations when we take the case
of no constraints.

Throughout this section we use concatenated notation for the corresponding left and
right tangent and cotangent lifted actions. Thus, for vh ∈ ThG, αh ∈ T ∗

h G, and g ∈ G,
we have

g · vh := Th Lg · vh,

vh · g := Th Rg · vh,

g · αh := T ∗
gh Lg−1αh ∈ T ∗

ghG,

and

αh · g := T ∗
gh Rg−1αh ∈ T ∗

hgG.

With this convention, we can now formulate the following:

Theorem 3. Let (G, L ,C) be as specified in the previous paragraph, i.e., L is a G-
invariant Lagrangian, and C is a k-dimensional, left G-invariant distribution on G. Let
π : T G → gdenote the quotient by the left G-action and define l: g → Rby L = l◦π . Let
Ld : G × G → R be a discrete Lagrangian and Cd be a discrete constraint submanifold.
Assume that Ld and Cd are both G-invariant with respect to the diagonal action of G
on G × G. The discrete Lagrange-d’Alembert equations of Proposition 2 determine the
equations on the reduced space G given by (where ω0, ω1 ∈ G){

ω−1
0 · dld(ω0) − dld(ω1) · ω−1

1 = ∑n−k
j=1 λjµj ,

ω1 ∈ cd ,
(6.1)

where µ1, . . . , µn−k are a basis of the space k0, (i.e., they satisfy
⋂n−k

j=1 kerµj = k) and
cd is the submanifold of G determined by cd = πd(Cd) where πd : G × G → G, the
quotient by the diagonal left G-action is given by πd(g1, g2) := g−1

1 g2 and ld : G → R

is defined by Ld = ld ◦ πd .
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Proof. Let Aj be the left-invariant one-form on G determined by µj ∈ g∗, i.e.
Aj (g)(vg) := 〈

µj , g−1 · vg
〉
. Applying the discrete Lagrange-d’Alembert principle of

Proposition 2 to the data (Q, Ld ,Cd , Ad), we obtain the following equations determin-
ing a discrete flow FLd on Cd ⊂ G × G:

D2Ld(g0, g1) + D1Ld(g1, g2) =
n−k∑
j=1

λj (g1)Aj (g1), (6.2)

and then imposing the condition on the set of g2 satisfying the above equation that

(g1, g2) ∈ Cd ⇐⇒ g−1
1 g2 ∈ cd ⊂ G. (6.3)

We next write the first equation in terms of ld . Let g(t) be a curve through g1 with
d
dt

∣∣
t=0

g(t) = vg1 . We have

D2Ld(g0, g1) · vg1 = d

dt

∣∣∣∣
t=0

ld ◦ πd(g0, g(t)) = d

dt

∣∣∣∣
t=0

ld(g
−1
0 g(t))

= dld(g
−1
0 g1) · (g−1

0 · vg1),

and similarly

D1Ld(g1, g2) · vg1 = d

dt

∣∣∣∣
t=0

ld(g1(t)
−1g2)

= dld(g
−1
1 g2) · ((−g−1

1 · vg1 · g−1
1 ) · g2),

using the fact that d
dt

∣∣
t=0

g1(t)−1 = −g−1
1 · vg1 · g−1

1 ∈ Tg−1
1

G. Next, given a sequence
(gk, gk+1) of points in G × G, we construct the projected sequence in G given by
ωk := π(gk, gk+1) = g−1

k gk+1. Notice that given the image sequence ωk and an initial
point g0 in G, we can reconstruct the unique sequence in G×G by solving g−1

0 g1 = ω0 for
g1 and then iterating down the chain. We can then rewrite each of the above expressions
as follows:

〈dld(g
−1
0 g1), (g

−1
0 · vg1)〉 = 〈dld(ω0), g−1

0 g1g−1
1 · vg1〉

= 〈ω−1
0 · dld(ω0), g−1

1 · vg1〉 = 〈g1 · ω−1
0 · dld(ω0), vg1〉.

Similarly, for the second term we obtain

〈dld(ω1), (−g−1
1 · vg1 · g−1

1 ) · g2〉 = 〈−g1 · dld(ω1) · ω−1
1 , vg1〉.

Notice that the right-hand side of equation (6.2) can be expressed in terms of the µi since
by left G-invariance of the one-forms Aj we have

n−k∑
j=1

λj (g1)Aj (g1) = g1 ·
n−k∑
j=1

λjµj .
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Consequently we see that equation (6.2) reads, for all vg1 ,

〈
g1 · ω−1

0 · dld(ω0) − g1 · dld(ω1) · ω−1
1 , vg1

〉 =
〈

g1 ·
n−k∑
j=1

λjµj , vg1

〉
,

which holds if and only if equation (6.1) holds. That is, g2 solves equation (6.2) if and
only if ω1 solves equation (6.1). Finally, we recall that (g1, g2) ∈ Cd if and only if
ω1 ∈ cd , since by G-invariance of Cd , (g1, g2) ∈ Cd if and only if (e, g−1

1 g2) ∈ Cd if
and only if g−1

1 g2 ∈ cd by definition of cd .

We now have the following concerning the relationship between the solutions to
equations (6.2) and (6.3) and the reduced equations of the preceding theorem.

