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Abstract Classical Hamiltonian spin systems are continuous dynamical systems on
the symplectic phase space (S2)n . In this paper, we investigate the underlying geom-
etry of a time discretization scheme for classical Hamiltonian spin systems called the
spherical midpoint method. As it turns out, this method displays a range of inter-
esting geometrical features that yield insights and sets out general strategies for
geometric time discretizations of Hamiltonian systems on non-canonical symplec-
tic manifolds. In particular, our study provides two new, completely geometric proofs
that the discrete-time spin systems obtained by the sphericalmidpointmethod preserve
symplecticity. The study follows two paths. First, we introduce an extended version
of the Hopf fibration to show that the spherical midpoint method can be seen as orig-
inating from the classical midpoint method on T ∗R2n for a collective Hamiltonian.
Symplecticity is then a direct, geometric consequence. Second, we propose a new dis-
cretization scheme on Riemannianmanifolds called theRiemannian midpoint method.
We determine its properties with respect to isometries and Riemannian submersions,
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and, as a special case, we show that the spherical midpoint method is of this type for
a non-Euclidean metric. In combination with Kähler geometry, this provides another
geometric proof of symplecticity.

Keywords Spin systems · Heisenberg spin chain · Discrete integrable systems ·
Symplectic integration · Moser–Veselov · Hopf fibration · Collective symplectic
integrators · Midpoint method

Mathematics Subject Classification 37M15 · 65P10 · 70H08 · 70K99 · 93C55

1 Introduction

A well-known integrable PDE is the continuous classical Heisenberg equation of
ferromagnetics

ẇ = w × w′′, w : S1 → S2,

where we represent elements in S2 as unit vectors in R3. Spatial discretization of this
equation by

w′′(s) ≈ w(s − �s) − 2w(s) + w(s + �s)

�s2

leads to the classical Heisenberg spin chain

ẇi = wi × (wi−1 + wi+1), wi ∈ S2, w0 = wn .

More generally, a classical Hamiltonian spin system is of the form

ẇi = wi × ∂ H

∂wi
, wi ∈ S2, i = 1, . . . , n, (1)

for some Hamiltonian H : (S2)n → R. In addition to ferromagnetics, examples
include the free rigid body and the motion of n point vortices on the sphere. A key
property of the flow of (1) is preservation of the symplectic structure of (S2)n . In
the literature on spin systems, it is common to think of the Hamiltonian as a function
H : R3n → R. Notice, however, that only its restriction to (S2)n affects the dynamics.

We are interested in symplectic, discrete-time versions of Eq. (1). Towards this
goal, a fruitful approach is to regard the two-sphere S2 as a coadjoint orbit of the Lie–
Poisson manifold so(3)∗ corresponding to the Lie algebra so(3) of skew-symmetric
matrices (for details on Lie–Poisson manifolds, see Marsden and Ratiu (1999) and
references therein). Then, one can use variational discretizations, as those developed
by Moser and Veselov (1991) for some classical integrable systems, particularly the
free rigid body (see also McLachlan and Zanna (2005); McLachlan et al. (2013) for
the extension to arbitrary Lie–Poisson manifolds and Hamiltonians). This discrete
Moser–Veselov (DMV) algorithm is formulated as an SO(3)-symmetric symplectic
map on the phase space T ∗SO(3). The symmetry implies that the flow descends to a
flow on T ∗SO(3)/SO(3) � so(3)∗, but an explicit representation on so(3)∗, without
using auxiliary variables in SO(3), is not available. Therefore, an open problem has
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been to find a minimal-variable symplectic discretization of Eq. (1). A solution is
provided by the spherical midpoint method, first communicated in McLachlan et al.
(2014). This method is given by the map (w1, . . . ,wn) �→ (W1, . . . ,Wn) implicitly
defined by

W i − wi

�t
= wi + W i

|wi + W i | × ∂ H

∂wi

(
w1 + W1

|w1 + W1| , . . . ,
wn + Wn

|wn + Wn|
)

. (2)

A direct proof of its symplecticity is given in McLachlan et al. (2016), where also
several examples for specific Hamiltonians are given. The proof in McLachlan et al.
(2016) is via a lengthy direct calculation that is not too enlightening. In this paper, we
carry out an in-depth geometric investigation of the method (2) and the corresponding
discrete-time spin systems.