Corollary 4 (Reconstruction). The sequence g0, g1, . . . , gk is a solution to the discrete
Lagrange-d’Alembert equations with initial condition (g0, g1) (6.2) if and only if the
sequence ω0, ω1, ω2, . . . is a solution to the reduced Lagrange-d’Alembert equations
(6.1). In other words, the solutions are π -related. Second, given a solution to the reduced
equations with initial conditionω0, and given an initial point g0 ∈ G, there exists a unique
g1 such that (g0, g1) ∈ Cd, π(g0, g1) = ω0. Furthermore, the reconstructed solution to
the equations (6.2) with initial condition (g0, g1) are given by

g1 = g0ω0, g2 = g1ω1, . . . , gk = gk−1ωk−1. (6.4)

Proof. The first statement is an immediate consequence of the proof of the previous
theorem. Next, since ω0 ∈ cd , we have (e, ω0) ∈ Cd and then by G-invariance we have
that (g0, g0ω0) ∈ Cd . From this we can read off g1 = g0ω0. Uniqueness is clear. We need
to show that the gi sequence thus constructed solves equations (6.2). It is clear that they
satisfy (gi , gi+1) ∈ Cd . We argue inductively. From the proof of the previous theorem,
starting with i = 0, we have

D2Ld(g0, g1) + D1Ld(g1, g2) = g1 · ω−1
0 · dld(ω0) − g1 · dld(ω1) · ω−1

1

= g1 ·
n−k∑
j=1

λjµj = λT A(g1),

so that g2 solves equation (6.2). For the induction step, we can apply the same argument
to the point (gi , gi+1) where gi+1 = giωi , which shows that gi+1 solves equation (6.2),
concluding the proof of the second statement.

6.2. Rigid Body with a Nonholonomic Constraint

For an example of a dynamical system on a Lie group with a nonholonomic constraint
we consider the rigid body. Let G = SO(n) with Lie algebra g = so(n). Let k be a
subspace of TeG defined by the vanishing of the one-forms µi . The constraint is that the
velocities should lie in the left-invariant distribution Gk, which is nonintegrable when
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it is not a subalgebra. This is determined at each point by the vanishing of the left-
invariant one-forms Aj defined by Aj (g) = g · µj . Equivalently, the angular velocity
v := g−1ġ ∈ k.

Consider the Lagrangian L = ∫
1
2 tr(ġ J ġT) dt of the free rigid body with symmetric

moments of inertia J . The variation of L is

δL =
∫

tr
(
ġ JδġT

)
dt = −

∫
tr
(
g̈ JδgT

)
dt

= −
∫

tr
(
g−1g̈ J (g−1δg)T

)
dt.

The Lagrange-d’Alembert principle now states that δL = 0 for all variations g−1δg ∈ k.
The equation of motion is that the component of skew(g−1g̈ J ) that lies in k should

vanish, where skew(A) = A − AT. Differentiating v = g−1ġ gives v̇ = g−1g̈ −
g−1ġg−1ġ = g−1g̈ − v2, so the equation of motion is that the component of

skew((v̇ + v2)J )

that lies in k should vanish. In terms of the angular momentum m from the Legendre
transform Fe L: TeG → T ∗

e G, v �→ m := Jv + v J , the equations of motion are

ġ = gv,

ṁ = [m, v] +
n−k∑
j=1

λjµj ,

〈
v, µj

〉 = 0,

m = Jv + v J.

The last three equations form a reduced nonholonomic system on g∗. They are an instance
of Theorem 3.2 in [16], which states that the angular momentum component of such a
nonholonomic system is the projection of the unconstrained Hamiltonian vector field
on g∗.

We now apply the discrete Lagrange-d’Alembert principle to construct a discrete
version of this system. We need to define Ld , Ad , and Cd . For the discrete Lagrangian
we choose the (reversible) Moser-Veselov Lagrangian

Ld = tr(g0 Jg−1
1 ),

and we choose Ad = A as in the continuous system. We will specify Cd below.
The reduced Lagrangian is ld(ω) = tr(ωJ ), and to express the the reduced DLA

equations (6.1) we need to evaluate the following derivative of ld . For all ξ ∈ g we have

〈
ω−1dld(ω), ξ

〉 = 〈dld(ω), ω · ξ〉 =
〈
dld(ω),

d

dt

∣∣∣∣
t=0

ω · exp tξ

〉

= d

dt

∣∣∣∣
t=0

ld(ω · exp tξ) = d

dt

∣∣∣∣
t=0

tr(ω exp(tξ)J )

= tr(ωξ J ) = tr(Jωξ) = 〈〈Jω − ωT J, ξ〉〉, (6.5)
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where 〈〈, 〉〉 is the Killing inner product on g. Similarly,〈
dld(ω) · ω−1, ξ

〉 = 〈〈ωJ − JωT, ξ〉〉.
Thus the reduced DLA equations (6.1) become

(Jω0 − ωT
0 J ) − (ω1 J − JωT

1 ) =
n−k∑
j=1

λjµj .

Just as in the general theory for unconstrained systems [6], this equation can, like the
continuous equation, be reduced to g∗, which will suggest a natural choice for the discrete
constraint Cd . The discrete angular momentum M is defined by

hM = dld(ω) · ω−1 = ωJ − JωT, (6.6)

which suggests the reduced discrete constraint that M satisfies the same constraint as m.
That constraint is

m ∈ m := Fe L · k = {Jv + v J : v ∈ k}.
(The reduced velocity constraint submanifold cd is then defined via (6.6), and Cd in turn
via ω = g−1

0 g1.)
The reduced integrator on m ⊂ g∗ is then determined by M0 �→ M1, as follows: first

determine ω0 ∈ SO(n) such that

hM0 = ω0 J − JωT
0 , (6.7)

and then determine M1 by

M1 = ωT
0 M0ω0 +

n−k∑
j=1

λjµj , (6.8)

where the (scaled) Lagrange multipliers λj are determined by the constraint M1 ∈ m.
The position update is provided by g1 = g0ω0. The integrator is defined for the same

values of h as the unconstrained Moser-Veselov rigid body.
Note that the absence of constraints, the integrator (6.7,6.8) is identical to the original

Moser-Veselov discrete rigid body (except that they used ω0 = g−1
1 g0). With constraints,

the integrator is defined by first calculating the unconstrained update and then projecting
it to m, which is in striking analogy with the continuous reduced equations, for which the
vector field undergoes the same projection to m. This is permitted, although not forced,
by the discrete Lagrange-d’Alembert principle; a different choice of Cd would still allow
a reduction to g∗, but not necessarily to a linear subspace of it.

7. Properties of the Exact Discrete Flow

In this section, we formulate the exact discrete Lagrange-d’Alembert (EDLA) equa-
tions, which are satisfied by the exact discrete flow. This approach is motivated by the
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correspondence between the Euler-Lagrange and discrete Euler-Lagrange equations for
unconstrained systems, discussed in Section 3.1. However, we shall see that in the non-
holonomic case the EDLA equations, unlike the discrete Euler-Lagrange equations, do
not determine a discrete flow on the exact discrete constraint submanifold, although they
are deterministic in the sense that if we fix q0 and q2, they determine q1 such that the
projection of the discrete flow contains the orbit sequence (q0, q1, q2).

7.1. The Exact Discrete Constraint Manifold

In order to formulate the equations, it is necessary to define from the Lagrangian L and
the vector bundle C , for a fixed time step h, an “integrated” object, Ce

d , which is the
submanifold of Q × Q consisting of all pairs of points connectible by the Lagrange-
d’Alembert flow in time h. This object is interesting in its own right. As it is a submanifold
of the pair groupoid Q × Q (see [30] for a treatment of Lagrangian mechanics on
groupoids), it is natural to study the source and target maps restricted to Ce

d . We show
that if the Lagrangian is reversible, then the restricted maps are surjective submersions.
The fibers, and in particular the intersection of their images under the opposing maps,
are, assuming constant rank intersection, smooth submanifolds which have a natural
interpretation as the set of all points that join q0 to q2 under the composition of two
different flows corresponding to a vq0 and a vq1 �= ψh(vq0). Imposing the exact discrete
equation picks out the q1 with the property that there is a velocity over q0 whose flow
passes through q1 and then reaches q2 at time 2h.

Finally, it is possible to define a discrete Legendre transformation with the property
that for the exact discrete flow on Ce

d , there is a well-defined conjugate momentum value
for each time step whose value is simply the conjugate momentum of the smooth solution
evaluated at the discrete times.

We begin by defining the exact discrete constraint distribution and the exact La-
grangian for nonholonomic systems.

Nonconjugate solutions. First we define the notion of a nonconjugate solution q(t) for
a nonholonomic system joining q0 to q1 in time h. This will generalize the definition
of nonconjugate solutions for unconstrained Lagrangian mechanics. Let ψ t : C → C
denote the flow of the nonholonomic system. Notice that there must exist vq0 ∈ Cq0

such that q(t) = τ ◦ ψ t (vq0). Furthermore, q(t) is nonconjugate provided there is a
neighborhood U of vq0 in C such that for all vq ∈ U , the map,

FDvq (τ ◦ ψh): Cq → Tτ◦ψh(vq )Q, (7.1)

where FD indicates the fiber derivative, is injective. If we take a sufficiently small neigh-
borhood U(q0,q1) of (q0, q1) in Ce

d , and a point (q̄0, q̄1) ∈ U(q0,q1), this definition allows
us to conclude the existence of a unique vq̄0 such that τ ◦ ψh(vq̄0) = q̄1. Furthermore,
suppose we take the unconstrained limit C = T Q. Then this definition agrees with the
condition that q(t) is a nonconjugate solution joining q0 to q1, and allows us to conclude
the existence of neighborhoods Uq0 , Uq1 of q0 and q1 respectively such that for any pair
(q ′

0, q ′
1) ∈ Uq0 × Uq1 , there exists a solution q ′(t) joining q ′

0 and q ′
1 in time h. Finally,

it is possible to show that injectivity of FDvq is equivalent to the requirement that each
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solution of the following Jacobi equation with nonzero initial data does not vanish along
the curve q(t) = τ ◦ ψ t (vq0). For each i ,

d

dt

(
∂2L

∂q̇j∂q̇i
U̇j + ∂2L

∂qj∂q̇i
Uj

)
− ∂2L

∂q̇j∂qi
Uj =

n−k∑
l=1

∂λl

∂qj
Uj Ali + λl

∂ Ali

∂qj
Uj , (7.2)

with summation over j understood. Notice this agrees with the usual Jacobi equation
when the constraints vanish, Ai = 0.

Notice that if the constraint is integrable, this condition will fail, but then one can
apply this definition restricted to the integral submanifolds of the distribution.

For the following two definitions, fix a small time step h.

Definition 8. Ce
d , the exact discrete constraint distribution, is the subset of Q × Q

consisting of pairs (q0, q1) such that there exists a C2 curve q(t) joining q0 to q1 in
time h and the curve (q(t), q̇(t)) satisfies the Lagrange-d’Alembert equations. (q0, q1)

is called nonconjugate provided the solution curve q(t) is nonconjugate.

Proposition 10. In a neighborhood of a nonconjugate point (q0, q1) there exist smooth
coordinates realizing Ce

d locally as a submanifold of Q × Q of dimension n + k.