Although there has been extensive interest in Lie–Poisson integration and in the
associated discrete mechanics (Zhong and Marsden 1988; McLachlan 1993; Reich
1994; McLachlan and Scovel 1995; Marsden et al. 1999; Krysl and Endres
2005; Vankerschaver 2007), all previous methods have been closely related to the
classical generating functions defined on symplectic vector spaces, and all use extra
variables. The map defined by (2) uses no extra variables and is in some sense the
first generalization of the Poincaré generating function (Poincaré 1982, vol. III, §319)
(corresponding to the classical midpoint method) to a non-canonical, nonlinear phase
space. Earlier discrete Lie–Poisson mechanics has also led to interesting new discrete
integrable systems, including the hugely influential Moser–Veselov system (Bloch
et al. 1998; Cardoso and Leite 2003; Hairer andVilmart 2006). Themethod (2) applied
to the free rigid body leads to an integrable mapping of an apparently new type. These
considerations motivate our study of the geometry and discrete mechanics associated
with the spherical midpoint method.

First, in § 2, we study the symplectic geometry. In particular, we show that the
spherical midpoint method can be interpreted as a collective symplectic integrator,
such as developed in McLachlan et al. (2014, 2015). We establish this connection
by an extension of the classical Hopf fibration.1 In addition to geometric insights, the
connection to collective integrators also establishes an independent geometric proof of
symplecticity, completely different from the direct proof in McLachlan et al. (2016).

Second, in § 3, we study the Riemannian geometry. The classical midpoint method
evaluates the vector field at the midpoint of a straight line joining the start and end-
ing points. This suggests a generalization to Riemannian manifolds, a Riemannian
midpoint method, that appears to be new. We introduce this method and establish
some of its basic properties, including equivariance with respect to the isometry group
of the manifold and natural behaviour with respect to Riemannian submersions. Per-
haps counterintuitively, the Riemannianmidpointmethod for the standardRiemannian
structure on S2 is not symplectic. Nevertheless, there is a Riemannianmetric for which

1 TheHopf fibrationmap is also used in Vankerschaver and Leok (2014) to construct a variational integrator
for point vortex dynamics on the sphere. The notion there is related to the collective setting in McLachlan
et al. (2015), although developed in a Lagrangian instead of Hamiltonian setting. We thank the reviewer for
pointing us to Vankerschaver and Leok (2014).
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the corresponding Riemannian midpoint method is exactly the spherical midpoint
method. We arrive at this result by examining how the Kähler structure of the space
of quaternions relates to the extended Hopf map. This provides another way to view
the spherical midpoint method, yet another proof of symplecticity, based on Kähler
geometry.

We use the following notation. X(M) denotes the space of smooth vector fields on
a manifold M . If M is a Poisson manifold, and H ∈ C∞(M) is a smooth function
on M , then the corresponding Hamiltonian vector field is denoted X H . Let us also
recollect the concept of intertwining. To this extent, let M and N be two manifolds
and consider a differentiable map f : N → M . We say that f intertwines X ∈ X(M)

and Y ∈ X(N ) if X ◦ f = T f ◦ Y . (Some authors prefer to say that X and Y are
f -related.) Likewise, we say that f intertwines a function� : M → M and a function
� : N → N if

� ◦ f = f ◦ �.

Finally, the Euclidean length of a vector w ∈ Rd is denoted |w|. If w ∈ R3n � (R3)n ,
then wi denotes the i :th component in R3.

We continue this section with a concise presentation of the spherical midpoint
method.

1.1 Spherical Midpoint Method

Herewe review some background on the spherical midpoint method (2). All the results
in this section are also available in McLachlan et al. (2016).

A key point in this paper is the relation between the spherical midpoint method and
the classical midpoint method on vector spaces. We recall its definition.

Definition 1.1 Let X be a vector field defined on an open subset of a vector space.
The classical midpoint method for X is the mapping z �→ Z defined by

Z − z
�t

= X
( Z + z

2

)
, (3)

where �t > 0 is the time step.

The vector field X H given by the right-hand side of (1) is defined on (S2)n [since
the Hamiltonian H is defined on (S2)n]. In order to relate the spherical to the classical
midpoint method, we need to extend the vector field X H to (R3\{0})n . For this, we
define a projection map ρ by

ρ(w) =
( w1

|w1| , . . . ,
wn

|wn|
)
.

The basic observation is then that the spherical midpoint method (2) can be written

W − w

�t
= (

X H ◦ ρ
) (

W + w

2

)
. (4)
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Comparing with (3), we see that the spherical midpoint method is the classical
midpoint method applied to X H ◦ ρ. This observation is the starting point for our
developments.

What is then characteristic for vector fields of the form ξ ◦ ρ with ξ ∈ X
(
(S2)n

)
?

This question leads us to the next cornerstone in the paper.

Definition 1.2 The ray through a point w ∈ (R3\{0})n is the subset

{(λ1w1, . . . , λnwn);λ ∈ Rn+}.

The set of all rays is in one-to-one relationwith (S2)n . Note that the vector field X =
ξ ◦ ρ is constant on rays. The property of being constant on rays is passed on from
Hamiltonian functions to Hamiltonian vector fields.

Lemma 1.3 (McLachlan et al. 2016) If a Hamiltonian function H on (R3\{0})n is
constant on rays, then so is its Hamiltonian vector field X H , defined by

X H (w) =
n∑

k=1

wk × ∂ H(w)

∂wk
. (5)

The implication is that we may replace S2 with the manifold of rays, and Hamil-
tonian functions on (S2)n with Hamiltonian functions on R3\{0} that are constant
on rays. In this representation, the spherical midpoint method becomes the classical
midpoint method, as we have seen.

R3n and (R3\{0})n are Poisson manifolds with the Poisson bracket

{F, G}(w) =
n∑

k=1

(∂ F(w)

∂wk
× ∂G(w)

∂wk

) · wk . (6)

This is the canonical Lie–Poisson structure of (so(3)∗)n , or (su(2)∗)n , obtained by
identifying so(3)∗ � R3, or su(2)∗ � R3. For details, see (Marsden and Ratiu 1999,
§10.7) or McLachlan et al. (2015).

The flow of a Hamiltonian vector field X H on R3n , denoted exp(X H ), preserves
the Lie–Poisson structure, i.e.,

{F ◦ exp(X H ), G ◦ exp(X H )} = {F, G} ◦ exp(X H ), ∀F, G ∈ C∞(R3n).

The flow exp(X H ) also preserves the coadjoint orbits (Marsden and Ratiu 1999, §14),
given by

S2
λ1

× · · · × S2
λn

⊂ R3n, λ = (λ1, . . . , λn) ∈ (R+)n,

where S2
λ denotes the 2–sphere inR

3 of radius λ. A Lie–Poisson integrator for X H is a
method that, like the exact flow, preserves the Lie–Poisson structure and the coadjoint
orbits.
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It is possible to extend the spherical midpoint method so that it encompasses all
non-singular coadjoint orbits, instead of only the one with radius one. Define the map
	(w,W) by

	 : (
w,W

) �−→
(√|w1||W1|(w1 + W1)

|w1 + W1| , . . . ,

√|wn||Wn|(wn + Wn)

|wn + Wn|
)
.

We then have the following definition.

Definition 1.4 Let X be a vector field on anopen subset ofR3n . The extended spherical
midpoint method for X is the discrete-time system w �→ W defined by

W − w

�t
= X

(
	(w,W)

)
. (7)

A consequence of the geometric investigations in § 2 is that the method (7) is a
Lie–Poisson integrator, directly related to the classical midpoint method on T ∗R2n

through the concept of collective symplectic integrators. A consequence of the geo-
metric investigations in § 3 is that the method (7) is a Riemannian midpoint method
with respect to a non-standard metric on (R3\{0})n .

2 Symplectic and Poisson Geometry

In this section, we show that the extended spherical midpoint method and the classical
midpoint method are coupled through collective symplectic integrators (McLachlan
et al. 2015; McLachlan et al. 2014).

We use quaternions as it makes the calculations more transparent; the field of
quaternions is denotedH. We apply the convention that product setsCn andHn inherit
the componentwise operations of the underlying field. For instance, if z = (z1, z2) ∈
C2, then

z3 = (z31, z32). (8)

All operations are defined in the same manner.

2.1 Intertwining by the Double Covering Map

We first consider intertwining in the double covering case. We define the double
covering map


 : Cn → Cn, z �→ z2 (9)

following the convention in (8). We use the notation C∗ := C\{0} and Cn∗ := (C∗)n .
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Fig. 1 An illustration of
Lemma 2.1. The midpoint z̃
maps to the same ray as the
midpoint z̃2 := (z2 + Z2)/2

z

Z

z̃

z2

Z2

z̃2
˜z2

�

Lemma 2.1 Let X, Y ∈ X(Cn∗) and let �(�t X) and �(�tY ) denote the classical
midpoint method (3) on Cn for X and Y , respectively. Assume that:

1. X (λz) = X (z) for all λ ∈ Rn+, i.e., X is constant on rays.
2. Y is tangent to the tori in Cn∗, i.e., Y (z)/z is imaginary for all z ∈ Cn∗.
3. 
 intertwines X and Y

Then, 
 intertwines �(�t X) and �(�tY ).