Proof. Consider the vector bundle C → Q. Pick a neighborhood U0 of the point q1

small enough so that the bundle trivializes over U0, i.e., C |U0 � U0 × Cq0 . Let us denote
by � the trivializing bundle map. By nonconjugacy of (q0, q1), we know that τ ◦ ψh ,
restricted to a neighborhood Bq0 of vq0 in the fiber over q0 is injective. As this is an open
condition in q0, it follows that there exists a neighborhood U ′

0 ⊂ U0 so that for each
q ′

0 ∈ U ′
0, there is a corresponding neighborhood Bq ′

0
of in the fiber of C over q ′

0 so that
τ ◦ ψh restricted to that neighborhood is injective. Shrinking the base neighborhood of
the bundle if necessary in the trivialization, we can then find a fixed neighborhood V0 of
vq0 in the model vector space Cq0 so that τ ◦ψh ◦� is injective on each fiber of U ′

0 × V0.
It follows that U ′

0 × V0 is a coordinate domain for Ce
d with smooth coordinate map

U ′
0 × V0 % (q ′

0, v
′) �→ τ ◦ ψh ◦ �(q ′

0, v
′). (7.3)

By construction this takes the point (q0, vq0) to (q0, q1) ∈ Ce
d . Finally, it is clear from

construction that dim U ′
0 × V0 = n + k.

We can now define the exact discrete Lagrangian for a nonholonomic system as
follows.

Definition 9. The exact discrete Lagrangian is the map Le
d : Ce

d → R defined by

Le
d(q0, q1) =

∫ h

0
L(q(t), q̇(t)) dt, (7.4)

where q(t) is the unique curve joining q0 to q1 in time h given in the definition of Ce
d .
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If there are no constraints, this reduces to the exact discrete Lagrangian of uncon-
strained mechanics. If the constraints are integrable, notice that this exact discrete La-
grangian is defined on the submanifold of Q × Q given by

⋃
l Fl ×Fl where the Fl are

the leaves of the distribution.
In the next proposition we show that Ce

d satisfies the requirements of Definition 2 for
a discrete constraint distribution modeled on a distribution C (equation (3.7)).

Proposition 11. Fix q0 ∈ Q. We then have the following:

(i) (q0, q0) ∈ Ce
d;

(ii) 0 × Cq0 ⊂ T(q0,q0)C
e
d;

(iii) If L is reversible, then we also have Cq0 × 0 ⊂ T(q0,q0)C
e
d .

Proof. It is obvious that (i) holds since q(t) = q0 satisfies the Lagrange-d’Alembert
equations corresponding to initial data (q0, vq0 = 0). To prove the (ii) we first show that
the Lagrange-d’Alembert solutions admit the following scaling action of R∗: q(t) is a
solution of Lagrange-d’Alembert if and only if q(ct) is a solution for each nonzero real
number c. It is easy to obtain this fact from the Lagrange-d’Alembert principle analogous
to the proof of Proposition 1. For fixed c and fixed T consider the isomorphism on the
space of C2 curves with fixed endpoints

ϕ̃c: 	([0, T ]; q0, q1) → 	

([
O,

1

c
T

]
; q0, q1

)
, (7.5)

given by q(t) �→ q(ct). This map induces an isomorphism on the tangent spaces taking
a variation δq(t) to the variation δqc(t) = δq(ct). It follows that q(t) is a critical point
of the action integral with respect to δq(t) ∈ Cq(t) and satisfies q̇(t) ∈ Cq(t) if and only
if q(ct) is critical with respect to δqc(t) and satisfies ˙ϕ(q)(t) ∈ Cq(t).

Next, fix vq0 ∈ Cq0 and consider the curve in Ce
d through the point (q0, q0) given by

ε �→ (q0, τ ◦ ψh(ε · 1
h vq0)). Let q(t) denote the solution to the Lagrange-d’Alembert

equations with initial data (q0,
1
h vq0). Then by the scaling action invariance of solutions

to Lagrange-d’Alembert we have that q(tε) is a solution with initial data (q0, ε · 1
h vq0).

Therefore, q(hε) = τ ◦ ψh(ε · 1
h vq0) and

d

dε

∣∣∣∣
ε=0

q(hε) = hq̇(0) = vq0 , (7.6)

as required. Finally for (iii), note that if (q0, q1) ∈ Ce
d so that there exists vq0 such that

τ ◦ ψh(vq0) = q1, then if vq1 = ψh(vq0), we have, using reversibility of the Lagrange-
d’Alembert flow,

ψh(R(vq1)) = R(ψ−hvq1) = R(vq0),

so that τ ◦ψh(−vq1) = q0 proving that (q1, q0) ∈ Ce
d , that is, Ce

d is reversible. Therefore
(q0, q0(ε)) ∈ Ce

d implies (q0(ε), q0) ∈ Ce
d so that, after taking the derivative in ε, we get

that Cq0 × 0 ⊂ T(q0,q0)C
e
d , as required.
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Reversibility of Ce
d . Reversibility of the Lagrange-d’Alembert flow translates to Ce

d
being closed under the inverse operator on the pair groupoid Q × Q. That is, (q0, q1) ∈
Ce

d ⇐⇒ (q1, q0) ∈ Ce
d . To see this, given (q0, q1) ∈ Ce

d , there exists vq0 ∈ Cq0

such that τ ◦ ψh(vq0) = q1. Let vq1 = ψh(vq0). Again using the fact that τ ◦ ψ−t =
τ ◦ (R ◦ ψ t ◦ R) = τ ◦ ψ t ◦ R, we have

τ(ψh(R(vq1))) = τ ◦ ψ−h(vq1) = τ ◦ ψ−h(ψh(vq0)) = τ(vq0) = q0,

proving that τ ◦ ψh(−vq1) = q0, which shows that (q1, q0) ∈ Ce
d .

A closer look at Ce
d .

Ce
d

s

$$t.

Q

Borrowing terminology from the theory of groupoids, we call s and t source and target
maps, respectively. They are simply given by s = π1|Ce

d
and t = π2|Ce

d
. We then have

the interpretation that the s-fiber over a point q consists of the points in Ce
d which

correspond to time-h solutions that originate at q. The reachable set is then t ◦ s−1(q)
which is a k-dimensional submanifold of Q corresponding to the endpoints of time h
trajectories of the Lagrange-d’Alembert flow. It is worth proving that in the case that
the Lagrangian is reversible, the maps s and t are surjective submersions (s is always a
surjective submersion). Indeed, to see that s is a submersion, take vq0 ∈ Tq0 Q arbitrary.
Let q0(t) be a curve such that d

dt

∣∣
t=0

q0(t) = vq0 . Take an arbitrary section Vq0(t) over
q0(t) in the bundle C → Q. Then t �→ (

q0(t), τ ◦ ψh(Vq0(t))
)

is a curve in Ce
d and by

construction

T s · d

dt

∣∣∣∣
t=0

(q0(t), τ ◦ ψh(Vq0(t))) = d

dt

∣∣∣∣
t=0

q0(t) = vq0 ,

as required. Now assume the flow is reversible. By reversibility it is clear that ψ−t exists
and is defined for exactly the time that the forward flow is defined sinceψ−t = R◦ψ t ◦R.
Now, fix q ∈ Q and vq ∈ Cq . Since ψ−h(vq) = R ◦ψh(−vq), we have ψh(ψ−h(vq)) =
vq and therefore (τ ◦ψ−h(vq), q) ∈ Ce

d , so that t is surjective. To see that t is submersive,
fix vq ∈ Tq Q and let q(t) be a curve such that d

dt

∣∣
t=0

q(t) = vq . As before, let Vq(t) be a
section of C → Q over q(t). Define the curve q0(t) := τ ◦ R

(
ψh(−Vq(t))

)
and a section

over q0(t) by Vq0(t) := R
(
ψ−h(Vq(t))

)
. Then, since ψh

(
Vq0(t)

) = ψh
(
ψ−h(Vq(t))

) =
Vq(t), it follows that (q0(t), q(t)) ∈ Ce

d , and by construction we then have

T(q0,q)t · d

dt

∣∣∣∣
t=0

(q0(t), q(t)) = vq ,

proving that t is a surjective submersion.

Geometry of the fibers. First, the fact that s and t are submersions proves that the fibers
are smooth submanifolds of dimension k. We then consider the projections of these fibers
onto the opposing legs of the two submersions, i.e., t ◦ s−1(q0) and s ◦ t−1(q2). It is clear
that these are submanifolds of Q of dimension k.



Integrators for Nonholonomic Mechanical Systems OF39

Proposition 12. Given a reversible Lagrangian, the following properties of Ce
d hold

true:

(i) Given (q0, q1) ∈ Ce
d and (q1, q2) ∈ Ce

d , both nonconjugate as in Definition 8, the
tangent spaces of the fibers of s and t are expressed in terms of the flow as follows:

V q1
q0

:= Tq1

(
t ◦ s−1(q0)

) = FDvq0
(τ ◦ ψh)(Cq0), (7.7)

and

V q1
q2

:= Tq1

(
s ◦ t−1(q2)

) = FDvq2
(τ ◦ ψ−h)(Cq2), (7.8)

where vq0 ∈ Cq0 is such that τ ◦ ψh(vq0) = q1 and vq2 satisfies τ ◦ ψ−h(vq2) = q1.
(ii) Given (q0, q2) ∈ Ce

d nonconjugate, the submanifolds t(s−1(q0)) and s(t−1(q2)) have
nonempty intersection. Let q ∈ t(s−1(q0)) ∩ s(t−1(q2)). We then have

dimTq
(
t(s−1(q0))

) ∩ Tq
(
s(t−1(q2))

) ≥ 1. (7.9)

(iii) Let (q0, q2) ∈ Ce
d be nonconjugate. For each q1 ∈ t(s−1(q0))∩ s(t−1(q2)), suppose

the subspace V q1
q0,q2 := V q1

q0 ∩ V q1
q2 has constant dimension (i.e. independent of q1).

Then the intersection set t(s−1(q0)) ∩ s(t−1(q2)) is a submanifold of dimension
dimV q1

q0q2 .

Proof. To prove (i), we simply observe that q(t) is a curve through t(s−1(q0)) if and
only if (q0, q(t)) ∈ Ce

d if and only if q(t) = τ ◦ ψh(vq0(t)) for some curve vq0(t) ∈ Cq0

passing through vq0 at t = 0 where vq0 satisfies τ ◦ψh(vq0) = q1. Therefore every tangent
vector vq1 ∈ Tq1(t ◦ s−1(q0)) is the derivative of a curve of the form τ ◦ ψh(vq0(t)) and
therefore, since

d

dt

∣∣∣∣
t=0

τ ◦ ψh(vq0(t)) = 〈FDvq0
(τ ◦ ψh), wq0〉,

where wq0 := d
dt

∣∣
t=0

vq0(t) ∈ Cq0 , equation (7.7) follows. Note that by the nonconjugacy
assumption of the point (q0, q1), it follows that dimV q1

q0 = k. Similarly, by reversibility
we see that every q(t) smooth curve passing through q1 and satisfying (q(t), q2) ∈ Ce

d
if and only if there exists a curve vq2(t) ∈ Cq2 such that q(t) = τ ◦ ψ−h(vq2(t)) from
which equation (7.8) follows by differentiating.