Proof The proof is illustrated in Fig. 1. Consider two points z and Z, solutions of one
step of the classical midpoint method for Y . The midpoint is z̃ := (z + Z)/2, so

Z − z = �tY (̃z).

The assumption that 
 intertwines X and Y is

X (z2) = 2zY (z).

We have

Z2 − z2 = 2̃z(Z − z)

= 2̃zY (̃z)

= �t X (̃z2). (10)

Consider the general identity

z2 + Z2 = 1

2

(
(Z − z)2 + (z + Z)2

)
.

Without loss of generality, we assume that z̃ ∈ Rn . We assumed that Y was tangent to
circles, so Y (̃z) has only imaginary components, so the same holds for Z − z, which

123



1514 J Nonlinear Sci (2016) 26:1507–1523

implies that (Z − z)2 only has real components. We therefore obtain that z2 + Z2 is
in Rn . Since X is constant on the rays, and since Rn is a ray in Cn∗, we get

X
(
(z2 + Z2)/2

) = X (̃z2).

From (10), we now have

Z2 − z2 = �t X
(
(z2 + Z2)/2

)
.

This proves the result. ��

2.2 Intertwining by the Extended Hopf Map

Consider the map

π : Hn → Hn

z �→ 1

4
zkz

Again, we follow the convention of (8) and all the operations are defined componen-
twise. Note that the image of π has no real part. Let us define the three-dimensional
subspace of pure imaginary quaternions by

V := span {i, j, k}

If we identify V with R3, we can regard π as a map

π : Hn → R3n . (11)

When n = 1, this is the extended Hopf map, essential in the construction of collective
Lie–Poisson integrators on R3 (McLachlan et al. 2015).

V n is naturally endowed with the Lie–Poisson structure (6), inherited from R3n .
We use the notation V∗ := V \{0} and V n∗ := (V∗)n .

Lemma 2.2 Let X ∈ X(V n∗ ) and Y ∈ X(Hn∗), and let �(�t X) and �(�tY ) denote
the classical midpoint methods on V n and Hn, respectively. Assume that:

1. X (λw) = X (w) for all λ ∈ Rn+ and w ∈ V n∗ .
2. Y is tangent to 3 spheres, i.e., z−1Y (z) ∈ V n for all z ∈ Hn∗ .
3. Y is orthogonal to the fibres of π , i.e., kz−1Y (z) ∈ V n for all z ∈ Hn∗ .
4. π intertwines X and Y .

Then, π intertwines �(�t X) and �(�tY ).
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Proof Consider z and Z, solution of the classical midpoint method in Hn for Y . The
midpoint is denoted by

z̃ := z + Z
2

.

Since the classical midpoint method is equivariant with respect to affine transforma-
tions, we may, without loss of generality, assume that z̃ is real (i.e., all its components
are real). At the point z̃, the real direction is orthogonal to the 3 spheres, and k is the
fibre direction. Without loss of generality, we may further assume that Y (̃z) is propor-
tional to i, i.e., Y (̃z) = ia and a ∈ Rn . As a result, the components of z and Z belong
to span{1, i}, which we identify with the complex plane C, so we write z, Z ∈ Cn .

Notice that since ki = −ik, we have for z = a + ib:

zk = z̄k

When restricted to Cn , the Hopf map at z ∈ Cn is thus

π(z) = zk z̄ = z2k

This means that π(Cn) ⊂ (span{k, j})n . We identify (span{k, j})n with Cn by k ↔ 1
and j ↔ −i.With these identifications, the restriction ofπ toCn is the double covering
map 
 defined in (9), so the result follows from Lemma 2.1. ��

Hn∗ carries the structure of a symplectic manifold; the Hamiltonian vector field
corresponding to F ∈ C∞(Hn∗) is

X F (z) = ∇F(z)k. (12)

The symplectic structure coincides with the canonical symplectic structure of T ∗R2n

under the identification

Hn∗ � a + ib + jc+ kd �−→ (
(b, d)︸ ︷︷ ︸

q

, (a, c)︸ ︷︷ ︸
p

) ∈ T ∗R2n .