Both facts in (ii) will follow from the scaling symmetry of the Lagrange-d’Alembert
equations and the reversibility of L . Note that the scaling symmetry tells us that for each
nonnegative real number s, τ ◦ψh(svq0) = τ ◦ψ sh(vq0). Now, supposing (q0, q2) ∈ Ce

d ,
there must exist a vq0 ∈ Cq0 such that τ ◦ ψh(vq0) = q2. It follows by scaling that
τ ◦ ψ2h( 1

2vq0) = q2 so that we can take q1 := τ ◦ ψh( 1
2vq0) and Cq1 % vq1 := ψh(vq0).

Now consider the projected integral curve [0, 2h] % t �→ τ ◦ ψ t (vq0). Again by the
scaling action, each point (q0, τ ◦ ψ t (vq0)) lies in Ce

d since we can write, for each
t , ψ t (vq0) = ψ sh(vq0) = ψh(svq0) for s := t /h. Let vq2 := ψ2hvq0 . Furthermore,
we have (τ ◦ ψ t (vq0), q2) ∈ Ce

d since τ ◦ ψ2h−tψ t (vq0) = q2 and by reversibility,
ψ2h−t (R(vq2)) = R ◦ ψ−(2h−t)vq2 . However, τ ◦ R ◦ ψ−(2h−t)vq2 = τ ◦ ψ t (vq0) by
construction so that (q2, τ ◦ ψ t (vq0)) ∈ Ce

d . Finally, by discrete reversibility of Ce
d it

follows that (τ ◦ ψ t (vq0), q2) ∈ Ce
d .
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For (iii) notice that the dimension of the space V q1
q0q2 is locally constant for all q1 ∈

t(s−1(q0))∩ s(t−1(q2)) by smoothness of the maps q1 �→ V q1
q0 and q1 �→ V q1

q2 . Assuming
the dimension is constant over the entire set, we can apply the constant rank theorem to
conclude that t(s−1(q0)) ∩ s(t−1(q2)) is a submanifold of Q.

7.2. The Exact Discrete Equations

We next determine, for reversible Lagrangians, the “exact discrete Lagrange-d’Alembert”
(EDLA) equations (7.12) that are satisfied by the sequence {qn = q(nh)} where h is a
fixed time step and q(t) is a solution to Lagrange-d’Alembert.

Theorem 5 (Exact Discrete Lagrange-d’Alembert). Assume L is a reversible Lagran-
gian. Let (q0, q1) ∈ Ce

d be nonconjugate. Let q2 = τ ◦ψh(vq1) so that (q1, q2) ∈ Ce
d , and

assume that the time step h is small enough that (q1, q2) is also nonconjugate. Define
the function q0,1: Ce

d × [0, h] → Q by q0,1(q̄0, q̄1, t, h) = q̄(t) where q̄(t) is the time t
evaluation of the curve joining q̄0 to q̄1 in time h whose tangent lift is a solution to the
Lagrange-d’Alembert equations. We define the following covectors, F+(q0, q1) ∈ (V q1

q0 )
∗

given by

F+(q0, q1)(vq1) =
∫ h

0

〈
λT (q0,1(q0, q1, t, h))A(q0,1(q0, q1, t, h)),

∂q0,1

∂q1
· vq1

〉
dt,

(7.10)
and F−(q1, q2) ∈ (V q1

q2 )
∗ given by

F−(q1, q2)(vq1) =
∫ h

0

〈
λT (q0,1(q1, q2, t, h))A(q0,1(q1, q2, t, h)),

∂q0,1

∂q0
· vq1

〉
dt,

(7.11)
where we use the shorthand notation

λT (q)A(q) :=
n−k∑
j=1

λj (q)Aj (q) ∈ T ∗
q Q.

Then the following equation is satisfied on the subspace V q1

(q0,q2)
:

D1Le
d(q1, q2) + D2Le

d(q0, q1) = −F+(q0, q1) − F−(q1, q2). (7.12)

Proof. First observe that given vq1 ∈ V q1
q0,q2 there exist curves (q0, q1(ε)) ∈ Ce

d and
(q̄1(ε), q2) ∈ Ce

d such that d
dε

∣∣
ε=0

q1(ε) = d
dε

∣∣
ε=0

q̄1(ε) = vq1 . Next, computing the
derivative of the function q0,1 at the point (q0, q1) ∈ Ce

d , we obtain

∂q0,1

∂q1
(q0, q1) · vq1 = d

dε

∣∣∣∣
ε=0

q0,1(q0, q1(ε), t, h).

As a function of t , this is a vector field along the solution curve q(t) joining q0 to
q1. Furthermore this vector field vanishes at the initial endpoint q0 since, for each ε,
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q0,1(q0, q1(ε), t, h) is a solution curve which originates at q0. Similarly ∂q0,1

∂q0
(q1, q2) · vq1

is a vector field along the solution curve joining q1 to q2 with the property that it vanishes
at the endpoint q2. Starting from the definition Le

d(q0, q1) = ∫ h
0 L(q0,1(q0, q1, t, h) dt ,

we compute, for fixed vq1 ∈ V q0,q2
q1 , D2Le

d(q0, q1) · vq1 as follows:

D2Le
d(q0, q1) · vq1 =

∫ h

0

∂L

∂q

∂q0,1

∂q1
· vq1 + ∂L

∂q̇

∂q̇0,1

∂q1
· vq1 dt

=
∫ h

0

∂L

∂q

∂q0,1

∂q1
· vq1 + ∂L

∂q̇

d

dt

∂q0,1

∂q1
· vq1 dt (7.13)

=
∫ h

0

∂L

∂q

∂q0,1

∂q1
· vq1 − d

dt

∂L

∂q̇

∂q0,1

∂q1
· vq1 dt + ∂L

∂q̇

∂q0,1

∂q1
· vq1

∣∣t=h

t=0 ,

where we use the equality of mixed partial derivatives in the second equality and the
third is from integration by parts. Recall that d

dt
∂L
∂q̇ − ∂L

∂q is the Euler-Lagrange operator,

denoted DELL: Q̈ → T ∗ Q, which is a bundle map from second derivatives of curves,
Q̈, to T ∗ Q, so that the integrand of the last equation is just

∫ h

0

〈
−DELL(q̈0,1(q0, q1)),

∂q0,1

∂q1
(q0, q1) · vq1

〉
dt.

The integrand is well defined since DELL(q̈0,1(q0, q1)) is a covector field along
q0,1(q0, q1, t, h) and it is paired with a vector field along the same curve. Since the
curve t �→ q0,1(q0, q1, t, h) is a solution to the Lagrange-d’Alembert equations, we have

DELL(q̈0,1(q0, q1)) = λT(q0,1(t))A(q0,1(t)),

and therefore, equation (7.13) becomes

D2Le
d(q0, q1) · vq1 = −F+(q0, q1) · vq1 + ∂L

∂q̇

∂q0,1

∂q1
(q0, q1) · vq1 |t=h

t=0 . (7.14)

In a completely analogous way, one can compute

D1Le
d(q1, q2) · vq1 =

∫ h

0

〈
−DEL(q̈0,1(q1, q2)),

∂q0,1

∂q0
(q1, q2) · vq1

〉
dt

+∂L

∂q̇

∂q0,1

∂q0
(q1, q2) · vq1

∣∣t=h

t=0

= −F−(q1, q2) · vq1 + ∂L

∂q̇

∂q0,1

∂q0
(q1, q2) · vq1

∣∣t=h

t=0 . (7.15)

We now consider the boundary terms in equations (7.14) and (7.15). Recall that the
vector field ∂q0,1

∂q1
(q0, q1) · vq1 vanishes at q0,1(q0, q1, t = 0, h) = q0 and, evaluated at

q0,1(q0, q1, t = h, h) = q1, is equal to vq1 by construction. Similarly, the vector field
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∂q0,1

∂q0
(q1, q2) · vq1 vanishes at t = h and is equal to vq1 at t = 0. We then have

D2Le
d(q0, q1) · vq1 = −F+(q0, q1) · vq1 + ∂L

∂q̇

∂q0,1

∂q1
(q0, q1) · vq1 |t=h

t=0

= −F+(q0, q1) · vq1

+
〈
∂L

∂q̇
(q̇0,1(q0, q1, t, h)),

∂q0,1

∂q1
(q0, q1) · vq1

〉∣∣∣∣
t=h

t=0

= −F+(q0, q1) · vq1 + FL(q̇0,1(q0, q1, t = h, h)) · vq1 , (7.16)

and that

D1Le
d(q1, q2) · vq1 = −F−(q1, q2) · vq1 + ∂L

∂q̇

∂q0,1

∂q0
(q1, q2) · vq1

∣∣t=h

t=0

= −F−(q1, q2) · vq1

+
〈
∂L

∂q̇
(q̇0,1(q1, q2, t, h)),

∂q0,1

∂q0
(q1, q2) · vq1

〉∣∣∣∣
t=h

t=0

= −F−(q1, q2) · vq1 − FL(q̇0,1(q1, q2, t = 0, h)) · vq1 . (7.17)

Finally observe that FL(q̇0,1(q0, q1, t = h, h)) = FL(q̇0,1(q1, q2, t = 0, h)), and there-
fore adding these equations for D1Le

d and D2Le
d yields

D2Le
d(q0, q1) + D1Le

d(q1, q2) = −F+(q0, q1) − F−(q1, q2),

proving the theorem.

Observe that if there are no constraints, the tangent spaces V q0
q1 , V q2

q1 become the full
tangent space Tq1 Q provided the time step is small enough and the point (q0, q1) is
nonconjugate for the Euler-Lagrange flow. In this case the right-hand side of equation
(7.12) vanishes and we therefore recover Theorem 2.

Another interpretation of the EDLA equations (7.12) arises if we are given a non-
conjugate pair (q0, q2) ∈ Ce

d and would like to determine the discrete orbit (q0, q1, q2).
Naturally we require q1 ∈ t(s−1(q0))∩s(t−1(q2)) (i.e., (q0, q1) ∈ Ce

d and (q1, q2) ∈ Ce
d ),

which is a submanifold of dimension dim V q1
q0q2 . Then (7.12) puts dim V q1

q0q2 further con-
ditions on q1 and thus determines q1 locally uniquely.

However, unlike the DLA equations (3.9), (3.10), eq. (7.12) is not a suitable principle
for an initial value problem. Given (q0, q1) ∈ Ce

d , we would like to find q2 such that
(q0, q1, q2) forms a discrete orbit. We can require that (q1, q2) ∈ Ce

d , a submanifold of
dimension k, but (7.12)) represents dim V q1

q0q2 further equations. V q1
q0q2 is the intersection of

two k-planes in an n-dimensional vector space; hence, max(0, 2k − n) ≤ V q1
q0q2 ≤ dim k

and there are not in general enough equations to determine a unique q2.