Likewise, V n∗ carries the structure of a Poisson manifold; the Hamiltonian vector field
corresponding to H ∈ C∞(V n∗ ) is

X H (w) = �
(
w∇H(w)

)
, (13)

where � : Hn → V n is the projection a + ib + jc + kd �→ ib + jc + kd. Under
the identification of V with R3, this Poisson structure coincides with the standard
Lie–Poisson structure of R3, so Eq. (13) is just another way of writing Eq. (5).

We now investigate what the conditions on X and Y in Lemma 2.2 mean for Hamil-
tonian vector fields X = X H and Y = X F . It follows directly from Lemma 1.3 that
X H fulfils condition 1 in Lemma 2.2 if and only if H fulfils the same condition, i.e.,
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H(λw) = H(w) for all λ ∈ Rn+ and w ∈ V n∗ . The next result shows that X F fulfils
condition 3 in Lemma 2.2 if and only if F fulfils the same condition.

Lemma 2.3 Let F ∈ C∞(Hn∗). Then, X F is orthogonal to the fibres of π , i.e.,

kz−1X F (z) ∈ V n

if and only if
F(λz) = F(z), ∀ λ ∈ Rn+ and z ∈ Hn∗.

Proof From (12), it follows that X F (z) is orthogonal to the fibres if and only if

kz−1∇F(z)k ∈ V n .

This is equivalent to

z−1∇F(z) ∈ V n,

which means that z−1∇F(z) is pure imaginary, so ∇F(z) is tangential to the spheres.
Since this is true for any z ∈ Hn∗ , it means that F(λz) = F(z) for λ ∈ Rn+. ��

Given H ∈ C∞(V n∗ ), we can now construct discretizations of systems on V n∗ in
two ways:

1. The classical midpoint method on Hn∗ for the vector field X H◦π descends to
a Lie–Poisson integrator on V n∗ . The resulting discrete-time system, examined
in McLachlan et al. (2014), is an example of a collective symplectic integrator.

2. The extended spherical midpoint method (7) for the vector field X H gives a
discrete-time system on V n∗ .

In general, the two methods are different. They do, however, coincide for ray-constant
Hamiltonian vector fields, which is the main result of this section.

Theorem 2.4 Let H ∈ C∞(V n∗ ) be constant on rays, let � denote the classical
midpoint method on V n∗ , and let � denote the classical midpoint methods on Hn∗ . Then
the extended Hopf map π intertwines �(X H ) and �(X H◦π ). That is, the map on V n∗
induced by �(X H◦π ) coincides with �(X H ).

Proof Appealing to Lemma 1.3, the vector field X H is constant on rays. If H(λw) =
H(w) for all λ ∈ Rn+, then H ◦ π fulfils the same property, since π is homogeneous,
that is:

π(λz) = λ2π(z), λ ∈ Rn+.

We can therefore use Lemma 2.3 to obtain that X H◦π is orthogonal to the fibres.
The Hopf map is a Poisson map (McLachlan et al. 2015), so

Tzπ · X H◦π (z) = X H (π(z)), z ∈ H,
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which means that π intertwines X H and X H◦π . The result now follows from
Lemma 2.2, since �(X H ) coincides with the classical midpoint method applied to
X H . ��
Corollary 2.5 The spherical midpoint method, defined by (2), is symplectic map, and
the extended spherical midpoint method, defined by (7), is a Lie–Poisson integrator.

Proof Follows from Theorem 2.4 and the result in McLachlan et al. (2014) that col-
lective symplectic integrators are symplectic. ��

3 Riemannian and Kähler Geometry

In this section, we describe the geometry of the extended spherical midpoint method
from the viewpoint of Riemannian and Kähler geometry. More precisely, we construct
a method on V n∗ , stemming from a non-Euclidean metric, that coincides with the
spherical midpoint method for Hamiltonian functions that are constant on rays. The
relation between these two methods is established through the classical midpoint
method on Hn∗ . Before working this out in § 3.2, we develop, in § 3.1, a general
theory of midpoint methods on Riemannian and Kähler manifolds. This theory further
reveals the geometry of the spherical midpoint method and provides a starting point
for generalizations.

3.1 Riemannian Midpoint Methods

Given a Riemannian manifold (M,g), let [0, 1] � t �→ γg(t;w,W) ∈ M denote the
geodesic curve between w and W .

Definition 3.1 Given a vector field X ∈ X(M), the Riemannian midpoint method on
M is the discrete-time system �g(�t X) : w �→ W defined by

d

dt

∣∣∣
t=1/2

γg(t;w,W) = �t X
(
γg(1/2,w,W)

)
. (14)

If M = Rd and g is the Euclidean metric, then (14) coincides with the definition of
the classical midpoint method (3).

Riemannian midpoint methods transform naturally under change of coordinates:

Proposition 3.2 Let M and N be two diffeomorphic manifolds, let ψ : N → M be a
diffeomorphism, and let g be a Riemannian metric on M. Then

ψ−1 ◦ �g(�t X) ◦ ψ = �ψ∗g(�tψ∗ X).

Proof The result follows from the definition (14) of �g and standard change of coor-
dinate formulas in differential geometry. ��

A consequence of Proposition 3.2 is that Riemannian midpoint methods are equiv-
ariant with respect to isometric group actions:
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Proposition 3.3 Let (M,g) be a Riemannian manifold, and let G be a Lie group
acting isometrically on M. Then, the Riemannian midpoint method �g is equivariant
with respect to G, i.e.,

ψg−1 ◦ �g(�t X) ◦ ψg = �g(�tψ∗
g X)

where ψg : M → M denotes the action map of g ∈ G.

Proof The result follows from Proposition 3.2 and ψ∗
gg = g (the action is isometric).

��

We will now discuss a generalized version of Proposition 3.2, where M and N are
no longer diffeomorphic.

Letπ : N → M be a submersion from N to anothermanifold M (π is smooth and its
Jacobian matrix Tzπ : TzN → Tπ(z)M is surjective at every z ∈ N .) Then π induces
a vertical distribution Vert by Vertz = {v ∈ TzN ; Tzπ · v = 0}. By construction, the
vertical distribution is integrable, and the fibre through z ∈ N is given byπ−1({π(z)}).
If (N ,h) is Riemannian, then the orthogonal complement with respect to h is called
the horizontal distribution and denoted by Hor. Typically, the horizontal distribution
is not integrable. The Riemannian metric h is called descending (with respect to the
submersion π ) if there exists a Riemannian metric g on M such that for all z ∈ N

hz(u, v) = gπ(z)(Tzπ · u, Tzπ · v), ∀u, v ∈ Horz.

The map π between the Riemannian manifolds (N ,h) and (M,g) is then called
a Riemannian submersion. For details on Riemannian submersions, see (Petersen
(2006), §3.5).

A vector field Y ∈ X(N ) is called horizontal if Y (z) ∈ Horz for all z ∈ N . Y is
called descending if there exists a vector field X ∈ X(M) such that π intertwines X
and Y , i.e., Tzπ · Y (z) = X (π(z)). The following result, schematically illustrated in
Fig. 2, is a generalized version of Proposition 3.3.

Theorem 3.4 Let (M,g) and (N ,h) be Riemannian manifolds and π : N → M a
Riemannian submersion. Let Y ∈ X(N ) be horizontal, let X ∈ X(M), and assume
that π intertwines X and Y . Then, π intertwines the Riemannian midpoint method
�g(h X) and the Riemannian midpoint method �h(�tY ), i.e.,

π
(
�h(�tY )(z)

) = �g(�t X)(π(z)).

Proof Let z and Z fulfil (14). Let w = π(z) and W = π(Z). We need to show that
W = �g(�t X)(w). The geodesic γh(t; z, Z) is horizontal at t = 1/2. It is therefore
horizontal at all times (Petersen 2006, §3.5). Since horizontal geodesics on N maps to
geodesics on M , we have that π(γh(t; z, Z)) = γg(t;w,W). By applying T π to (14)
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Fig. 2 An illustration of
Theorem 3.4. If the vector fields
Y and X are intertwined by the
Riemannian submersion π and
Y is horizontal, then the
Riemannian midpoint methods
for X and Y are also intertwined
by π

z Zz̃ Y
N

M
w W

w̃

X

π

we obtain

Tγh(1/2,z,Z)π · d

dt

∣∣∣
t=1/2

γh(t; z, Z) = Tγh(1/2,z,Z)π · �tY (γh(1/2; z, Z))

⇒
d

dt

∣∣∣
t=1/2

π
(
γh(t; z, Z)

) = �tTγh(1/2,z,Z)π · Y (γh(1/2; z, Z))

⇒
d

dt

∣∣∣
t=1/2

π
(
γh(t; z, Z)

) = �t X
(
π(γh(1/2; z, Z))

)
⇒

d

dt

∣∣∣
t=1/2

γg(t;w,W) = �t X
(
γg(1/2;w,W)

)
.