Momentum interpretation. Analagous to the theory of variational integrators for the
Euler-Lagrange equations, we have a momentum interpretation of the EDLA equations.
However, to get a consistent time-i value of momentum, we need to define the discrete
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Legendre transformations differently than in the Euler-Lagrange theory (equations (3.4)
and (3.5)). We need to take into account the impulses due to the constraint forces.

Definition 10. The discrete Legendre transformations in the presence of nonholonomic
constraints are given by

F
+Ld : (q0, q1) �→ (q1, p1) = (q1, D2Ld(q0, q1) + F+(q0, q1)) ∈ (V q1

q0
)∗, (7.18)

and

F
−Ld : (q0, q1) �→ (q0, p0) = (q0,−D1Ld(q0, q1) − F−(q0, q1)) ∈ (V q0

q1
)∗. (7.19)

Using these fiber-preserving maps, we have the following consequence of Theorem 5.

Corollary 6. Let {qi } denote a discrete time solution to the Lagrange-d’Alembert equa-
tions which therefore satisfies the EDLA equations of the previous theorem. Let p+

qi−1qi
:=

F
+Le

d(qi−1, qi ) and p−
qi qi+1

:= F
−Le

d(qi , qi+1). Then

(i) p+
qi−1qi

= p−
qi qi+1

.
(ii) p+

qi−1qi
= FL(q̇0,1(qi−1, qi , t = h, h)).

In other words, there is a well-defined conjugate momentum value for each time step,
and this momentum value, defined through the discrete Legendre transformation, agrees
with the continuous momentum of the actual flow (see equation (2.12)), evaluated at the
discrete times.

Proof. (i) is an immediate consequence of Theorem 5, since it is merely rewriting
equation (7.12) in terms of the discrete momenta. For (ii), we have, from the proof of
the previous theorem, that

p+
qi−1qi

= D2Le
d(qi−1, qi ) + F+(qi−1, qi )

= FL(q̇0,1(qi−1, qi , t = h, h)).

However, this last term is simply the fiber derivative of the Lagrangian applied to the
tangent vector of the solution curve through qi proving the claim. Notice that when there
are no constraints, the forces vanish and we recover the momentum matching condition
of the discrete Euler-Lagrange equations.

Failure to be a subgroupoid. The set Ce
d is not a subgroupoid of the pair groupoid

Q × Q, because it fails to be closed under multiplication. For, if (q0, q1) and (q1, q2) are
elements in Ce

d , (q0, q2) = (q0, q1) · (q1, q2) will belong to Ce
d if and only if (q0, q1, q2)

is on a single dynamical orbit. In that case (q0, q2) ∈ Ce
d since, by the scaling symmetry

of the Lagrange-d’Alembert flow, we can choose v′
q0

= 2vq0 so that τ ◦ ψh(v′
q0
) = q2.

Equivalently we can multiply (q0, q1) with (q1, q2) in Ce
d if and only if q1 satisfies the

EDLA equations if and only if the discrete momentum of (q0, q1) matches the discrete
momentum of (q1, q2).

Finally we point out that if we consider the image of T t|�, along ker T s|�, we
simply obtain the bundle C → Q. This follows since, by Proposition 11, we have
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0 × Cq0 ⊂ T(q0,q0)C
e
d . Now clearly 0 × Cq0 ⊂ kerT(q0,q0)s. On the other hand since s is a

submersion and dim Ce
d = n + k, it follows that 0 × Cq0 is the entire kernel. We have

shown that

ker T s|� � C. (7.20)

This is not an algebroid over Q (as it would be if Ce
d were a subgroupoid) since the

bracket of sections, corresponding to the Jacobi bracket of vector fields with values in
the distribution, is not closed as C is not integrable.

In the case that C is an integrable distribution, it is an algebroid over Q. Its cor-
responding Ce

d is in this case just
⋃

l Fl × Fl a subgroupoid of Q × Q consisting of
pairs (q0, q1) with the property that q0 and q1 are on the same leaf of the foliation of Q
determined by C . In this case we are able to multiply elements of Ce

d since the dynamics
restricted to each leaf is just Euler-Lagrange.

8. Conclusions

We have studied a discrete principle that is general enough to include practical integrators
and appears to capture the correct dynamics, at least in some cases. However, much
work remains to be done to clarify the nature of discrete nonholonomic mechanics
and to pinpoint the “correct” discrete analog of the Lagrange-d’Alembert principle. We
therefore close with some open questions.

The discrete systems depend on two pieces of constraint data, namely Cd and Ad .
Can or should these be reduced to one, presumably Cd alone?

Should the definition of the constraint one-forms Ad be generalized to allow depen-
dence on all of qi−1, qi , and qi+1 (instead of just qi ), i.e., Ad : Q × Q × Q → T ∗ Q?
Such Ad can still lead to reversible integrators on Q × Q.

Nonholonomic systems can preserve a volume form on the constraint surface C [17].
Can DLA integrators preserve a corresponding volume form on Cd?

There are many unconstrained Hamiltonian systems with a well-understood and wide
range of long-time behavior which can serve as tests for integrators. What are the equiv-
alent nonholonomic systems?

Does the exact flow of a nonholonomic system obey the DLA equations for an ap-
propriate choice of Ld , Cd , and Ad?

What extra property is needed to single out the q2 of the exact flow amongst those q2

satisfying (7.16)?
Given the discrete system (Q, Ld , Ad ,Cd), does there exist in the sense of backward

error analysis a Lagrangian, L∗, such that the discrete flow FLd is, up to appropriate order
in the time step, the discrete time-evaluated flow of the nonholonomic system (Q, L∗,C)

where C is the nonintegrable distribution determined by Ad?
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