Thus, W fulfils the equation defining �g(�t X), which proves the result. ��
Next, assume (N ,h, ω) is a Kähler manifold.
Recall the properties of a Kähler manifold: there is a map J : T N → T N called

the complex structure that fulfils

h(u, v) = ω(u, Jv)

ω(u, v) = h(Ju, v)

h(Ju, Jv) = h(u, v)

X F = J−1∇F, F ∈ C∞(N ) (15)

where ∇ is the gradient with respect to h. We are interested in the case when π is both
a Riemannian submersion and a Poisson map.
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Lemma 3.5 Let (N ,h, ω) be a Kähler manifold, let (M,g, {·, ·}) be a Riemannian
and Poisson manifold, and let H ∈ C∞(M) be a Hamiltonian. Assume there is a
Riemannian submersion π : N → M that is also a Poisson map. Then, X H◦π is
horizontal if and only if ∇H (gradient of H with respect to the metric on M) is
tangent to the symplectic leaves of M.

Proof By definition, the vector field X H◦π is horizontal if and only if

h(X H◦π , v) = 0, ∀ v ∈ Vert. (16)

By (15), we also have

h(X H◦π , v) = h(J−1∇(H ◦ π), v)

= h(∇(H ◦ π), Jv)

= ω(v,∇(H ◦ π)). (17)

Combining (16) and (17), X H◦π is horizontal if and only if

ω(v,∇(H ◦ π)) = 0, ∀ v ∈ Vert.

Expressed in words, X H◦π is horizontal if and only if ∇(H ◦ π) belongs to the
symplectic complement of Vert, denoted Vert⊥ω . Let Pre denote the distribution on N
defined by the preimage of the tangent spaces of the symplectic leaves of M . From
Libermann and Marle (1987, Proposition III.14.21), it follows that Pre = Vert⊥ω . It
remains to show that∇H is tangent to the symplectic leaves if and only if∇(H ◦π) ∈
Pre. Since the metric h is descending, the gradients on M and N are related by

T π ◦ ∇(H ◦ π) = ∇H.

By the definition of Pre, this formula proves the result. ��
By combining Theorem 3.4 with Lemma 3.5, we obtain the following result.

Theorem 3.6 Let M, N, and π be as in Lemma 3.5. Let H ∈ C∞(M) fulfil the
condition in Lemma 3.5, i.e., ∇H is tangent to the symplectic leaves. Let �g and �h
denote the Riemannian midpoint methods on M and N, respectively. Then:

1. If �h(X H◦π ) is symplectic, then �g(X H ) is a Poisson map.
2. If �h(X H◦π ) preserves the preimage of the symplectic leaves, then �g(X H ) pre-

serves the symplectic leaves.
3. If G is a Lie group that acts on M and N, and �h and π are equivariant with

respect to G, then �g is equivariant with respect to G.

Proof Let�h and�g be the Riemannianmidpoint methods on M and N , respectively.
By Lemma 3.5, X H◦π is horizontal, since∇H is tangential to the symplectic leaves.

The vector field X H◦π is thus descending (it descends to X H since π is a Poisson sub-
mersion) and horizontal. ByTheorem3.4,π then intertwines�g(X H ) and�h(X H◦π ).

123



J Nonlinear Sci (2016) 26:1507–1523 1521

Proof of (1): Sinceπ is a Poissonmap and�h(X H◦π ) is a symplecticmap,�g(X H )

is a Poisson map.
Proof of (2): Since�h(X H◦π ) preserves the integral submanifolds of the symplectic

complement of Vert, and since these submanifolds project to the symplectic leaves,
it follows from the π intertwining property that �g(X H ) preserves the symplectic
leaves.

Proof of (3): Let X ∈ X(M). Let Y ∈ X(N ) be horizontal and descending to X .
Let g ∈ G Then, g · X ◦ π = g · T π ◦ X = T πg · X , since π is equivariant. Thus,
g · Y descends to g · X . Next, using Theorem 3.4

�g(g · X) ◦ π = π ◦ �h(g · Y ) = π ◦ g−1 · �h(Y ) · g = g−1 · �g(X) · g ◦ π.

This proves the results since π is a submersion. ��

3.2 Riemannian Structure of the Spherical Midpoint Method

Our objective is to show that the spherical midpointmethod (7) on V n∗ , for Hamiltonian
vector fields X H ∈ X(V n∗ )with H of the form inLemma3.5, is aRiemannianmidpoint
method with respect to a non-Euclidean Riemannian metric, related to the classical
midpoint method on Hn∗ by a Riemannian submersion in the sense of Theorem 3.4.

Recall that the extended Hopf map (11) is a submersion π : Hn∗ → V n∗ that is a
Poisson map with respect to the Kähler structure on Hn∗ and the Poisson structure on
V n∗ (as described in § 2).

Lemma 3.7 The Kähler metric onHn∗ is descending with respect to the extended Hopf
map π : Hn∗ → V n∗ . The corresponding Riemannian metric on V n∗ is

gw

(
u, v

) :=
n∑

i=1

ui · vi

|wi | . (18)

Proof Each fibre π−1({w}) ⊂ Hn∗ is the orbit of an action of the group U (1)n on Hn∗ .
This action is isometric with respect to the Kähler metric. That is, if h denotes the
Kähler metric and Lθ denotes the action map, then L∗

θh = h. It follows from Modin
(2015, Proposition 4.3) that h is descending. Direct calculations, straightforward but
lengthy, confirm that it descends to the metric (18).

As a specialization of Theorem 3.4 to the case M = V n∗ and N = Hn∗ , we obtain
a relation between the Riemannian midpoint method on V n∗ and Hn∗ . Notice that the
Riemannianmidpoint method onHn∗ is the classical midpoint method, since the metric
of Hn∗ is Euclidean. We denote the classical midpoint method on Hn∗ by �cm.

Theorem 3.8 Let Y ∈ X(Hn∗) be a horizontal vector field, let X ∈ X(V n∗ ), and
assume that the extended Hopf map π intertwines X and Y . Further, let g denote the
Riemannian metric (18) on V n∗ . Then π intertwines the Riemannian midpoint method
�g(h X) and the classical midpoint method �cm(hY ).
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As a specialization of Lemma 3.5 to the case M = V n∗ and N = Hn∗ , we obtain a
geometric formulation of Lemma 2.3.

Lemma 3.9 Let H ∈ C∞(V n∗ ). Then, X H◦π is horizontal if and only if H is constant
on the rays. In particular, X H◦ρ◦π is horizontal for any H ∈ C∞((S2)n).

Proof The symplectic leaves ofV n∗ are the coadjoint orbits of (so(3)∗)n . These consists
of

S2
r1 × · · · × S2

rn
= {(w1, . . . ,wn) ∈ V n∗ ; |wk | = rk}, (19)

for arbitrary rk ∈ R+. Let ∇ denote the gradient on V n∗ with respect to g. It follows
fromLemma3.5 that X H◦π is horizontal if and only if∇H is tangent to (19). From (18)
and the direct product structure of V n∗ , we see that g(u, v) = 0 for any u tangent to
(19) if and only if v is tangent to the rays (Definition 1.2). Let Rρ(w) ⊂ V n∗ denote the
ray through w. The condition for X H◦π to be horizontal is therefore

gw(∇H(w), v) = 0, ∀v ∈ Tw Rρ(w)

⇐⇒
〈dH(w), v〉 = 0, ∀v ∈ Tw Rρ(w),

which implies that H must be constant on the rays. ��

As a specialization of Theorem 3.6 to the case M = V n∗ and N = Hn∗ , we recover
again that the Riemannian midpoint method �g on V n∗ is a Poisson integrator.

Proposition 3.10 The Riemannian midpoint method �g on V n∗ , applied to Hamilto-
nian vector fields, is a Poisson integrator.

The final result in this section connects the extended spherical midpoint method (7)
and the Riemannian midpoint method �g. The two methods are different, but they
coincide for ray-constant Hamiltonian vector fields, as a consequence of Theorem 2.4
and Theorem 3.8.

Proposition 3.11 Let � denote the extended spherical midpoint method (7) on V n∗
and �g the Riemannian midpoint method with respect to the metric g in (18). Let
H ∈ C∞(V n∗ ) be constant on rays. Then, �(�t X H ) = �g(�t X H ).

Proposition 3.10 and Proposition 3.11 provide another independent proof that the
spherical midpoint method is a symplectic discretization, this time based on Kähler
geometry andLemma3.5.This proof is interesting because it allows for generalizations
to other Kähler manifolds.

It is a remarkable consequence of Proposition 3.11 that the non-Euclidean induced
metric g, given by (18), has become redundant in the case when the Hamiltonian H is
constant on rays; from (4), we see that the Riemannian midpoint method �g(�t X H )

can be expressed solely in terms of the classical midpoint method on V n∗ for such
Hamiltonians.
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